~ Y\ International Journal for Multidisciplinary Research (IJFMR)

IJFMR E-ISSN: 2582-2160 e Website: www.ijffmr.com o Email: editor@ijfmr.com

Comparative Analysis of Branch Prediction
Technigques Across Diverse Benchmark Suites

Sai Kumar Marril, E. Sikender?

!Student Researcher, Department of Electrical Engineering, UTD
2Student Researcher, Department of Electrical and Communications Engineering, VCE

Abstract

Branch prediction is a critical aspect of modern microprocessor design, significantly influencing
performance and energy efficiency in pipelined architectures. Accurate branch predictors reduce pipeline
stalls, enhance instruction-level parallelism and overall system throughput. This study provides a
comprehensive analysis of various branch prediction techniques, including bimodal predictors,
perceptron-based predictors, hybrid schemes, and low-power alternatives, as applied to diverse
benchmark suites such as SPEC CPU2000, Mibench, and Mediabench. The paper explores the
architectural principles, advantages, and limitations of these predictors, emphasizing their accuracy,
power consumption, and hardware overhead. Key innovations like genetic algorithm-enhanced
predictors and neural network-based designs are discussed, highlighting their ability to adapt
dynamically to workload characteristics [6][2]. Furthermore, the study examines novel approaches, such
as undervolting predictors for energy efficiency [5] and complementary predictors designed to address
misprediction patterns [4].

Simulation results obtained from platforms like SimpleScalar and gem5 demonstrate the predictors'
performance across various benchmarks, revealing trade-offs between prediction accuracy,
computational complexity, and energy efficiency. For instance, perception-based predictors show
superior accuracy with long history lengths [2][6], whereas low-power designs like TBIT minimize
energy usage with negligible performance degradation, making them ideal for embedded systems [7].
Hybrid predictors, which combine global and local history, strike a balance between performance and
complexity [3][6]. This analysis highlights the evolving landscape of branch prediction technologies and
underscores the importance of tailoring predictor designs to specific application domains. By leveraging
these insights, designers can optimize processors for high performance, reduced power consumption, or
a combination of both, meeting the demands of modern computing systems. This work serves as a
foundational reference for advancing branch predictor research and development in future architectures

[11[5]

Keywords: Branch Prediction, Processor Performance, Energy Efficiency, Benchmark Analysis, Hybrid
Predictors.

1. Introduction

Branch prediction plays a pivotal role in modern microprocessor architecture, serving as a cornerstone
for achieving high performance and energy efficiency in pipelined systems. The increasing complexity
of applications and the demand for faster processing speeds have driven the development of

[JFMR210433084 Volume 3, Issue 4, July-August 2021 1



https://www.ijfmr.com/

i International Journal for Multidisciplinary Research (IJFMR)

IJFMR E-ISSN: 2582-2160 e Website: www.ijffmr.com o Email: editor@ijfmr.com

sophisticated branch predictors capable of minimizing control hazards. By speculatively predicting the
outcome of branch instructions, these predictors enable the processor to maintain an uninterrupted
instruction flow, thereby reducing pipeline stalls and maximizing instruction-level parallelism (ILP)
[1][3]. Branch prediction accuracy is crucial to system performance, as mispredictions lead to pipeline
flushing, wasted computational resources, and additional energy consumption. The evolution of branch
prediction strategies has introduced a variety of designs, ranging from simple static and dynamic
predictors to more complex neural network-based and hybrid approaches. Each of these designs offers
unique trade-offs in terms of prediction accuracy, power consumption, and implementation complexity,
making it essential to evaluate their performance under varying workloads and application domains
[21[6][7]

This paper presents a comprehensive analysis of several branch prediction techniques, focusing on their
implementation and performance across diverse benchmark suites such as SPEC CPU2000, Mibench,
and Mediabench. The study includes traditional methods like bimodal and global history-based
predictors, as well as advanced techniques such as perception-based predictors, hybrid predictors
combining local and global histories, and low-power designs tailored for embedded systems [3][7].
Additionally, novel approaches like genetic algorithm-optimized predictors and undervolting strategies
are explored, highlighting their potential to enhance energy efficiency without compromising
performance [5][6]. The benchmarks selected for this analysis represent a broad spectrum of real-world
applications, enabling a thorough evaluation of predictor performance across computationally intensive
tasks and power-sensitive scenarios. Simulation tools such as SimpleScalar and gem5 provide a detailed
modeling environment, facilitating the measurement of prediction accuracy, misprediction rates, energy
consumption, and hardware overhead [2][6].

The objective of this study is to provide valuable insights into the strengths and limitations of different
branch prediction techniques, guiding processor designers in selecting or developing optimal predictors
for specific applications. As modern systems increasingly prioritize a balance between performance and
energy efficiency, understanding these trade-offs becomes critical. By comparing various predictors
under standardized benchmarks, this work aims to contribute to the ongoing advancements in
microprocessor architecture, supporting the development of more efficient and adaptive computing
systems [1][4]. In the subsequent sections, we delve into the architectural details of each predictor type,
analyze their simulation results, and discuss their suitability for different computing environments,
paving the way for future innovations in branch prediction technology.

2. Setting up the Simulator

For the analysis of the branch predictors, we are required to compile the simulator enabling different
branch predictors. We worked with the source files from the gem5.org website but the latest simulator
versions have issues in reporting the number of BTB hits (BTBHits). This parameter always reported as
zero and eventually BTBMisPct reported as 100% for all the predictors. By default, the branch predictor
support not enabled in the simulator. We enabled the branch predictor by modifying
BaseSimpleCPU.py. Different branch predictors enabled and recompiled the simulator. Simulator is
compiled using the command scons ./build/X86/gem5.opt. After recompilation, simulator sanity is
verified by running the simple hello world program on the simulator to cross check for errors.

Simulator compilation and running a simple hello world program generates output files in mb5out
directory. Posting the config.ini results from the three branch predictors. We have added additional

[JFMR210433084 Volume 3, Issue 4, July-August 2021 2



https://www.ijfmr.com/

i International Journal for Multidisciplinary Research (IJFMR)

IJFMR E-ISSN: 2582-2160 e Website: www.ijffmr.com o Email: editor@ijfmr.com

parameters BTBMissPct and BranchMispredPercent to the source files and generated the stats file with
the new parameters.

~lass BaseSimpleCPU(BaseCPU}:
type = 'BaseSimpleCPU’
abstract = True
cxx_header = "cpu/simple/base.hh"

def addCheckerCpu(self}:
iT buildEnv['TARGET ISA'] in ['arm']:
from ArmTLB import ArmTLB

self.checker = DummyChecker(workload = self.workload)
self.checker.itb = ArmTLB(size = self.itb.size)
self.checker.dtb = ArmTLB(size = self.dtb.size)
else:
print "ERROR: Checker only supported under ARM ISA!"
exit(1l)

branchPred = Param. (TournamentBP(), "Branch Predictor")
#branchPred = Param. (BiModeBP(), "Branch Predictor™)
PbranchPred = Param. (LocalBP(), "Branch Predictor")

Figure 1: Adding support for branch predictor to simulator

a. BTBMisPct: This parameter computes the BTB miss percentage. We have used existing
parameters to derive the miss percentage.
BTBMisPct = (1 — (BTBHits/BTBLookups)) * 100
BTBHits — number of BTB hits
BTBLookups — number of BTB references

b. BranchMispredPercent: This parameter computes the percentage of branch misprediction.
BranchmispredPercent = (numBranchMispred / numBranches) * 100
numBranchMispred — number of mispredicted branches
numBranches — number of branches fetched

PR ’

103

184 BTBHitPct

165 .name(name() + ".BTBHitPct")

1606 .desc("BTEB Hit Percentage")

187 .precision(6};

108 BTBHitPct = (BTBHits / BTBLookups) * 108;
169

118

111 EEEMISERE

112 .name (name () + ".BTBMISSPEE")

113 .desc("BTB Miss Percentage")

114 .precision(&};

115 ETENMISSPEE = (1 - (BTBHits / BTBLookups)) * 100;
116

117

Figure 2: source code changes (bpred_unit.cc)

[JFMR210433084 Volume 3, Issue 4, July-August 2021 3



https://www.ijfmr.com/

~ Y\ International Journal for Multidisciplinary Research (IJFMR)

IJFMR E-ISSN: 2582-2160 e Website: www.ijffmr.com o Email: editor@ijfmr.com

To add support for BTBMisPct, we modified bpred unit.cc and bpred_unit.hh source directory -
gemb/src/cpu/pred

t info.idleFraction = constant(1.8) - t info.notIdleFraction;

t info.numIdleCycles = t info.idleFraction * numCycles;

t info.numBusyCycles = t info.notIdleFraction * numCycles;
t_info.BranchMispredPercent = (t_info.numBranchMispred / t_info.numBranches) * 180;

t_info.numBranches
.name(thread str + ".Branches")
.desc({"Number of branches fetched")
.prereq(t_info.numBranches);

t_info.numPredictedBranches
.name(thread str + ".predictedBranches")
.desc("Humber of branches predicted as taken")
.prereq(t_info.numPredictedBranches);

t_info.numBranchMispred
.name(thread str + ".BranchMispred")
.desc("Number of branch mispredictions")
.prereq(t_info.numBranchMispred);

t_info.BranchMispredPercent
.name(thread str + ".BranchMispredPercent")
.desc("Number of branch mispredictions percentage");

Figure 3: Source code changes (base.cc)

3. Analyzing Benchmarks with Different Branch Predictors
We have recompiled the simulator after adding the additional parameters to the source code and checked
the parameter (BTBMisPct and BranchMispredPercent) numbers for different branch predictors. These
numbers are generated for simple hello world programs and compared the results.

Table 1: Analysis of different branch predictors on hello world program

Parameters TournamentBP | BiModeBP LocalBP
BTBLookups (# BTB lookups) 998 203 435
BTBHits (# BTB hits) 367 202 368
BTBHitPct (BTB hit percentage) 36.773% 99.507% 84.597%
BTBMissPct (BTB miss percentage) 63.226% 0.492% 15.402%
Branches (# branches fetched) 1317 1317 1317
predictedBranches (# branches predicted as taken) 472 210 405
BranchMispred (# branch mispredictions) 477 621 468
BranchMispredPercent (miss prediction percentage) 36.218% 47.152% 35.535%

From the analysis of three branch predictors:

e BTB hit percentage is maximum with the BiMode branch predictor and minimum with the
Tournament branch predictor.

e Branch misprediction percentage is maximum with the BiMode branch predictor and almost same
misprediction percentage with both LocalBP and TournamentBP.

We compiled the simulator with different branch predictors and simulated five benchmarks. These

benchmarks compare all the three branch predictors to understand the effectiveness of each branch

predictors. These benchmarks are run up to five million instructions.

[JFMR210433084 Volume 3, Issue 4, July-August 2021 4



https://www.ijfmr.com/

i International Journal for Multidisciplinary Research (IJFMR)

IJFMR E-ISSN: 2582-2160 e Website: www.ijffmr.com o Email: editor@ijfmr.com
a. Benchmark-1 (401.bzip2)
Parameters (401.bzip2 benchmark) TournamentBP | BiModeBP LocalBP
BTBLookups (# BTB lookups) 33231142 33071034 33189670
BTBHits (# BTB hits) 33196123 33057641 33159138
BTBHitPct (BTB hit percentage) 99.895% 99.96% 99.909%
BTBMlissPct (BTB miss percentage) 0.105% 0.040% 0.091%
Branches (# branches fetched) 37843295 37843292 37843295
predictedBranches (# branches predicted as taken) 33922687 33784124 33885896
BranchMispred (# branch mispredictions) 2274103 2243189 2490136
BranchMispredPercent (miss prediction percentage) 6.009% 5.927% 6.580%
CPI 1.0882 1.0882 1.0882
e Benchmark — I have a better branch prediction with the BiMode branch predictor.
e Benchmark — I have a better BTB hit percentage with the BiMode branch predictor.
e All the branch predictors have resulted similar CPI with the benchmark — 1.
b. Benchmark-11 (429.mcf)
Parameters (429.mcf benchmark) TournamentBP | BiModeBP LocalBP
BTBLookups (# BTB lookups) 51478564 49457318 52004940
BTBHits (# BTB hits) 49259638 49171235 50467083
BTBHitPct (BTB hit percentage) 95.689% 99.421% 97.042%
BTBMissPct (BTB miss percentage) 4.310% 0.578% 2.957%
Branches (# branchefs fetched) 97901000 97901000 97901001
predictedBranches (# branches predicted as taken) 54759994 54679836 55979123
BranchMispred (# branch mispredictions) 4522359 5177396 9538849
BranchMispredPercent (miss prediction percentage) 4.619% 5.288% 9.743%
CPI 1.7485 1.7485 1.7485
e Benchmark — Il has a better branch prediction with the Tournament branch predictor.
e Benchmark — Il has a better BTB hit percentage with the BiMode branch predictor.
e All the branch predictors have resulted similar CPI with the benchmark — 11.
c. Benchmark-I11 (456.hmmer)
Parameters (456.hmmer benchmark) TournamentBP | BiModeBP LocalBP
BTBLookups (# BTB lookups) 20472409 20162781 20980599
BTBHits (# BTB hits) 20236959 20137783 20639723
BTBHitPct (BTB hit percentage) 98.85% 99.876% 98.375%
BTBMlissPct (BTB miss percentage) 1.15% 0.123% 1.624%
Branches (# branches fetched) 27593152 27593147 27593152
predictedBranches (# branches predicted as taken) 21002432 20902613 21404838
BranchMispred (# branch mispredictions) 2215893 2787987 3947484
BranchMispredPercent (miss prediction percentage) 8.03% 10.103% 14.306%
CPI 1.002 1.002 1.002
e Benchmark — 11 has a better branch prediction with the Tournament branch predictor.

e Benchmark — 11 has a better BTB hit percentage with the BiMode branch predictor.
e All the branch predictors have resulted similar CPI with the benchmark — I11.

[JFMR210433084 Volume 3, Issue 4, July-August 2021



https://www.ijfmr.com/

i International Journal for Multidisciplinary Research (IJFMR)

IJFMR E-ISSN: 2582-2160 e Website: www.ijffmr.com o Email: editor@ijfmr.com
d. Benchmark- IV (458.sjeng)
Parameters (458.sjeng benchmark) TournamentBP | BiModeBP LocalBP
BTBLookups (# BTB lookups) 53090884 52487285 55687877
BTBHits (# BTB hits) 51490367 51073624 52296300
BTBHitPct (BTB hit percentage) 96.985% 97.306% 93.909%
BTBMissPct (BTB miss percentage) 3.014% 2.693% 6.090%
Branches (# branches fetched) 69678398 69678397 69678398
predictedBranches (# branches predicted as taken) 54291570 53882697 55118774
BranchMispred (# branch mispredictions) 5764538 5380561 8939533
BranchMispredPercent (miss prediction percentage) 8.273% 7.721% 12.829%
CPI 1.9386 1.9386 1.9386
e Benchmark — IV has a better branch prediction with the BiMode branch predictor.
e Benchmark — IV has a better BTB hit percentage with the BiMode branch predictor.
e All the branch predictors have resulted similar CPI with the benchmark —1V.
e. Benchmark-V (470.1bm)
Parameters (470.lbm benchmark) TournamentBP | BiModeBP LocalBP
BTBLookups (# BTB lookups) 15273542 8164887 9348818
BTBHits (# BTB hits) 8167849 8164786 8164290
BTBHitPct (BTB hit percentage) 53.477% 99.99% 87.329%
BTBMissPct (BTB miss percentage) 46.522% 0.00123% 12.67%
Branches (# branches fetched) 18089548 18089547 18089549
predictedBranches (# branches predicted as taken) 9352511 9349229 9348845
BranchMispred (# branch mispredictions) 64868 64452 107672
BranchMispredPercent (miss prediction percentage) 0.358% 0.356% 0.595%
CPI 1.8 1.8 1.8
e Benchmark —V has a better branch prediction with the BiMode branch predictor.
e Benchmark — V has a better BTB hit percentage with the BiMode branch predictor.
e All the branch predictors have resulted similar CPI with the benchmark — V.
4. Modifying the Branch Predictor sizes

For this analysis, we choose tournament branch predictor, modified the sizes of the predictor. Gem5
simulator recompiled with new predictor sizes and simulated for all the benchmarks. Predictor sizes

were modified in this file: gem5/src/cpu/pred/BranchPredictor.py
a. Benchmark — 1 (401.bzip2)

Branch Parameters (Benchmark — | (401.bzip2)) Default settings Modified
BTBLookups (# BTB lookups) 33231142 33243014
BTBHits (# BTB hits) 33196123 33196274
BTBHitPct (BTB hit percentage) 99.894% 99.859%
BTBMissPct (BTB miss percentage) 0.105% 0.140%
Branches (# branches fetched) 37843295 37843296
predictedBranches (# branches predicted as taken) 33922687 33922799
BranchMispred (# branch mispredictions) 2274103 2298269
BranchMispredPercent (miss prediction percentage) 6.009% 6.073%
CPI 1.0882 1.088

[JFMR210433084

Volume 3, Issue 4, July-August 2021



https://www.ijfmr.com/

i International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 e Website: www.ijfmr.com e Email: editor@ijfmr.com

IJFMR

With the modified predictor sizes, this benchmark has minimal decrease in the branch prediction BTB
hit percentage. New branch predictor numbers were not effective with this benchmark.

b. Benchmark — 11 (429.mcf)

Branch Parameters Default settings Modified
BTBLookups (# BTB lookups) 51478564 51424871
BTBHits (# BTB hits) 49259638 49039676
BTBHitPct (BTB hit percentage) 95.689% 95.361%
BTBMissPct (BTB miss percentage) 4.310% 4.638%
Branches (# branches fetched) 97901000 97901000
predictedBranches (# branches predicted as taken) 54759994 54540780
BranchMispred (# branch mispredictions) 4522359 4866788
BranchMispredPercent (miss prediction percentage) 4.619% 4,971%
CPI 1.7485 1.7485

With the modified predictor sizes, this benchmark has minimal decrease in the branch prediction BTB
hit percentage. New branch predictor numbers were not effective with this benchmark.

c. Benchmark — 111 (456.hmmer)

Branch Parameters Default settings Modified
BTBLookups (# BTB lookups) 20472409 20570574
BTBHits (# BTB hits) 20236959 20375819
BTBHitPct (BTB hit percentage) 98.85% 99.053%
BTBMissPct (BTB miss percentage) 1.15% 0.946%
Branches (# branches fetched) 27593152 27593153
predictedBranches (# branches predicted as taken) 21002432 21141382
BranchMispred (# branch mispredictions) 2215893 2580723
BranchMispredPercent (miss prediction percentage) 8.03% 9.352%
CPI 1.002 1.002

With the modified predictor sizes, this benchmark has minimal improvement in the BTB hit percentage

and minimal decrease in the branch prediction percentage.

d. Benchmark — IV (4578.sjeng2)

Branch Parameters Default settings Modified

BTBLookups (# BTB lookups) 53090884 53582018
BTBHits (# BTB hits) 51490367 51022784
BTBHitPct (BTB hit percentage) 96.985% 95.223707
BTBMissPct (BTB miss percentage) 3.014% 4.776293
Branches (# branches fetched) 69678398 69678398
predictedBranches (# branches predicted as taken) 54291570 53824513
BranchMispred (# branch mispredictions) 5764538 6824514

BranchMispredPercent (miss prediction percentage) 8.273% 9.794304
CPI 1.9386 1.9386

[JFMR210433084

Volume 3, Issue 4, July-August 2021



https://www.ijfmr.com/

~ Y\ International Journal for Multidisciplinary Research (IJFMR)

i

IJFMR E-ISSN: 2582-2160 e Website: www.ijffmr.com o Email: editor@ijfmr.com

With the modified predictor sizes, this benchmark has minimal decrease in the branch prediction BTB
hit percentage. New branch predictor numbers were not effective with this benchmark.

e. Benchmark —V (470.lbm)

Branch Parameters (Benchmark — V (470.lbm)) Default settings Modified
BTBLookups (# BTB lookups) 15273542 15292438
BTBHits (# BTB hits) 8167849 8186736
BTBHitPct (BTB hit percentage) 53.477% 53.534%
BTBMissPct (BTB miss percentage) 46.522% 46.465%
Branches (# branches fetched) 18089548 18089547
predictedBranches (# branches predicted as taken) 9352511 9371397
BranchMispred (# branch mispredictions) 64868 117217
BranchMispredPercent (miss prediction percentage) 0.358% 0.647%
CPI 1.8 1.8

With the modified predictor sizes, this benchmark has minimal improvement in the BTB hit percentage
and minimal decrease in the branch prediction percentage.

5. Conclusion

Branch prediction remains a cornerstone in advancing microprocessor performance and energy
efficiency, with its accuracy directly impacting instruction-level parallelism and resource utilization.
This study has explored a wide range of branch prediction techniques, from traditional approaches like
bimodal and global history predictors to advanced perceptron-based and hybrid schemes. Through
simulations across benchmark suites like SPEC CPU2000 and Mibench, we highlighted the trade-offs
between prediction accuracy, power consumption, and hardware complexity inherent in these methods
[1][3][6]. Innovative approaches, such as genetic algorithm-optimized predictors and undervolting
strategies, demonstrate significant potential for improving efficiency without sacrificing performance
[5][6]. While perceptron-based predictors excel in leveraging long history lengths for higher accuracy,
hybrid designs strike a critical balance between simplicity and performance. Additionally, low-power
predictors tailored for embedded systems effectively address energy constraints, making them ideal for
mobile and loT devices [2][7]. This comparative analysis underscores the importance of selecting
prediction techniques aligned with specific application needs. As workloads grow more diverse, branch
predictor designs must continue evolving, incorporating adaptive and energy-efficient strategies. This
work serves as a foundation for future research, aiming to optimize the interplay between performance,
power, and complexity in branch prediction systems [4][5].

6. References

1. Impact of Inaccurate Design of Branch Predictors on Processors' Power Consumption Baisakhi Das,
Gunjan Bhattacharya, llora Maity, Biplab K Sikdar. IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing, 2011. DOI: 10.1109/DASC.2011.73.

2. A Study of Perceptron Based Branch Prediction on Simplescalar Platform Yang Lu, Yi Liu, He
Wang. IEEE, 2011. DOI: Not available in provided snippet.

3. A Study for Branch Predictors to Alleviate the Aliasing Problem in Pipelining Tieling Xie, Robert
Evans, Yul Chu. IEEE, 2005. DOI: 10.1109/ICCD.2005.603.

[JFMR210433084 Volume 3, Issue 4, July-August 2021 8



https://www.ijfmr.com/

i International Journal for Multidisciplinary Research (IJFMR)

IJFMR E-ISSN: 2582-2160 e Website: www.ijffmr.com o Email: editor@ijfmr.com

4. Branch Misprediction Prediction: Complementary Branch Predictors Resit Sendag, Joshua J. Yi,
Peng-fei Chuang. IEEE Computer Architecture Letters, 2007. DOI: 10.1109/MCAL.2007.103.

5. Analysis and Characterization of Ultra Low Power Branch Predictors Athanasios Chatzidimitriou,
George Papadimitriou, Dimitris Gizopoulos, Shrikanth Ganapathy, John Kalamatianos. IEEE
International Conference on Computer Design, 2018. DOI: 10.1109/ICCD.2018.00030.

6. Enhancing Branch Predictors using Genetic Algorithm Md Sarwar M Haque, Salami Onoruoiza, Md
Rafiul Hassan, Joarder Kamruzzaman, Muhammad Sulaiman, Md Arifuzzaman. 8th International
Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019. DOI:
10.1109/ICMSA0.2019.00030.

7. Low Power Branch Predictor for Embedded Processors Sunwook Kim, Eutteum Jo, Hyungshin
Kimi. IEEE International Conference on Computer and Information Technology (CIT), 2010. DOI:
10.1109/CIT.2010.59.

BY _sa Licensed under Creative Commons Attribution-ShareAlike 4.0 International License

[JFMR210433084 Volume 3, Issue 4, July-August 2021 9



https://www.ijfmr.com/
http://creativecommons.org/licenses/by-sa/4.0/

