

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR200322604 Volume 2, Issue 3, May-June 2020 1

IBM Mainframe & Z/OS: Advanced Insights from

A Programmer's Perspective

Chandra Mouli Yalamanchili

chandu85@gmail.com

Abstract

Despite all the advancements in distributed technology, IBM mainframes still host a prominent percentage

of transaction processing across different market segments, such as healthcare, airlines, financial, stock

trading, etc., making IBM mainframe attractive from a prominent technology perspective for developers

to adopt.

This paper explores and discusses the architecture of the IBM mainframe from a programmer's perspective

to understand critical hardware and software components that support applications running on the

mainframe.

This paper also explores some of the address spaces, such as coupling facility, TCP/IP stack, z/OS

communication server, CICS TS, etc., that are critical from an application programming perspective.

This paper also examines the architectural similarities between virtual machines (VMs) and IBM

mainframes and the historical progression of IBM mainframes, specifically z/OS.

Finally, this paper examines and discusses a simple COBOL CICS code example from the z/OS

architecture perspective.

Author Keywords

IBM Mainframe; z/OS; Mainframe address space; CICS; Coupling facility; Mainframe programming;

z/OS Communication Server.

INTRODUCTION

While other forms of computing have evolved over the years, the IBM mainframe still plays a vital role

in the operation of several Fortune 1000 companies. It continues to be the core component for many

enterprises in banking, finance, health care, insurance, utilities, government, and other business sectors.[1]

Several factors make mainframes one form of computing that has been successful for many decades and

continues to be successful. Below are a few of these factors:

• Compatibility: Despite the continuous evolution of the mainframe systems' hardware and software,

the progression of the mainframe architecture has ensured that applications written in older versions

are always supported without any issues.[1]

• Reliability: Most mainframe hardware and software components have self-checking and self-healing

capabilities, providing a highly reliable platform for business applications.[1]

• Availability: Mainframe ssystems are built with high resilience at different hardware and software

layers, making it possible to recover the system without impacting the applications.[1]

• Serviceability: Once again, the mainframe system's highly resilient design allows for seamless

hardware or software upgrades for the business applications.[1]

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR200322604 Volume 2, Issue 3, May-June 2020 2

• Security: Mainframe systems have robust and sophisticated security tools that provide users with role-

based authority to protect critical systems and client data.[1]

In addition to these factors, the tight coupling between hardware and software components while

maintaining resiliency at component level provides high processing capabilities and better system control.

The combination of various critical components within mainframe architecture makes them successful

systems, and this paper will explore some of these components of mainframe and z/OS from the

programmer's perspective.

Mainframe Operating Systems

While this paper focuses on the z/OS operating system, IBM mainframes offer several other operating

systems; below are the high-level details about different operating system options available within IBM

mainframe.

• z/OS is the widely used operating system for mainframes and provides a stable, secure, and highly

resilient environment for running applications.[1]

• z/Virtual Machine (z/VM®) is a hypervisor that creates a virtual machine that can host any other

mainframe OS like distributed virtual machines.[1]

• z/Virtual Storage Extended (z/VSE) is a lighter version of z/OS that provides a smaller and less

complex OS for batch and transaction processing.[1]

• Linux for System z allows different Linux distributions to run on a mainframe. Running Linux OS

on a mainframe provides the benefits of high processing capability, being close to existing mainframe

applications, and communicating with them using HiperSockets.[1]

• z/TPF is a special-purpose operating system for companies that process high transaction volumes,

such as airline reservation systems and credit card companies.[1]

Below figure depicts the mainframe timeline starting from S/360 in 1964 till z/OS in 2000s.

Figure 1: IBM Mainframe timeline[1]

IBM hardware Components

While the mainframe initially (back in the 1960s) had a single processor known as the central processing

unit (CPU), today's mainframe hardware comes as an interconnected collection of hardware components

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR200322604 Volume 2, Issue 3, May-June 2020 3

called a central processor complex (CPC) that includes main storage, central processors, timers, and

channels.[1]

Below are some of the critical hardware components of the mainframe:

Central Processors: The Central processor contains the processors, memory, control circuits, and channel

interfaces.[1]

Channels: Channels provide an independent data and control path between I/O devices and memory.

Modern mainframes use ESCON (Enterprise Systems Connection) and FICON (Fiber Connection)

Channels that connect to only one control unit or to a director that, in turn, connects to several control

units. Channels are generally known as CHPIDs (Channel path identifiers) or PCHIDs (Physical channel

identifiers).[1]

Control Units: Control units connect to I/O devices. They contain logic specific to the type of I/O device

attached to them.[1]

Devices: Devices account for I/O devices like disk drives, tape drives, printers, communication interfaces,

etc..[1]

LPAR: The mainframe can be partitioned into separate logical systems by sharing the resources available

among these independent logical partitions (LPARs). The LPAR hypervisor, a standard Processor

Resource/System Manager (PR/SM) feature on all mainframes, controls the sharing of resources among

different LPARs. Each LPAR will operate like its own system and can host its own operating system.[1]

The system profile and IOCDS (I/O Configuration Data Set) hold the partitioning control specifications

together. The IOCDS and profile reside inside the system's Support Element (SE) computer. Hardware

Management Consoles (HMCs) are personal desktop computers that connect to SE to monitor and control

mainframe microprocessors.[1]

Below is a simple depiction of how different LPARs share resources in the mainframe.

Figure 2: Depiction of LPAR and system control[1]

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR200322604 Volume 2, Issue 3, May-June 2020 4

z/Architecture Processors

Below are several z/Architecture processors that are available to solve different purposes.

Central Processor (CP): This generic processor is available for general OS and application code.[1]

Integrated Facility for Linux (IFL): LPAR hosting Linux OS uses this processor. IFL is like CP but with

a different cost model. Using IFL would lower the cost of the Linux workload on the mainframe.[1]

z Application Assist Processor (zAAP): This is like IFL but has several functions disabled, so it cannot

execute full OS. However, if available, z/OS uses zAAP processors for the Java workload to reduce the

software cost.[1]

z Integrated Information Processor (zIIP): Initially introduced as a specialized engine for processing

eligible database workloads, but later repurposed for Java and other zIIP-eligible workloads.[1]

Below is an example of different LPARs hosting different operating systems and the respective types of

processors available in z architecture.

Figure 3: Depicting different LPARs with different Operating Systems and different processors [2]

Critical z/OS Components from developer perspective

MVS (Multiple Virtual Storage): Predecessor to z/OS and still a foundational component of modern

z/OS. It manages critical functions of OS like hardware resources, memory, tasks, and users in a multi-

programming environment.[3]

z/OS Communications Server: The z/OS Communication Server enables TCP/IP and SNA (Systems

Network Architecture) communications. It is critical for network-based mainframe applications, enabling

various client/server applications to communicate with the mainframe.[3]

Coupling Facility: The Coupling Facility is used primarily in Parallel Sysplex environments to ensure \

high resource availability. It enables multiple coupling-capable z/OS processors to share data and

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR200322604 Volume 2, Issue 3, May-June 2020 5

workload in real-time by providing locking, caching, and list services. VSAM record-level sharing (RLS)

is one such benefit of the coupling facility, allowing multiple systems to access the same VSAM file

simultaneously.[3]

DFSORT: DFSORT has been a standard tool on the mainframe to achieve fast and easy sorting, merging,

copying, reporting, and analysis of business information.[3]

Distributed File Service: The zSeries File System (zFS) is a UNIX file system that contains files and

directories. Like HFS (Hierarchical File System), it can be mounted into the z/OS UNIX hierarchy.[3]

HLASM (High-Level Assembler): HLASM is an integral part of z/OS that extends the basic assembler

language to provide better development capabilities for building assembler language applications that run

on z/OS.[3]

ISPF (Interactive System Productivity Facility): ISPF is a menu-driven interface for dataset

management, application development, and system management on IBM mainframes.[3]

JES2/JES3 (Job Entry Subsystem 2/3): JES2 and JES3 are both responsible for managing batch jobs

and output data by managing job scheduling and spooling. They both accept the submission of work to

BCP (Base Control Program). JES2 exercises independent control over job processing, while JES3

exercises centralized control.[3]

Language Environment: The Language Environment provides the runtime environment for programs

generated with C, C++, COBOL, Fortran, and PL/I. [3]

RMF (Resource Measurement Facility): This facility gathers resource performance and usage

parameters and provides reports on various systems in the complex.[3]

SDSF (System Display and Search Facility): SDSF is an integral tool for monitoring, managing, and

controlling z/OS systems. From developers' perspectives, it will help monitor user jobs and check system

logs.[3]

TSO (Time Sharing Option) and TSO/E (TSO/Extensions): TSO and TSO/E are critical components

of z/OS that provide an interactive environment for users to communicate with the system, execute

programs, and perform various development tasks.[3]

z/OS UNIX: z/OS UNIX System Services (z/OS UNIX) provides the standard command interface familiar

to interactive UNIX users.[3]

SMS (System Management Services): The System Management Services automates the data storage

management. It handles functions like dataset allocation, volume selection, and data migration to ensure

efficient data usage and storage.[3]

RACF (Resource Access Control Facility) and Security: RACF is the primary security framework for

z/OS. It controls the user's access to all resources on the mainframe, such as datasets, programs, and system

facilities, to ensure that only authorized users can access sensitive system parts.[3]

Simple Code Example

Below is a basic example of a COBOL program that handles a simple CICS (Customer Information

Control System) transaction:

EXEC CICS RECEIVE INTO(INPUT-DATA)

LENGTH(INPUT-LENGTH)

END-EXEC.

MOVE 'Hello, CICS!' TO OUTPUT-DATA.

EXEC CICS SEND FROM(OUTPUT-DATA)

LENGTH(OUTPUT-LENGTH) END-EXEC.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR200322604 Volume 2, Issue 3, May-June 2020 6

This program demonstrates the fundamentals of writing a CICS transaction. These commands receive the

user input and send back a simple greeting as a response to the user. CICS address spaces facilitate the

interaction between the user and the program. Behind the scenes, several other address spaces come into

play, like the Communication Server, which allows the user to communicate with the CICS transaction

server through the 3270 terminals, and RACF, which allows the user to access the respective CICS

transaction.

Conclusion

IBM mainframes, specifically z/OS, remain a powerful platform for enterprises. IBM Mainframe provides

a perfect combination of hardware and software components to ensure high performance and reliability.

z/OS offers several sophisticated tools for programmers, such as managing address spaces and utilizing

system-critical components like Communication Sever and Coupling Facility. Most businesses rely on

mainframe technology, making understanding z/OS architecture crucial for modern application

development.

References

1. IBM Corporation, Introduction to the New Mainframe: z/OS Basics. IBM Redbooks, 2012.

https://www.redbooks.ibm.com/redbooks/pdfs/sg246366.pdf

2. IBM Corporation, Practical Migration to Linux on System z. IBM Redbooks, 2010.

https://www.redbooks.ibm.com/redbooks/pdfs/sg247727.pdf

3. IBM Corporation, z/OS Planning for Installation Version 2 Release 1. IBM documentation 2014.

https://publibz.boulder.ibm.com/epubs/pdf/e0z3b102.pdf

https://www.ijfmr.com/

