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Abstract 

The Oncotype DX (ODX) breast cancer assay is the most widely used Gene Expression Profiling 

(GEP) test globally. It plays a significant role in guiding decisions regarding Adjuvant 

Chemotherapy (ACT). Despite the availability of several standard approaches for this purpose, 

their accuracy has yet to reach optimal levels.This paper focuses on Breast Cancer Computer-

Aided Diagnosis (BC-CAD) using a Deep Constructive Neural Network to predict the Recurrence 

Score (RS) provided by the ODX assay. The proposed ConstDeepNet algorithm was evaluated by 

developing two types of classifiers: the first uses a "one-against-all" architecture, building a 

separate Deep Neural Network for each class, while the second employs a single DNN to classify all 

three classes. A separate network is constructed for each class in the first architecture, while the 

second architecture utilizes a single deep neural network to classify all three classes. The proposed 

BC-CAD algorithm was evaluated on a real-world dataset and demonstrated strong performance. 

The dataset consists of 92 cases of luminal B mammary carcinoma with available Oncotype DX 

test results collected between 2012 and 2017 from the Georges Francois Leclerc Cancer Centre. 

Keywords: Deep Learning, Neural Networks, Breast Cancer, Recurrence Score, Oncotype DX 

 

1. Introduction 

A review of the literature reveals that there is extensive scientific research focused on Breast 

Cancer Computer-Aided Diagnosis (BC-CAD). The methods used in BC-CAD vary depending on 

whether the input data consists of medical images or clinical information. When medical imaging 

techniques are employed, diagnosis relies on the analysis of digital images such as histopathology or 

immunohistochemical (IHC) images. Two recent publications that provide comprehensive overviews of 

these imaging-based methods are by Aswathy and Jagannath (2016), and Saha et al. (2016). 

Alternatively, breast cancer diagnosis can also be approached by examining various clinical 

aspects of the tumor, including both pathological and biological factors, which offer valuable prognostic 

and predictive insights. These clinical features may include surgical pathology biomarkers such as tumor 

type, tumor size, tumor grade, and lymph node status.The BC-CAD algorithm was tested on a real-world 

dataset comprising 92 cases of luminal B mammary carcinoma, with available Oncotype DX results 

collected between 2012 and 2017 from the Georges Francois Leclerc Cancer Centre in Dijon and the 

North Trévenans County Hospital in Belfort, France. The results demonstrate promising performance of 

the proposed approach. Machine learning techniques for computer-aided diagnosis are commonly 

developed and evaluated using the well-known Wisconsin Breast Cancer Dataset (WBCD) (Lichman, 
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2013), which is available through the University of California at Irvine (UCI) machine learning 

repository (see Abdel-Zaher and Eldeib, 2016; Asri et al., 2016; Devi and Deepika, 2015). 

In cases where breast cancer is detected, the modern management of early-stage estrogen 

receptor-positive (ER+) breast cancer relies on accurately determining which patients will benefit from 

additional adjuvant chemotherapy, as opposed to those who may only require hormonal therapy (Romo-

Bucheli et al., 2017). The prognosis and treatment decisions for tumors with varying levels of 

aggressiveness are often guided by the Oncotype DX (ODX) gene expression assay (M.B. Flanagan, 

2008). Developed by Genomic Health Inc. (GHI), the ODX assay measures the expression of a panel of 

21 genes in tumor tissue (Klein et al., 2013; Ademuyiwa et al., 2011; Carlson and Roth, 2013). The 

results are summarized as a Recurrence Score (RS), which ranges from 0 to 100 and is categorized into 

three risk groups: class 1 for low risk (RS < 18), class 2 for intermediate risk (18 ≤ RS < 31), and class 3 

for high risk (RS ≥ 31). Typically, more aggressive (high-risk) cancers require adjuvant chemotherapy, 

whereas less aggressive (low-risk) cases are effectively managed with hormonal therapy alone. 

However, the Oncotype DX test is costly, access to specialized laboratory equipment is limited, and the 

turnaround time from biopsy to prognostic prediction can be lengthy. 

The objective of this study is to predict the Recurrence Score (RS) of the Oncotype DX (ODX) 

assay using histological and immunohistochemical features of invasive breast carcinoma. To achieve 

this, we employed a Constructive Deep Neural Network for RS prediction. Two classification 

architectures were compared (see Figure 1): 

• In the first architecture (classifier No1), a separate neural network with a single binary output 

neuron is used for each class. 

• In the second architecture (classifier No2), a single neural network with two output neurons is 

utilized. 

 

 
Fig. 1. The used structures of the classifiers tested for the RS prediction 

 

The structure of this paper is as follows: Section 2 offers a concise overview of Constructive Neural 

Networks. Section 3 details the proposed Constructive Deep Neural Network algorithm. In Section 4, we 

outline the metrics and performance evaluation methods used to determine the convergence criteria for 

the constructive algorithm. Section 5 presents the data description and experimental results. Finally, 

Section 6 concludes the paper and discusses potential directions for future research. 

 

2. Constructive Neural Network: State of The Art  
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Determining the optimal neural network architecture to maximize performance in function 

approximation or classification tasks is a challenging research problem. Key questions include how to 

select the ideal number of neurons per layer and the appropriate number of layers. Typically, users 

experiment with various network topologies to identify the best structure, which becomes especially 

cumbersome and resource-intensive when dealing with deep architectures (Chandra and Sharma, 2016; 

Hosseini-Asl et al., 2016; Schmidhuber, 2015; LeCun et al., 2015). Even after extensive testing, there is 

no guarantee that the chosen number of hidden units is truly optimal.Traditional learning algorithms 

require the network topology to be defined in advance, adjusting only the connection weights during 

training. However, to better match the complexity and size of the data, it is beneficial to allow the neural 

network structure to adapt dynamically throughout the learning process. For further reading, see Pérez-

Sánchez et al. (2016), Ding et al. (2013), Franco and Jerez (2009), Parekh et al. (2000, 1997), and Yao 

(1993). 

Adaptive neural networks generally fall into three categories: 

 

• Constructive or Growing Algorithms: 

These methods progressively build the neural network by adding one neuron and its 

connections at each training step. Typically, training begins with a minimal structure, such as a 

single hidden layer containing one neuron. A well-defined convergence criterion is essential to halt 

network growth at the right moment; otherwise, poor criterion selection can result in overfitting 

(Qiao et al., 2016; Zemouri, 2017; Islam et al., 2009a; Puma-Villanueva et al., 2012; Subirats et al., 

2012; Lan et al., 2010; Islam et al., 2009b; Zemouri and Zerhouni, 2012). 

 

• Pruning Algorithms: 

In contrast to constructive methods, pruning algorithms start with a network containing 

the maximum number of layers and neurons. During training, neurons and their connections—or 

specific connections within the network—are systematically removed. As with constructive 

algorithms, a suitable convergence criterion is necessary to determine when to stop pruning. One 

major challenge of this approach is deciding on the initial network size (Fnaiech et al., 2004; 

Srivastava et al., 2014; Fnaiech et al., 2011, 2009; Miche et al., 2010; Lauret et al., 2006; Xu and 

Ho, 2006). 

 

• Hybrid Methods: 

These techniques offer a compelling alternative by combining both constructive and 

pruning strategies. Typically, the network is first expanded during a constructive phase and then 

pruned to prevent overfitting. As with the other methods, defining an appropriate convergence 

criterion is crucial (Han and Qiao, 2013; Yang and Chen, 2012; Narasimha et al., 2008; Islam et al., 

2009a; Wu et al., 2015). 

 

In practice, hybrid methods are particularly attractive, often delivering better results than using growing 

or pruning algorithms alone. 
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Fig. 2. Deep Neural Network with m hidden layers 

 

3. The Constructive Deep Neural Network  

A Deep Multi-Layer Perceptron (MLP) with m hidden layers (see Fig. 2) can be formally defined using 

two parameters: Λ and Φ. The vector Λ specifies the number of neurons nl in each layerl: Λ = 

(n0,n1,...,nl,...,nm,nm+1), where l=0 corresponds to the input layer. The vector Φ represents the weight 

connections vector:Φ=(W1,W2,...,Wl,...,Wm+1). Each Wl is a weight matrix, and each 

element wl
ij within Wl denotes the connection weight between the ith neuron in layer l and the jth neuron 

in layer (l−1). 

The proposed Constructive Deep Neural Network (ConstDeepNet) is a deep learning architecture that 

evolves incrementally during training (Zemouri, 2017; Zemouri et al., 2018). Let nl
t denote the size of 

hidden layer l at iteration t. To prevent infinite loops during the construction process, two parameters 

must be defined: MaxHL (the maximum number of hidden layers) and Maxn (the maximum number of 

neurons per layer), both set by the user. The detailed procedure for ConstDeepNet is outlined in 

Algorithm 1. 

Algorithm 1 Deep Constructive Algorithm 

Data: 

M : size of training data set 

Niter : the number of iterations for the training algorithm 

t : training step index. At each stept, (Niter×M) iterations of the training algorithm are computed.  

L : The index of the current hidden layer (HL) 

Wl : Matrix of the connections between the layers l and l-1 

ConvCond : Convergence condition 

 

Result: 

Deep Neural Network 

 

Initialization: 

t ← 0 

ConvCond=False 

Initialize the CNN with one HL and one neuron (l=1)  

whileConvCond = False do 

https://www.ijfmr.com/
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   if (nt
l ≤ Maxn and ConvCond = False) then 

       add a new neuron (nt+1
l = nt

l+1) for HL(l), 

         initializerandomlyall thenewweights,  

end 

ifnt
l>Maxnand l ≤MaxHL andConvCond= Falsethen 

addanewhiddenlayer(l=l+1)withone neuron, 

initializerandomlyall thenewweights,  

end  

ifl>MaxHLandConvCond=Falsethen 

Stoptheconstructiveprocedure(failed)  

end  

UpdateonlytheweightsWl oftheHL(l) 

 t⇐t+1  

end  

fine tuned of the last layerWl+1 with (Niter×M) iterations 

 

The Deep Neural network is successfully built 

4. Performance Evaluation and Convergence Condition 

To evaluate the performance of different classification methods, it is essential to introduce quantitative 

criteria. A confusion matrix is commonly used for this purpose. This matrix provides information about 

both the actual and predicted classifications. 

• True Positives (TP) refer to the number of positive instances correctly identified as positive. 

• True Negatives (TN) are the number of negative instances correctly identified as negative. 

• False Positives (FP) represent negative instances that are incorrectly classified as positive. 

• False Negatives (FN) are positive instances that are incorrectly classified as negative. 

Using these values, several performance metrics can be calculated (see Table 1). 

 

Table 1. Summary of the used metrics 

 

Accuracy (Acc) TP + TN

TP + TN + FP + FN
 

Negative Predictive 

Value (NPV) 

TN

TN + FN
 

Positive Predictive 

Value (PPV) 

TP

TP + FP
 

True Negative Rate 

(TNR) 

TN

TN + FP
 

True Positive Rate 

(TPR) 

TP

TP + FN
 

 

The convergence condition used by the Constructive Deep Neural Network algorithm is: 

If Accuracy > θ, PPV > θ, and TPR > θ, then 

https://www.ijfmr.com/
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    ConvCond = True 

 

Else 

    ConvCond = False 

 

where θ is a threshold value defined by the user. 

 

5. Data Description and Result 

The study dataset comprises 92 cases of luminal B mammary carcinoma, all with available Oncotype 

DX test results collected between 2012 and 2017. These cases were sourced from the Georges François 

Leclerc Cancer Centre in Dijon and the North Trévenans County Hospital in Belfort, France. 

The Recurrence Score (RS) was determined using ten input features: patient age, tumor size, lymph 

node (ganglionic) status, four different tumor grading parameters, estrogen receptor (ER) status, 

progesterone receptor (PR) status, and Ki-67 expression (see Table 2).Based on the RS, the cases were 

divided into three risk categories: 

• Class 1: Low risk – 40 cases 

• Class 2: Intermediate risk – 38 cases 

• Class 3: High risk – 12 cases 

The dataset was split equally: the first half was used for training the model, and the second half for 

testing. 

Figure 4 illustrates a 2D reduced representation of the dataset using t-distributed Stochastic Neighbor 

Embedding (t-SNE), a technique introduced by van der Maaten and Hinton (2008). t-SNE is a 

dimensionality reduction method especially effective for visualizing high-dimensional data. It can be 

implemented using the Barnes-Hut approximation, enabling it to handle large, real-world datasets 

efficiently. 

 

Table 2. Patient and tumor characteristics 

 

Characteristic n (%) Characteristic n (%) 

Age Mitosies Grade 

<40 Years 1 (1.5) 1 21 (23.9) 

40-49 years 5 (5.9) 2 52 (55.3) 

50-59 years 3 (2.8) 3 18 (21.3) 

> 59 years 84 (91.8) Nuclei Grade 

Tumor size (cm) 1 1 (1.5) 

< 1.0 14 (14.1) 2 43 (46.8) 

1.1 -2.0 41 (43.5) 3 48 (53.4) 

2.1-4.0 37 (39.1) Glande grade 

> 4.0 3 (3.2) 1 1 (1.6) 

Ganglionic Status 2 26 (31.2) 

0 61 (66.3) 3 64 (67.3) 

1 31 (33.7) Progesterone Receptor 

https://www.ijfmr.com/
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SBR Grade < 10 11 (12) 

1 9 (9.8) 10-20 12 (14) 

2 43 (46.7) > 20 70 (78) 

3 40 (43.5)   

 

The proposed ConstDeepNet algorithm was tested to build two classifiers, as illustrated in Figure 1. In 

the first architecture, a "one-against-all" structure is employed, where a separate deep neural network 

(DNN) is trained for each class. If an input feature belongs to class i, the output of the i-th DNN is 1; 

otherwise, the output is 0.In the second architecture, a single DNN is used to classify all three classes. 

Here, each class (1, 2, and 3) is encoded using two binary output neurons as follows: 

• Class 1: 01 

• Class 2: 10 

• Class 3: 11 

Figure 5 presents the comparative performance results for each class across the metrics: Accuracy 

(Acc), Positive Predictive Value (PPV), and True Positive Rate (TPR). Different convergence 

conditions were evaluated by varying the threshold θ from 0.1 to 0.9. To assess the algorithm's 

repeatability, the ConstDeepNet algorithm was executed 100 times for each value of θ. The plots in 

Figure 5 show the average performance values obtained for each metric. 

• The red plots (a) represent the results from the first classifier. 

•   The blue plots (b) correspond to the second classifier. 

 

Table 3 summarizes the performance of both classifiers in predicting the Oncotype DX Recurrence 

Score (RS) for θ = 0.9. 

 

 Low Risk Inter. Risk High Risk 

Classifier #1 #2 #1 #2 #1 #2 

Accuracy 0.75 0.72 0.59 0.53 0.86 0.88 

NPV 0.70 0.69 0.58 0.54 0.93 0.90 

PPV 0.69 0.69 0.49 0.46 0.49 0.45 

TNR 0.79 0.75 0.69 0.68 0.95 0.93 

TPR 0.53 0.49 0.35 0.34 0.52 0.41 

Total 3.46 3.34 2.70 2.55 3.75 3.57 

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com   ●   Email: editor@ijfmr.com 

 

IJFMR210146376 Volume 3, Issue 1, January-February 2021 8 

 

 
 

Figure 5 Based on the variation in the convergence threshold θ, the results were produced for each class 

and metric. The results of the first classifier are shown in plot a (red), and those of the second classifier 

are shown in plot b (blue). 

 

From both Table 3 and Figure 5, it is evident that the first classifier performs better for the Low and 

High risk classes. However, both classifiers show poor performance for the Intermediate risk class. 

This can be attributed to the data's topography, as shown in Figure 4. Many data points in the 

Intermediate class overlap with those of the Low and High classes, creating a fuzzy boundary. This 

indistinct separation is largely due to the subjective nature of certain tumor characteristics. Apart from 

age and tumor size, most clinicopathological features are "human-sensitive" and rely heavily on expert 

interpretation. Data accuracy remains a recurring challenge in biological applications (Mahmud et al., 

2018).  

A recent study by Sparano et al. (2018) on Adjuvant Chemotherapy Guided by a 21-Gene 

Expression Assay in Breast Cancer concluded that the benefit of chemotherapy remains uncertain for 

most patients with an Intermediate RS score. This aligns with our findings, emphasizing the need for 

more accurate prediction of RS for the Low and High risk classes. 

 

6. Conclusion 

The objective of this study was to predict the Recurrence Score (RS) of the Oncotype DX test. A novel 

constructive algorithm was proposed to develop two deep neural network (DNN) architectures. The first 

architecture consists of one dedicated DNN per class, while the second employs a single DNN to 

classify all three classes.The results obtained are promising and demonstrate that deep neural networks 

can effectively predict the Oncotype DX Recurrence Score. Further research and testing with larger 

datasets are planned to enhance prediction accuracy.Future work will focus on improving the reliability 

of the input data to achieve better separation among the three RS classes. In practice, the first 
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architecture offers several advantages, particularly in the context of medical diagnosis. Its key benefit 

lies in the multidimensional output—providing an individual response for each class—which plays a 

crucial role in improving the overall classification accuracy. 
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