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Abstract:  Exact  bound  state  as  well  as  scattering  state  solutions  of  Schrodinger  Green’s  function
equation  is  presented  for  constructing  hyperbolic  class  of  exactly  solvable  quantum  systems  are
obtained in D-dimensional space, using extended transformation method. In the current literature the
exact solution to the hyperbolic Scarf are written in terms of Jacobi polynomials and these polynomials
are referred to Romanovski polynomials. The normalizability of bound state solutions of the generated
exactly solvable potential are discussed. 
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1. Introduction
Exact  analytic  solution  (EAS)  of  Schrodinger  equation  with  a  physical  potential  is  of  utmost
importance in non-relativistic quantum mechanics (QM). Considerable effort has been made in recent
years to obtain the exact solution of the Schrodinger equation for potentials of physical interest [1-9].
However,  there is  a small  set  of potentials  for which EAS can be found by conventional  method.
Steiner [10,11] in the course of his work on radial path integral for the first time obtained a general
relation  between  different  quantum  potentials.  His  analysis  deals  with  non  relativistic  space-time
transformation of the radial  path integral,  with a path-dependent change of the time variable.  Such
Energy-dependent Green’s functions (GF) give a general relation between different physical potentials
remarkably  compact  form,  when  expressed  in  terms  of  the  radial  part  of  the  GF  for  spherically
symmetric potential [12].

In our present work there is no need to invoke any path dependent time transformation for the relation
between  different  potentials.  Our  analysis  would  be  based  on  the  D-dimensional  Schrodinger  GF
equation.  An  interesting  aspect  in  this  method  is  that  it  is  not  only  connection  between  two  3-
dimensional  problems,  as  noted by Steiner.  But  in  our  program the  dimension of  the  transformed
system  we  can  choose.  In  this  paper  we  have  use  a  mapping  procedure  called  the  extended
transformation (ET) [13-18] method, to map already exactly solved quantum system (QS) to new QSs,
in any arbitrary D-dimensional Euclidean space, within the framework of the GF technique. We have
constructed hyperbolic class of exactly solvable QS considering the trigonometric Scarf potential [19]
as input reference potential  by implementing the ET method, which is an extension of the  sech2r
potential or original Poschl-Teller potential [20]. The hyperbolic Scarf potential is written in terms of
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Jacobi polynomials of purely imaginary argument and the parameters are complex conjugate to the
trigonometric Scarf potential. These real polynomials are referred as the Ramanovski polynomials [21],
which is a family of real orthogonal polynomial and is required to write the exact solution of hyperbolic
Scarf potential.

An interesting aspect in the present work is that it gives solution in the region of bound state as well as
scattering  state  but  Stenier  dealt  with  only  the  bound  state  solutions.  It  has  a  wider  region  of
applicability such as linear plus Coulomb potential, non solvable potential of considerable interest in
charmonium physics.  The  Ramanovski  polynomials  with  hyperbolic  Scarf potential  are  required in
exact solutions of several physics problems ranging from supper symmetric QM [22,23] and quark
physics, to random matrix theory. Another significant point is that the wave- functions of the generated
quantum systems are almost normalizable. 

The paper is organized as follows. In sec. 2 we present a brief overview of the ET method. In section 3.
we make use of ET on Trigonometric Scarf potential to construction new class of exactly solved QSs.
Conclusion and finding of our results are discussed in section 4.

3. Formalism
For a QS, say A-QS the radial part of the Schrodinger GF equation [13,14] with spherically symmetric
potential V A (r ), in DA-dimensional Euclidean space (in natural units ћ=1=2m) is

[∂r
2+

DA−1
r

∂r+ϵ n
A−V A (r )]GA (r , r0 ;ϵ n

A )=
δ (r−r0 )
r0
D A−1

(1)

where r is a dimensionless spatial coordinate.

The corresponding integral equation is
φ A (r )=∫GA (r ,r 0;ϵ n

A )(ϵ n
A−V A(r)) φA (r0 ) r0

D A−1d r0(2)

where the GF and energy eigenvalues ϵ n
A are known for the given potential V A (r ).

The completeness of the set of energy eigenfunctions allows us to have eigenfunction expansion of the
energy GF as

GA (r , r0 ;ϵ n
A )=∑

n=0

∞ φ A(r )φA
¿ (r0 )

EA−ϵ n
A−iε

(3)

from which we read off the analytic form of the wave function of the solved quantum system.

The ET includes a coordinate transformation, which is followed by a functional transformation and a
set of plausible ansatze to restore the transformed equation to standard Schrodinger GF equation form.
We now invoke the coordinate transformation
r→gB(r ), r0→gB (r0 )(4)
which is followed by a functional transformation
GB (r ,r 0;ϵ n

B )=f B
−1 (r )GA (gB (r ) , gB ( r0 ) ;ϵ n

A ) f B
−1 ( r0 )(5)
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that  the  resulting  equation  is  of  the  same form as  (1)  but  with  new parameters  and  leads  to  the
following equation

The transformation functions  gB(r ) and  gB ( r0 )are smooth differentiable function,  which are at least
three times differentiable function and f B

−1(r ) ,  f B
−1 ( r0 ) are the modulating function required to mould

the above equation to the standard Schrodinger GF equation form. We make the coefficient of the first

order derivative equal to 
DB−1
2

 , fixing the functional form of

f B
−1(r )=CN g´B

1
2 (r )gB

D A−1
2 (r )r

−D B−1
2 (r )(7)

where CN  is the normalization constant.
therefore equation (5) and (6) lead to

GB (r ,r 0;ϵ n
B )=g ´B

−1
2 (r ) gB

DA−1
2 (r ) r

−DB−1
2 GA (gB (r ) , gB (r0 )) g ´B

1
2 (r0 ) gB

D A−1
2 ( r0 ) r0

−DB−1
2 (r 0 )(8)

The right hand side of equation (6) can be simplified to 
δ (r−r0 )
r0
D B−1 .

which changes equation (6) to

In  case  of  multi-term A-QS,  we have  to  select  a  term of  V A (gB)¿ as  working  potential  (WP)  to
implement ET and is designated as V A

W (gB)¿.

In  order  mould  equation  (9)  to  the  standard  form of  the  Schrodinger  GF equation,  the  following
plausible ansatze have to be made, which are integral part of the transformation method.
g ´B

2 V A
W (gB (r ) )=−ϵ n

B(10)

V B
(1 ) (r )=−g ´B

2 ϵ n
A (11)

V B
(2 ) (r )=g ´B

2 (V A (gB (r ) )−V A
W (gB (r ) ))(12)

V B
(3 ) (r )=−1

2
gB
‴

gB
´' +
3
4 ( gB

″

gB
´' )
2

+
DA−1
2

DA−3
2 ( gB

´ '

gB
)
2

−
DB−1
2

DB−3
2

1
r2

(13)

We obtain the new potential V B (r ) as 
V B (r )=V B

(1 ) (r )+V B
(2) (r )+V B

(3 ) (r )(14 )

The final form of the radial Schrodinger GF equation for B-QS established in an Euclidean space of the
chosen dimension  is:

IJFRM570 Website : www.ijfmr.com Email : editor@ijfmr.com 16

[∂r
2+( d

dr
ln

f B
2 (r ) gB

DA−1(r )
g ´B(r) )∂r+( d

dr
ln f B (r ))( d

dr
ln

f ´ B gB
DA−1(r )

g ´B(r ) )+g´ B
2 (ϵ n

A−V A(gB)) ]GB (r , r0 ;ϵ n
B )=g ´B

2 f B
−1 (r )

δ ( gB (r )−gB (r0 ) )
gB

DA−1(r 0)
f B
−1 ( r0 )(6)

[∂r
2+

DB−1
r

∂r+
1
2

gB
‴

gB
´' −
3
4 ( gB

″

gB
´ ' )
2

−
DA−1
2

DA−3
2 ( gB

´ '

gB
)
2

+
DB−1
2

DB−3
2

1
r2

+g ´B
2 (ϵ n

A−V A (gB (r ) ))]GB (r ,r 0; ϵn
B )=

δ (r−r0 )
r0
DB−1

(9)
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[∂r
2+

DB−1
r

∂r+ϵ n
B−V B (r )]GB (r , r0; ϵ n

B )=
δ (r−r0 )
r 0
D B−1

(15)

From equation (4), (5) and (8), the eigenfunction expansion of B-QS Green’s function is

GB (r ,r 0;ϵ n
B )=∑

n=0

∞ ( gB
DA−1 (r )

gB
' (r ) rDB−1 )

1
2φ

A
(gB (r ) )φ A

¿ (gB ( r0 ))( gB
D A−1 (r0 )

gB
' (r0 ) r0

DB−1 )
1/2

EA−ϵ n
B−iε

(16)

The B-QS eigenfunctions φB(r ) can be read off from equation (16)

φB (r )=CN ( gB
DA−1 (r )

gB
' (r ) rDB−1 )

1
2φ A (gB (r ) ) (17)

and is known, since φ A(r ) and gB(r ) are known.

The normalization constant CN  is evaluated by using the following normalization condition for φB (r ) as

∫
0

∞

φB
2 (r ) rDB−1dr=|CN|

−2
= finite(18)

The normalization constant is given by

CN=[ −ϵ n
B

⟨V A
W (gB (r ) )⟩ ]

1/2

The expectation value of ESP is always finite and so a part of it is also finite.

3. Generation of Exactly Solvable Potential from Trigonometric Scarf Potential
3.1 First-order Transformation 
We consider Trigonometric Scarf QS [19] as a typical  representative of a QS with non-power law
potential henceforth called A-QS in a DA -dimensional Euclidean space, which admits only S-wave (
l=0) eigenfunctions. The potential is
V A (r )=(μ2+λ2−μα ) sec2αr−λ (μ−α ) tanαrsecαr (19)
which satisfies the GF equation in 1-dimensional space

[∂r
2+En

t−( (μ2+ λ2−μα ) sec2αr−λ (2μ−α ) tan αr sec αr ) ]Gt (r , r0; En
t )=

δ ( r−r0 )
r0
D A−1

(20 )

Energy eigenvalues are
En

t =(μ+αn )2(21)

Bound State Solution
The  eigenfunctions  expansion  in  terms  of  GF  for  bound  state  ((μ+αn )2<0 )  with
trigonometric scarf potential
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Gt (r ,r0 ; En
t )=∑

n=0

∞ φt
(n) (r )φt

¿ ( n) (r0 )
E− (μ+αn )2−i∈

(22)

The exact eigenfunctions in terms of Jacobi polynomial Pn
(β , γ ) ¿ as

φ t
(n ) (r )=N t (1−sinαr )

μ− λ
2α (1+sinαr )

μ+ λ
2α Pn

(β , γ )¿

Where β= μ
a
− λ

a
−1
2  , γ=

−μ
a

− λ
a
−1
2  and n=0,1,2…<μ, N t -normalization constant.

The trigonometric scarf QS can be transformed by ET to hyperbolic scarf QS, the potential is denoted
by V h (r ). The generated new QS in DB-dimensional space is 

[∂r
2+

DB−1
r

∂r+g´h
2 ¿

+1
2

gB
‴

gB
´' −
3
4 ( gB

″

gB
´ ' )
2 +DB−1

2
DB−3
2

1
r 2 ]Gh (r , r0; En

h )=
δ ( r−r 0 )
r0
DB−1

(24 )

The relation between GFs Gt (r ,r0 ; En
t )and Gh (r , r0 ; En

h ) is given by equation (5) and the eigenfunctions

in terms of GF Gh (r , r0 ; En
h ) are

Gh (r , r0 ; En
h )=∑

n=0

∞ r
−( DB−1

2 )
gh

'−12 (r )φ t
(n) (gh (r ) )φt

(n) (gh (r0 )) r0
−( DB−1

2 )
gh

'−12 (r0)

E−En
h−i∈

(25)

and, it is completely specified once transformation function gh(r ) is known.

From equation (25) we can evaluate energy eigenfunctions

φh
(n ) (r )=r

−(DB−1
2 )

gh

'−12 (r )φ t
(n ) (gh (r ) )(26)

The trigonometric  Scarf potential  is  a two term potential  (equation 19) and we have three  (22−1)
choices to select the WP. If one chooses (μ2+λ2−μα ) sec2αr  as the WP. Ansatze (10)-(13) , require to
bring equation (24) into the standard Schrodinger GF equation form, are now
g ´h

2 (En
t −(μ2+λ2−μα ) sec2α gh(r ) )=−En

h(27)

Integration of equation (27) yields

gh (r )= 1
α
sin−1 ( tanα ξnr )(28)

Where

ξn=( −En
h

μ2+ λ2−μα )
1/2

(29)

The integration constant is put equal to zero which attributes the local property gh (0 )=0..
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Now equation (11) and (28) lead to 
V h

(1 ) (r )=−ξn
2En

t sec h2α ξnr=−Ch
2 sec h2α ξnr (30)

where C h
2 is the characteristic constant 0f B-QS and is

Ch
2=ξn

2En
t (31)

which will give the energy eigenvalues of B-QS.
V h

(2 ) (r )=g ´h
2 (V t (gh(r ))−(μ2+λ2−μα ) sec2α gh(r ))(32)

as DA=1

V h
(3 ) (r )=12

gB
‴

gB
´ ' −

3
4 ( gB

″

gB
´ ' )

2

+
DB−1
2

DB−3
2 (33)

The multi-term B-QS potential (V h (r )=V h
(1) (r )+V h

(2 ) (r )+V h
(3) (r )) now becomes:

V h (r )=(−Ch
2+ 1
4
ρn
2) sech2 ρn r−σn tan h ρn r+

1
4
ρn
2 tan h2 ρnr+

DB−1
2

DB−3
2

1
r2

(34)

where ρn=α ξn and σ n=μ (2μ−α ) ξn
2. 

Corresponding energy spectrum from equation (31) is

En
h=

−Ch
2 (μ2+λ2−μα )

(μ+αn )2
(35)

which is a Sturmian QS, it cannot be made normal/physical, because in the presence  ρn andσ n it is
found that, by explicit calculation that both of them cannot be made n-independent simultaneously in a
consistent manner. However its “desendent” QS can be reached through ET may become normal.
Invoking the equations (34) and (35) on equation (24), the radial Schrodinger GF equation for B-QS
takes the form:

[∂r
2+

DB−1
r

∂r+g ´h
2 (En

h−(−Ch
2+ 1
4
ρn
2)sec h2 ρnr−σ n tanh ρnr + 1

4
ρn
2 tan h2ρn r )

+DB−1
2

DB−3
2

1
r2 ]Gh (r ,r 0; En

h)=
δ (r−r0 )
r0
DB−1

(36)

The eigenfunction expansion in terms of GF of B-QS is given by equation (26), from where we read off
the exact eigenfunctions φh (r ) as in equation (27) in DB-dimensional takes the form:

φh (r )=Nh r
−(D B−1

2 )
cos h1/2ρn r (1−tanh ρnr )

(μ−λ ) ξ
2ρn (1+ tanh ρnr )

(μ+ λ )ξ
2 ρn Pn

(β , γ ) ( tanh ρnr )(37)

The  normalizability  ofφh(r ) obtain  bt  ET can  be  proved  under  general  condition.  Normalizability
condition for DB-dimensional B-QS eigenfunctions is 

∫
0

∞

φh
2 rD B−1dr= 1

|N h|
2= finite(38)

From equation V h
(1 ) (r )=g ´h

2En
t  (equation 30) it is reduce to
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|Nh|
2 ⟨V t

(W ) (r ) ⟩
Ch
2 (μ2+ λ2−μα )

(μ+αn )2

=1

where ¿V t
(W ) (r )>¿ is the expectation value of V t

(W ) (r ) w.r.t. A-QS eigenfunctions.

We can derive Ramanovski polynomial by means of following substitutions:

μ→iμ , ρ
ξ
→i ρ

ξ
, μξ
ρ

→−μξ
ρ and λ→ λ

with these substitutions equation (38) becomes

φh (r )=Nh r
−(D B−1

2 )
cos h1/2ρn r (1+itanh ρnr )

(μ+iλ )ξ
2 ρn (1−itanh ρnr )

(μ−iλ ) ξ
2ρn Pn

(β , γ ) (−itanhρnr ) (39)

Corresponding Jacobi polynomial equation is

(1+ tanh2 ρnr )Pn
´´ ( β ´, γ ´ ) ( itanh ρn r )+{2βiα

−(1−2μα itanhρn r )}Pn
´ ( β ´ ,γ )́ (itanh ρnr )+n(n−2μ

α )Pn
( β ´ ,γ )́ (itanh ρnr )=0 (40)

Where β ´=
−μξ+iλρ

ρn
−1
2  and γ ´=

−μξ−iλρ
ρn

−1
2

The differential equation satisfied by the complex Jacobi polynomial
(1+ tanh2 ρnr )Rn

´´(p , q) (itanh ρnr )+{2 (− p+1 itanh ρn r ) }Rn
´( p , q)( itanhρn r )+{n (n−1 )+2n (1−n )}Rn

(p , q) (itanh ρnr )=0(41)

Equation (41) and (42) are the identical equation and differ by a phase factor  in comparing them by

β ´=−p−iq
2  and γ ´=−β ´.

As a real polynomial (non-classical polynomial) exists, popularly known as Ramanovski polynomial,
which is obtainable from Jacobi polynomial. The Ramanovski polynomials are related to the complex
Jacobi polynomials via

Rn
(p ,q) (tanhρr )=inPn

(−p− iq
2
,−p+ iq

2 ) (itanhρr )(42)

Scattering State Solution
We are concern with continuous part  of the energy spectrum, which is corresponds to the positive
energy of the GF equation and these eigenfunctions are of unbound states. The potential energy V h(r )

decreases in magnitude as the r=|r| from the scattering centre, become large, such that lim
r→0

V h(r )≡0.

Total energy of the particle is therefore En
h= ћ
2m

k2=k2. (in atomic units). It is the corresponding wave

number. In scattering state  En
h=k2>0. so we can replace  En

h by  k 2and write the analogue of equation
(25) as
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where 
k ´= k

√μ2+λ2−μρ
ξ

Imaginary part alone gives the continuous energy eigenvalues and hence

The scattering wave φh
scatt ( r ,k 2) is

φh
scatt ( r ,k 2)=π∫

0

∞

r
−( DB−1

2 )
cosh1/2k ' r (1+ itanh k ' r )

(μ+λi ) ξ
2 ρn (1−itanhk ' r )

(μ− λi) ξ
2ρn Pn

(β' , γ' ) (itanhk ' r )(45)

3.2 Second order transformation
Application of ET on the B-QS comprising equation (35) and (37) we can generate another QS (say C-
QS). The choice of WP from the term which is directly comes from the energy term of the parent QS,

revert it  back to the parent (Trigonometric Scarf) QS. In this particular case  (Ch
2+ 1
4
ρn
2) sech2ρn r is

directly coming from the energy term of Trigonometric Scarf QS. When we take σ n tan h ρnr  as the WP

the ansatze (10) now becomes gC
´2 ¿. The integration is ∫ √– tan h ρngC (r )d gC=√ En

C

ρn
+C  , however the

functional dependence cannot be inverted to get an analytic expression for gC (r ). 

4. Discussion and Conclusion
We have obtained  exactly  solvable  potential  of  radial  Schrodinger  GF equation  in  D-dimensional
Euclidean space whose bound state as well as scattering state solutions are given for hyperbolic Scarf
of QSs. We have use a simple and compact mapping procedure called ET method, which consist of co-
ordinate  transformation  followed by a functional  transformation  (FT).  The parent  system is  in one
dimensional  (Euclidean)  space,  but  FT  component  of  ET  allows  a  consistent  way  to  choose  the
dimension  of  the  transformed  system  other  than  two  dimensions.  The  transformation  method  is
performed on the linear second order differential equation satisfied by a particular special function to
retrieve radial  Schrodinger GF equation.  The constructed potentials are non-power law type with a
background inverse square potential(D−1 )(D−3)r−2 which vanishes for D=1 and D=3. 

The hyperbolic Scarf potential has various applications in physics. In solid state physics it is used in the
construction  of  more  realistic  periodic  potential  in  crystal.  In  electrodynamics  hyperbolic  Scarf
potential  appears  in  a  class  of  problems with  non-central  potential.  In  particle  physics  it  has  fine
application in studies of the non-perturbative sector of gauge theories by means of toy models such as
the scalar field theory in space-time dimensions. 

IJFRM570 Website : www.ijfmr.com Email : editor@ijfmr.com 21

Gh (r , r0 ;k2 )=∫
0

∞ dE
E−k2−i∈

r
−( DB−1

2 )
cosh1 /2 k ' r (1+itanh k ' r )

(μ+ λi ) ξ
2 ρn (1−itanh k ' r )

(μ−λ i) ξ
2ρn Pn

(β' , γ' ) (itanh k ' r )r 0
−( DB−1

2 ) (1+itanhk ' r0 )
(μ+ λi ) ξ
2ρn (1−itanhk ' r0 )

(μ− λi )ξ
2ρn Pn

(β' ,γ ' ) ( itanhk ' r0 )(43)

ImGh (r , r0; k2 )=π∫
0

∞

dEδ (E−k2 ) r
−(DB−1

2 )
cos h1/2 k 'r (1+itanhk ' r )

(μ+ λi )ξ
2 ρn (1−itanh k ' r )

(μ−λi )ξ
2 ρn Pn

(β' ,γ ' ) ( itanhk ' r ) r0
−(DB−1

2 )(1+itanh k ' r0 )
(μ+ λi) ξ
2ρn (1−itanh k 'r 0)

(μ−λi ) ξ
2 ρn Pn

(β' ,γ ' ) (itanh k ' r 0 )(44)
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In order to get the scattering state of hyperbolic Scarf potential  we replace  En
h by  k 2 and write the

analogue  of  equation  (26).  To  determine  the  wave  function  belonging  to  continuum  we  use  the

symbolic  identity  lim
r→ 0

1
(E−k2)±i∈

=P 1
(E−k2)

∓ iπδ (E−k2) which  yields  the  expression  for  the

scattering wave as equation (46).
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