
 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR210312106 Volume 3, Issue 3, May-June 2021 1 

 

Priority Based Message Queue Processing Using 

Software Thread 
 

Binoy Kurikaparambil Revi 
 

Independent Research 

binoyrevi@live.com 

 

Abstract: 

In the world of restful services for the web application, the backend or most commonly called core 

software is the brain of most real world applications. In this type of complex software system, the core 

software has a lot of high priority tasks which can be real time or near real time and it may not have much 

bandwidth to deal with sharing the data or messages to web services like restful services. Priority based 

Message Queue Processing Using Software Thread is a software implementation technique that can be 

immensely helpful to handle the data and messages from the core software that need to be transmitted 

without blocking the core software program execution. 

 

Introduction: 

Priority based Message Queue Processing Using Software Thread provides an extremely lightweight 

implementation using the software thread to the overall software architecture that can handle the data and 

messages from core software to transmit to various endpoints. This technique also provides a good strategy 

to handle priority and standard messages in separate queues. Handling priority and standard messages 

separately is a quite common use case in many complex real time applications. This is because there are 

critical messages or data that need to be transmitted immediately without sending those messages to the 

message queue and waiting for its turn to transmit. 

 

Adding Messages to the Message Queues 

Message Queues can be managed in different ways from simple First In First Out(FIFO) to complex 

Multiple Queues Processing(MQP). In the majority of the applications and in almost all real time 

applications, the Multiple Queues Processing is very much essential as the messages have a priority tag 

attached to it. Let's consider a real time system that issues standard data messages with a ‘Normal’ priority 

tag, Important notification messages with ‘High’ priority tag and Error Messages with ‘Critical’ priority 

tag. So we technically need to have 3 queues to process, let's name them ‘Normal’, ‘High’ and ‘Critical’ 

queues. Using a software thread we can process these Message queues based on a set of priority 

requirements for the application.  

 

 

https://www.ijfmr.com/
mailto:binoyrevi@live.com


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR210312106 Volume 3, Issue 3, May-June 2021 2 

 

 
Figure 1: Priority Based Message Queue Processing Using Software Thread 

 

Figure 1 gives an overall design on how the Priority based Message Queue Processing works in an 

application program. The main idea behind this design is that a software thread is a light weight process 

still attached to the main process and shares the same memory space with the process. As threads are 

lightweight, it uses less resources. 

When a new message needs to be issued to a remote entity like a web server or a remote application, the 

main program just calls the API to add the message to the queue. For this the main program needs to pass 

the message as well as the priority information to the API as parameters. The API then checks the priority 

and adds the message to the appropriate queue. Another important task that API performs is to limit the 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR210312106 Volume 3, Issue 3, May-June 2021 3 

 

length of the queue to a predefined limit. If the limit is reached, typically the oldest message is removed 

and a newer message is added to the top of the queue. However this may be different depending on the 

application requirements. As an example, in some cases, the API no longer accepts the messages that need 

to be added to the critical message queue if the critical message queue is full.  

As the API is not responsible for transmission and its job is just to add the messages to an in-memory 

queue, it is extremely fast in completing the execution and returning the control to the main application 

program. This makes this technique very handy to use in the real time applications. 

 

Priority Based Message Queue Processor in action 

Message queue processor is the key software function in the thread. This queue processor always keeps 

checking the queue for messages. If it finds messages in the queue, the queue processor immediately starts 

processing the messages. Once a message is processed, which means the message got transmitted to a 

remote application or a web server, the Message Queue Processor removes the message from the queue. 

The most important and may be critical function of the Message Queue Processor is the order in which 

the queues are processed. One simple logic to do this is to complete transmission of all messages in the 

critical queues and then the high priority queues and finally the Normal priority queues. There may be 

scenarios like new message arrival on a high priority queue when a low priority queue is under processing. 

In this case generally the current processing is completed and then the Message Queue Processor switches 

to the high priority queue to process the high priority messages. As the thread execution is independent 

from the main program execution, a near parallel execution performance is achieved where the messages 

are sent to the endpoints while the main program executes its key functionality. 

 

Network Package APIs and Response Manager 

The network libraries are the underlying mechanism that can be used to perform the tasks of transmitting 

the package to the network. I recommend using QT Libraries to perform these tasks. The 

QNetworkAccessManager class provided by QT libraries allows us to create an object that allows 

applications, in this case the Message Queue Processor, to send the Restful API request to the network. 

This will help to transmit the messages from the queue to the network as POST requests.  

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR210312106 Volume 3, Issue 3, May-June 2021 4 

 

 
Figure 2: RestAPI Implementation using QT Network Libraries to transmit messages 

 

A typical C++ implementation of the Restful service in a priority based network processing thread is given 

in Figure 2. A major benefit of using QT libraries to implement this thread is the fact that QT framework 

uses the signal slot mechanism to manage the data flow across different functions in the program. As in 

the above diagram, the QNetworkManger uses the QNetworkRequest to configure and pack the message 

and then post it to the network. The QNetworkReply object is configured to receive 

QIODevice::readyRead signal when there is a response available to read. This signal will invoke Response 

Manager and it is responsible to signal the main application process as per the business logic. Error 

handling signals are also available to catch the errors from QNetworkReply. 

 

Conclusion: 

Using the QT libraries and multi-threading mechanism, Priority based Message Queue Processing 

provides an efficient implementation technique to manage message transmission across the network in a 

thread that runs alongside the main core application. This technique reduces network communication 

overhead on the main application thus allowing it to focus on the core business logic. Overall, it adds 

Network messaging capability to the core backend program without a significant impact on its 

performance. One thing I would like to add to conclude this is that it will be extremely helpful to send 

health status signals from the thread to the main application program so that if the thread fails for any 

reason, the application can restart the thread with appropriate priority. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR210312106 Volume 3, Issue 3, May-June 2021 5 

 

References: 

1. K. B. Wheeler, R. C. Murphy and D. Thain, "Qthreads: An API for programming with millions of 

lightweight threads," 2008 IEEE International Symposium on Parallel and Distributed Processing, 

Miami, FL, USA, 2008, pp. 1-8, doi: 10.1109/IPDPS.2008.4536359.  

2. B. Falsafi and D. A. Wood, "Parallel Dispatch Queue: a queue-based programming abstraction to 

parallelize fine-grain communication protocols," Proceedings Fifth International Symposium on High-

Performance Computer Architecture, Orlando, FL, USA, 1999, pp. 182-192, doi: 

10.1109/HPCA.1999.744362. 

3. Rischpater, R., Zucker, D. (2010). Beginning Qt Development. In: Beginning Nokia Apps 

Development. Apress. https://doi.org/10.1007/978-1-4302-3178-3_4 

https://www.ijfmr.com/

