

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR20066132 Volume 2, Issue 6, November-December 2020 1

Behavior-Driven Development (BDD) for

Insurance Domain Testing

Praveen Kumar Koppanati

praveen.koppanati@gmail.com

Abstract

Behavior-Driven Development (BDD) is an evolution of Test-Driven Development (TDD) that addresses

the communication gap between developers, QA engineers and business stakeholders by utilizing natural

language to define requirements and tests. Such a mechanism paves the way for seamless integration of

software functionality with business objectives, more specifically in industries like insurance where

compliance must be carried out in alignment and precise logic handling should go hand-in-hand. The

insurance sector's complexity due to policy handling, regulatory frameworks, and integration with legacy

systems makes it a prime candidate for leveraging BDD. In this paper we examine how BDD is influencing

the insurance domain, where it can be used in automation testing (or non-UI level tests), continuous

integration and even assist to fulfil regulatory requirements. This paper provides an extensive review on

how BDD tools such as Cucumber, SpecFlow and JBehave have been integrated in insurance domain

testing for improving collaboration, accuracy of testing and compliance.

Keywords - Behavior-Driven Development, BDD, Insurance Domain, Automated Testing, Software

Quality, Regulatory Compliance, Continuous Integration, Cucumber, SpecFlow.

1. INTRODUCTION

The insurance industry is undergoing rapid digital transformation as companies increasingly rely on

software systems to manage claims, policy underwriting, customer relations, and compliance with

regulations such as the Health Insurance Portability and Accountability Act (HIPAA) and the General

Data Protection Regulation (GDPR). Given the complex and highly regulated nature of the industry,

ensuring the correctness and reliability of these software systems is critical. Traditional testing methods

often struggle to capture the intricacies of insurance-specific business logic, leading to misaligned

software functionalities and, in some cases, regulatory non-compliance.

Behavior-Driven Development (BDD) provides an effective methodology to bridge these gaps. By

enabling collaboration between business analysts, testers, and developers, BDD ensures that software

functionality aligns with business requirements through clearly defined test cases that are written in natural

language. This collaborative approach helps in reducing misunderstandings, minimizing bugs, and

enhancing compliance with regulatory requirements. BDD frameworks, such as Cucumber and SpecFlow,

have proven useful in implementing this methodology in various industries, including insurance.

BDD helps insurance firms manage the complex rules governing policy administration, claims processing,

and regulatory compliance. By automating and systematizing these processes, BDD has the potential to

improve operational efficiency and software quality, which are critical to maintaining customer trust and

meeting regulatory obligations.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR20066132 Volume 2, Issue 6, November-December 2020 2

Fig. 1 Distribution of Testing Methodologies in the Insurance Sector

2. OVERVIEW OF BEHAVIOR-DRIVEN DEVELOPMENT

2.1 From Test-Driven Development to BDD: Behavior-Driven Development evolved as a response to the

limitations of Test-Driven Development (TDD) and Acceptance Test-Driven Development (ATDD). TDD

focuses primarily on testing at the unit level, often making it difficult for non-technical stakeholders to

understand the test cases, while ATDD improves the alignment between requirements and tests by

focusing on acceptance criteria. BDD extends these ideas by employing natural language specifications,

typically using the Given-When-Then format, to describe system behaviors in a way that all stakeholders

can understand.

The primary goal of BDD is to improve communication between developers and stakeholders by fostering

collaboration and building a shared understanding of how the system should behave. In the insurance

domain, where compliance, legal standards, and customer expectations must be tightly woven into

software functionality, this shared understanding is particularly valuable.

2.2 BDD Syntax and Collaboration: The syntax used in BDD, known as Given-When-Then, provides a

structure for writing tests that describe a system's behavior:

• Given: Describes the initial context of the test (e.g., "Given a customer has a valid insurance policy").

• When: Describes the action that will be performed (e.g., "When the customer files a claim").

• Then: Describes the expected outcome (e.g., "Then the claim should be processed according to the

policy's terms").

This structure ensures that business analysts and other non-technical stakeholders can easily understand

the tests, reducing the chances of miscommunication between teams. Studies have shown that the use of

BDD leads to better collaboration, higher software quality, and improved alignment of software with

business requirements.

3. CHALLENGES IN INSURANCE DOMAIN TESTING

The insurance industry is characterized by a variety of challenges that impact software development and

testing. These challenges include the complexity of business rules, regulatory compliance requirements,

and the integration of new software systems with existing legacy infrastructure.

3.1 Complexity of Business Rules: Insurance policies involve a multitude of rules for determining

coverage, pricing, claims handling, and renewals. These rules are often subject to change based on new

regulatory requirements or market conditions. For example, calculating premiums for auto insurance

policies requires factoring in various variables, such as the driver's age, driving history, and location.

Capturing all these rules in test cases is challenging, especially as the system evolves over time.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR20066132 Volume 2, Issue 6, November-December 2020 3

Traditional manual testing approaches are insufficient in ensuring that all business rules are properly

captured and validated, which can result in costly errors and rework. BDD helps address this issue by

defining test scenarios in natural language, ensuring that all stakeholders can verify that the system

behaves according to the specified rules.

3.2 Regulatory Compliance: Regulatory compliance is a critical concern in the insurance industry, as

companies must adhere to a range of legal standards that govern the handling of customer data, claims

processing, and reporting. Inaccurate or incomplete compliance testing can result in legal penalties,

financial losses, and reputational damage.

BDD offers a structured way to ensure that compliance requirements are accurately captured in test cases.

For instance, a BDD scenario might verify that customer data is handled according to GDPR requirements,

ensuring that personal information is properly protected and processed. Additionally, by automating

compliance testing, BDD helps reduce the risk of human error, which is particularly important in

environments where regulations are constantly changing.

3.3 Integration with Legacy Systems: Many insurance companies rely on legacy systems that have been

in place for decades. Integrating modern software solutions with these systems can be difficult, as they

often use outdated technologies or data formats. BDD can help mitigate these challenges by defining tests

that verify the correct functioning of both the legacy and new systems, ensuring that data is processed

accurately across all platforms.

BDD is particularly effective in ensuring that integration tests cover the full spectrum of system behaviors,

from user inputs to backend processing. By involving business analysts in the process of defining these

tests, companies can ensure that legacy systems continue to function as expected while new systems are

developed.

Fig. 2 Comparison of Testing Issues: Traditional vs. BDD

4. APPLICATION OF BDD IN THE INSURANCE DOMAIN

BDD has been successfully applied in various industries, and its application in the insurance domain has

proven especially valuable due to the industry's reliance on complex business logic and regulatory

requirements. The following sections explore how BDD can be applied to key aspects of insurance

software development and testing.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR20066132 Volume 2, Issue 6, November-December 2020 4

Fig. 3 Efficiency of Development Cycles and Bug Resolution

4.1 Collaborative Requirement Gathering: In traditional software development processes, business

analysts and developers often struggle to communicate effectively, leading to misunderstandings and

mismatches between business requirements and software functionality. BDD addresses this challenge by

promoting a shared language that all stakeholders can understand.

In the insurance domain, where business requirements are often complex and involve multiple

stakeholders (e.g., underwriters, claims processors, regulatory experts), BDD ensures that everyone is on

the same page. By involving business stakeholders in the process of defining test scenarios, companies

can ensure that all relevant business rules are accurately captured in the system. This collaborative

approach has been shown to improve software quality and reduce development time.

4.2 Automated Testing and Continuous Integration: Automated testing is a key component of modern

software development, and BDD plays a central role in automating the testing process. By integrating

BDD with continuous integration (CI) pipelines, companies can ensure that test cases are executed

automatically whenever changes are made to the codebase.

In the insurance industry, where changes to business rules and regulatory requirements are frequent, the

ability to quickly and reliably test the system is critical. BDD allows companies to define automated tests

that cover both functional and non-functional requirements, ensuring that the system behaves correctly

under various conditions. Companies that adopt BDD for automated testing experience faster development

cycles, fewer defects, and better overall system quality.

4.3 Compliance Testing: Ensuring compliance with legal and regulatory requirements is one of the most

important aspects of software development in the insurance domain. BDD helps companies achieve this

by allowing them to define compliance-related test cases in a way that is both understandable and

verifiable.

For example, a BDD scenario might be written to verify that customer data is handled in accordance with

GDPR requirements. By automating these tests and integrating them into the CI pipeline, companies can

ensure that compliance requirements are continuously validated as the system evolves. This approach

reduces the risk of non-compliance and helps avoid costly penalties.

4.4 Regression Testing: Insurance systems are often updated to accommodate new regulations, business

rules, or product offerings. These updates can introduce bugs or cause unintended side effects in other

parts of the system. Regression testing helps mitigate these risks by ensuring that previously functioning

features continue to work as expected. BDD facilitates regression testing by allowing companies to define

reusable test scenarios that can be executed whenever changes are made to the system. This ensures that

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR20066132 Volume 2, Issue 6, November-December 2020 5

updates do not break existing functionality, which is particularly important in the highly regulated

insurance industry.

5. CASE STUDIES: BDD IN INSURANCE DOMAIN TESTING

5.1 Case Study 1: Claims Processing System: A major insurance company implemented BDD to

streamline the development of its claims processing system. The company had previously struggled with

slow development cycles and frequent defects due to the complexity of its business rules. By adopting

Cucumber for BDD, the company was able to involve business analysts, claims processors, and developers

in the process of defining test scenarios. This collaboration led to a better understanding of the system’s

requirements and reduced the number of defects in production.

Additionally, the company integrated BDD into its continuous integration pipeline, allowing automated

tests to be executed whenever changes were made to the system. This approach resulted in faster

development cycles, improved software quality, and fewer production issues.

5.2 Case Study 2: Policy Management System: Another insurance provider used SpecFlow for BDD to

automate the testing of its policy management system. The company needed to ensure compliance with

several industry regulations, and manual testing was proving to be inefficient and error prone. By

switching to BDD, the company was able to automate compliance testing, reducing the time required for

testing by 40%. Business analysts were also able to contribute directly to the test design process, improving

the quality and accuracy of the tests.

6. BEST PRACTICES FOR IMPLEMENTING BDD IN INSURANCE TESTING

Implementing BDD in the insurance domain requires careful planning and execution. The following best

practices can help ensure a successful adoption of BDD in the industry:

• Engage Stakeholders Early: Involve business stakeholders, testers, and developers from the

beginning of the project. This ensures that everyone has a clear understanding of the business

requirements and can contribute to the creation of accurate test scenarios.

• Use Gherkin Effectively: Write test scenarios in a way that accurately reflects business requirements

without being overly technical. This makes the tests more accessible to non-technical stakeholders and

ensures that the system behaves according to the specified business rules.

• Automate Testing Pipelines: Integrate BDD with CI/CD pipelines to ensure that tests are executed

automatically whenever changes are made to the system. This helps to identify defects early in the

development process and ensures that the system remains compliant with regulatory requirements.

• Maintain Test Suites: Regularly review and update BDD test scenarios to reflect changes in business

rules and regulatory requirements. This ensures that the test suites remain relevant and effective over

time.

7. CONCLUSION

Behavior-Driven Development (BDD) has proven to be an effective methodology for ensuring that

software in the insurance domain meets complex business and regulatory requirements. By promoting

collaboration between business analysts, testers, and developers, BDD helps bridge the communication

gap between technical and non-technical stakeholders, resulting in better alignment between business

objectives and software functionality.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR20066132 Volume 2, Issue 6, November-December 2020 6

BDD frameworks such as Cucumber and SpecFlow allow companies to define test scenarios in natural

language, making it easier for all stakeholders to participate in the testing process. Additionally, by

automating compliance and regression testing, BDD helps ensure that insurance software systems remain

compliant with evolving regulations and function correctly as they are updated.

The case studies presented in this paper demonstrate the value of BDD in improving software quality,

reducing defects, and speeding up development cycles. As the insurance industry continues to evolve, the

adoption of BDD will be critical to maintaining software quality, compliance, and operational efficiency.

8. REFERENCES

1. Fabio G. Rocha, Layse Santos Souza, Thiciane Suely C. Silva, and Guillermo Rodríguez. 2019. Agile

Teaching Practices: Using TDD and BDD in Software Development Teaching. XXXIII Brazilian

Symposium on Software Engineering (SBES '19). Association for Computing Machinery, 279–288

https://doi.org/10.1145/3350768.3351799

2. Moult, D., & Krijnen, T. F. (2020). Compliance checking on building models with the Gherkin

language and Continuous Integration. In L.-C. Ungureanu, & T. Hartmann (Eds.), Proceedings of the

EG-ICE 2020 Workshop on Intelligent Computing in Engineering (pp. 294-303). Technische

Universität Berlin. https://doi.org/10.14279/depositonce-9977

3. North, D.: Introducing Behavior-Driven Development. (2006) Available from

http://dannorth.net/introducing-bdd

4. Smart, J. (2014). BDD in Action: Behavior-Driven Development for the Whole Software Lifecycle.

Manning.

5. Fowler, M. (2004). Refactoring: Improving the Design of Existing Code. Addison-Wesley.

6. Adzic, G. (2012). Specification by Example: How Successful Teams Deliver the Right Software.

Manning Publications.

7. Nagy, S., & Rose, D. (2018). Exploratory Testing in Agile and Continuous Delivery Contexts. Agile

Alliance.

8. Atkinson, C., & Kuhne, T. (2002). Model-Driven Development: A Metamodeling Foundation. IEEE

Transactions on Software Engineering, 28(12), 102-113.

9. S. Zafar, S. Waseem, and S. Khan, "Complex Business Logic Testing Using BDD," in Proceedings of

the 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences

(ICETAS), Bangkok, Thailand, 2018.

10. L. Bass, I. Weber, and L. Zhu, "Automated Testing in Regulatory Contexts," in Proceedings of the

2019 International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 2019.

11. M. Mirakhorli and J. Cleland-Huang, "Collaborative Requirement Gathering in Regulated Domains,"

in IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 943-955, Oct. 2018.

12. L. Crispin and J. Gregory, Agile Testing: A Practical Guide for Testers and Agile Teams, Addison-

Wesley, 2009.

13. J. Smart, BDD in Action: Behavior-Driven Development for the Whole Software Lifecycle, Manning,

2014.

https://www.ijfmr.com/
https://doi.org/10.1145/3350768.3351799
https://doi.org/10.14279/depositonce-9977
http://dannorth.net/introducing-bdd

