

International Journal for Multidisciplinary Research(IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com● Email: editor@ijfmr.com

IJFMR2205043 Volume 4, Issue 5, September-October 2022 1

Modelling Logic Gates in Python

Yashasvini Raghuvanshi
1
, Dhananjay R. Mishra

2
, Pankaj Dumka

3
*

1
Department of Computer Science and Engineering, Jaypee University of Engineering and Technology,

A. B. Road, Raghogarh-473226, Guna
2,3

Department of Mechanical Engineering, Jaypee University of Engineering and Technology, A. B.

Road, Raghogarh-473226, Guna

(Email: p.dumka.ipec@gmail.com)

Abstract

In this paper, an attempt has been made to develop a Python module for different Logic Gates. The

correctness of the codes has been checked against three numerical problems, and it has been observed

that the program results match exactly with the results in the literature. As a result, the developed

functions have shown high accuracy with the least effort and error in all the cases.

Keywords: Logic Gates, Python Programming, Truth Table

Introduction

Logic gates are basic elements of a digital system that constitute few inputs and a single output. Without

Logic Gates, data storage and data transfer would be a difficult task. The concept of logic gates has been

implemented in various devices, and we are unable to see them due to technological advancement. Still,

its idea is embedded everywhere, like in alarm clocks.There is a total of 7 Logic Gates, and of out seven

logic gates, there are two universal gates, which are NAND and NOR gates. The basic seven logic gates

are AND, OR, XOR, NOT, XNOR, NOR, and NAND[1,2]. The logic gate receives input in binary

format and returns output in binary format. There is an input-output table called the truth table for the

tabular arrangement of a combination of inputs and outputs. The truth table represents binary format as

logic levels,0 as low and 1 as high. The application of basic logic gates is a vast topic of discussion as it

is used in microprocessors, microcontrollers, embedded applications, safety thermostats, and automatic

watering systems. The purpose of logic gates is that when a sequence of correct logic has been applied in

a particular project, it provides a distinguishing output when the Logic Gates are turned on. While

implementing these in pen and paper mode, there are chances that the errors can occur due to some

negligence or several logic-building steps. So, the better option is to implement the logic gates through

programming.

Here comes the importance of Python language for programming. Python is effortless to understand,

with lucid syntax and a rich programming community[3–6]. Modelling any problem in Python requires a

few lines of code, backed up by modules like SymPy, NumPy, SciPy, Matplotlib etc. [7–12]. Several

researchers have adopted this language for numerically and symbolically solving different engineering

problems[13–15]. In this research article, the Logic Gates were modelled in Python to ease the

computation and make the solution process error-free.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research(IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com● Email: editor@ijfmr.com

IJFMR2205043 Volume 4, Issue 5, September-October 2022 2

A Brief description of Logic Gates

AND Gate: AND Gate is an important digital logic gate. AND Gate is the logical multiplication of

binary digits where 1 is called as high, and 0 is called as low. Two or more inputs are there with an

output. When both inputs are in a high state, the output is in the high state, but if either of the input is in

the low state or both are in the low state, then the output will be low. It also denotes that AND Gate may

have any input probes, but there will be a single output probe. The schematic representation of AND

Gate is shown in Fig. 1.

Fig. 1: Schematic of AND Gate

OR Gate: OR Gate is another digital logic gate. This Gate works on logical addition. At least two or

more inputs are required to produce a single output. If two inputs are considered, and both are low, then

the output will be low; if either of the input is in the high state,, then the output will be true. As we have

considered two inputs 22 = 4, then there will be four outputs for the following OR Gate, which is

widely used to find out the maximum of between the inputs, that are binary in nature. Fig. 2 shows the

schematic of the OR Gate.

Fig. 2: Schematic of OR Gate

XOR Gate: Exclusive OR Gate is commonly known as the XOR gate (Fig. 3). This Gate comprises two

inputs and a single output. This Gate is not basic; it is constructed with the help of other Logic Gates.

For example, the high state condition or 1 is obtained only when both inputs are different, not when both

are in the high state. The symbol for the XOR gate is an addition sign enclosed within a circle, i.e., ⨁.

𝐴⨁𝐵 = 𝐴. 𝐵 + 𝐴 .𝐵 = 𝑌 (1)

The above equation can be simplified as follows:

When 𝐴 = 0 and 𝐵 = 0

𝐴⨁𝐵 = 0⨁0 = 0. 0 + 0 . 0 = 0.1 + 1.0 = 0 (2)

Fig. 3: Schematic of XOR Gate

https://www.ijfmr.com/

International Journal for Multidisciplinary Research(IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com● Email: editor@ijfmr.com

IJFMR2205043 Volume 4, Issue 5, September-October 2022 3

NOT Gate: NOT Gate is the most basic Gate of all digital logic gates. NOT Gate has one input value

and one output value. NOT Gate is also known as inverting buffer. NOT Gate comprises a small circle in

the logic diagram called an inverted bubble. Input in NOT gate will complement the output, i.e., if the

input is 1 then the output is 0 and vice versa. The schematic of NOT Gate is shown in Fig. 4.

Fig. 4: Schematic representation of NOT Gate

NAND Gate: NAND gate is inverse of AND Gate, or we can call it "Not AND". NAND gate is a

universal gate which means all basic gates like AND, OR, and NOT can be represented with the help of

the NAND gate (Fig. 5). There can be two or more inputs that will produce a single output. This Gate is

a logical complement of multiplication viz 𝐴.𝐵 ′ = 𝑌.

Fig. 5: Schematic representation of NAND Gate

NOR Gate: NOR Gate is the inverse of OR gate, or we can say it is 'not OR gate'. The input state of the

NOR gate will be in a high state, while all input states will be in a low state. As it is the inverse of the

OR Gate, it can have two or more inputs but a single output. Complement of logical addition is

performed for the particular Gate to produce the correct logical output. It can be denoted by:

 𝐴 + 𝐵 ′ = 𝑌 (3)

Fig. 6: Schematic of NOR Gate

XNOR Gate: XNOR gate is called the exclusive NOR Gate. XNOR is a hybrid Gate combining XOR

and NOT (Fig. 7). It can have two or more inputs. XNOR gate can only produce a high state when both

inputs are in a high state. The XNOR Gate is called an equivalence Gate because both inputs are treated

the same when the output is for two inputs. For inputs A and B, the output can be written as:

𝑌 = 𝐴⨁𝐵 = (𝐴𝐵 ′ + 𝐴𝐵) (4)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research(IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com● Email: editor@ijfmr.com

IJFMR2205043 Volume 4, Issue 5, September-October 2022 4

Fig. 7: Schematic of XNOR Gate

The truth table for different gatesis shown in Tab. 1.

Tab. 1: Truth Table for different gates

X Y AND OR XOR NAND NOR XNOR

0 0 0 0 0 1 1 1

0 1 0 1 1 1 0 0

1 0 0 1 1 1 0 0

1 1 1 1 0 0 0 1

1. Implementation of logic Gates in Python

The Gates discussed above are converted into Python functions as mentioned in Tab. 2. The

function has also been developed to print the truth table.

Tab. 2: Python functions for different Logic Gates

Logic Gate Python Function

AND Gate defAND(a,b):

if a==Trueand b==True:

return1

else:

return0

NAND Gate defNAND(a,b):

if a==Trueand b==True:

return0

else:

return1

OR Gate defOR(a,b):

if a==Trueor b==True:

return1

else:

return0

XOR Gate defXOR(a,b):

if a!=b:

return1

else:

return0

NOT Gate defNOT(a):

if a==True:

return0

else:

return1

NOR Gate defNOR(a,b):

if a==b==False:

return1

https://www.ijfmr.com/

International Journal for Multidisciplinary Research(IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com● Email: editor@ijfmr.com

IJFMR2205043 Volume 4, Issue 5, September-October 2022 5

else:

return0

XNOR Gate defXNOR(a,b):

if a==b== Trueor a==b== False:
return1

else:

return0

Function for the

printing of Truth

table

defTruth_Table(GATE,name):

print('-------------------')

print(f'a\tb\t{name}')

print('-------------------')

for a in [0,1]:

for b in [0,1]:

print(f'{a:1} {b:7} {GATE(a,b):8}')

print('-------------------')

Let us take some examples to demonstrate how these functions can be used.

Example 1: For XNOR and NAND, generate the truth table using the functions developed.

Simply the function Truth_Table() will be called with the arguments: Function name and Gate name

as follows:

Truth_Table(XNOR,'XNOR')

Truth_Table(NAND,'NAND')

The code output is shown in Fig. 8.

Fig. 8: Program output for Example 1

Example 2: For different possible combinations of inputs (A, B, C, D) evaluate the final output from the

multiple logic Gates as shown in Fig. 9.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research(IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com● Email: editor@ijfmr.com

IJFMR2205043 Volume 4, Issue 5, September-October 2022 6

Fig. 9: Multiple logic Gates (Example 2)

The first Gate to start is NORand the second is NAND. Then the output of these will be transferred to

OR, and finally, the output of OR will be given to NOT. The outcomeof the multiple logic Gates will be

the output from the NOT Gate. In Python, we can simply implement this by first making a list of inputs

A, B, C, and D and then looping them to print the truth table as follows:

a=[0,1]

b=[0,1]

c=a.copy()

d=b.copy()

print('---------------------------------------')

print('a\tb\tc\td\tOUTPUT')

print('---------------------------------------')

for i in a:

for j in b:

for k in c:

for l in d:

print(f'{i:1} {j:7} {k:7} {l:7}

{NOT(OR(NOR(i,j),NAND(k,l))):7}')

print('---------------------------------------')

The code output is presented in Fig. 9.

Fig. 9: Program output for Example 2

https://www.ijfmr.com/

International Journal for Multidisciplinary Research(IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com● Email: editor@ijfmr.com

IJFMR2205043 Volume 4, Issue 5, September-October 2022 7

Example 3: For different possible combinations of inputs (A and B) evaluate the final output from the

multiple logic Gates as shown in Fig. 10.

Fig. 9: Multiple logic Gates (Example 3)

The basic inputs are A and B and A’ and B’ input from NOT Gate. AB’ and A’B are input from

(NOT+AND) or NAND Gates. A’B+AB’ is a combination of NOT, AND, and OR Gates. In Python, we

can simply implement this by first making a list of inputs A and B, then looping them to print the truth

table as follows:

a=[0,1]

b=[0,1]

print('----------------------------')

print('a\tb\tOUTPUT')

print('----------------------------')

for i in a:

for j in b:

print(f'{i:1} {j:7} {OR(AND(i,NOT(j)),AND(j,NOT(i))):9}')

print('----------------------------')

The code output is presented in Fig. 10.

Fig. 10: Program output for Example 3

Conclusion

In this research article, an attempt has been made to understand the basic Logic Gates and their

implementation in the Python language. The functions were developed for the NOR, AND, OR, XOR,

NOT, NAND, and XNOR Gates, along with the code for printing the truth table. The robustness of the

functions has been demonstrated with the help of three problems. Furthermore, the developed functions

https://www.ijfmr.com/

International Journal for Multidisciplinary Research(IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com● Email: editor@ijfmr.com

IJFMR2205043 Volume 4, Issue 5, September-October 2022 8

have given correct results in each case. The article will be of great help to undergraduate students in

understanding the Logic Gates along with its programming aspects.

References

1. Martin KW. Digital integrated circuit design. Oxford University Press (New York); 2000.

2. Boylestad RL, Nashelsky L. Electronic devices and circuit theory 11th ed 2018.

3. Dumka P, Sharma S, Gautam H, Mishra DR. Finite Volume Modelling of an Axisymmetric

Cylindrical Fin using Python. Res Appl Therm Eng 2021;4:1–11.

4. Huei YC. Benefits and introduction to python programming for freshmore students using

inexpensive robots. Proc. IEEE Int. Conf. Teaching, Assess. Learn. Eng. Learn. Futur. Now, TALE

2014, 2015, p. 12–7. doi:10.1109/TALE.2014.7062611.

5. Moruzzi G. Python Basics and the Interactive Mode. Essent. Python Phys., Cham: Springer

International Publishing; 2020, p. 1–39. doi:10.1007/978-3-030-45027-4_1.

6. Dumka P, Pawar PS, Sauda A, Shukla G, Mishra DR. Application of He’s homotopy and

perturbation method to solve heat transfer equations: A python approach. Adv Eng Softw

2022;170:103160. doi:10.1016/j.advengsoft.2022.103160.

7. Cywiak M, Cywiak D. SymPy. Multi-Platform Graph. Program. with Kivy Basic Anal. Program.

2D, 3D, Stereosc. Des., Berkeley, CA: Apress; 2021, p. 173–90. doi:10.1007/978-1-4842-7113-

1_11.

8. Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, et al. SymPy: Symbolic

computing in python. PeerJ Comput Sci 2017;2017:1–27. doi:10.7717/peerj-cs.103.

9. Johansson R. Numerical python: Scientific computing and data science applications with numpy,

SciPy and matplotlib, Second edition. Apress, Berkeley, CA; 2018. doi:10.1007/978-1-4842-4246-9.

10. Dumka P, Chauhan R, Singh A, Singh G, Mishra D. Implementation of Buckingham ’ s Pi theorem

using Python. Adv Eng Softw 2022;173:103232. doi:10.1016/j.advengsoft.2022.103232.

11. Dumka P, Rana K, Pratap S, Tomar S, Pawar PS, Mishra DR. Modelling air standard

thermodynamic cycles using Python. Adv Eng Softw 2022;172:103186.

doi:10.1016/j.advengsoft.2022.103186.

12. Pawar PS, Mishra DR, Dumka P, Pradesh M. OBTAINING EXACT SOLUTIONS OF VISCO-

INCOMPRESSIBLE PARALLEL FLOWS USING PYTHON. Int J Eng Appl Sci Technol

2022;6:213–7.

13. Huang C. Python Solver for Stochastic Differential Equations 2011;34:1–13.

14. Pawar PS, Mishra DR, Dumka P. Solving First Order Ordinary Differential Equations using Least

Square Method : A comparative study. Int J Innov Sci Res Technol 2022;7:857–64.

15. Dumka P, Deo A, Gajula K, Sharma V, Chauhan R, Mishra DR. Load and Load Duration Curves

Using Python. Int J All Res Educ Sci Methods 2022;10:2127–34.

https://www.ijfmr.com/

