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Abstract 

     In this article, the majority dom-chromatic sets of a bipartite graphs are studied. The characterization 

theorems on the majority dom-chromatic number  𝛾𝑀𝜒(𝐺) for bipartite graphs are determined. Also its 

relationship with other graph theoretic parameters and the majority dom-chromatic number for 

complement of a bipartite graphs are investigated.  
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1. Introduction    

     All the graphs 𝐺 = (𝑉, 𝐸) considered here are simple, finite and undirected.  The 

concept of domination is early discussed by Ore and Berge in 1962. Then Haynes et.al [2] 

defined the domination number 𝛾(𝐺). The majority domination number 𝛾𝑀(𝐺) was 

introduced by Swaminathan and  Joseline Manora [6] is the smallest cardinality of a 

minimal majority dominating set 𝑆 ⊆ 𝑉(𝐺) of vertices and satisfies |𝑁[𝑆]| ≥ |⌈
𝑉(𝐺)

2
⌉|. 

Janakiraman and Poobalaranjani [3] defined the dom-chromatic set as a dominating set 𝑆 ⊆

𝑉(𝐺) such that the induced subgraph < 𝑆 > satisfies the property 𝜒(< 𝑆 >) = 𝜒(𝐺), 

where 𝜒(𝐺) is the chromatic number of 𝐺. The minimum cardinality of a dom-chromatic 

set 𝑆 is called dom-chromatic number and is denoted by 𝛾𝑐ℎ(𝐺). 

Definition : 1.1  [4] The set 𝑆 ⊆ 𝑉(𝐺) is called the Majority Dominating Chromatic set 

(MDC- set)  of a graph 𝐺 if the set  𝑆 is a majority dominating set and satisfies the property 

𝜒(< 𝑆 >) = 𝜒(𝐺) where < 𝑆 >  is a induced subgraph of 𝐺. It is also called a majority 

dom-chromatic set of a graph.A majority dom-chromatic number (MDC-number) 𝛾𝑀𝜒(𝐺) 

is defined as the smallest cardinality of the majority dom-chromatic set of a graph 𝐺. 

Results on 𝜸𝑴(𝑮) and 𝜸𝑴𝝌(𝑮) : 1.2  [4] and [ 6]  

(i) For a path 𝑃𝑝 and cycle 𝐶𝑝, 𝛾𝑀(𝐺) = ⌈
𝑝

6
⌉, 𝑝 ≥ 3. 

(ii) If a graph 𝐺 = 𝐾𝑝̅̅̅̅   then 𝛾𝑀𝜒(𝐺) = ⌈
𝑝

2
⌉. 
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(iii) Let 𝐺 = 𝑚𝐾2 , 𝑚 ≥ 1. Then 𝛾𝑀𝜒(𝐺) = ⌈
𝑝

4
⌉ + 1, 𝑝 ≥ 2.  

(iv) Let 𝐺 be any graph of order 𝑝. Then 𝛾𝑀𝜒(𝐺) = 𝑝 if and only if 𝐺 is vertex color 

critical. 

(v) For a graph 𝐺 = 𝐾𝑚,𝑛 , 𝛾𝑀𝜒(𝐺) = 2. 

(vi) For any cycle 𝐶𝑝, 𝛾𝑀𝜒(𝐺) =

{
 

  ⌈
𝑝

6
⌉        ,      𝑖𝑓 𝑝 ≡ 2 (𝑚𝑜𝑑 6)                 

⌈
𝑝

6
⌉ + 1  ,   𝑖𝑓 𝑝 ≡ 0,4 (𝑚𝑜𝑑 6)               

𝑝            ,    𝑖𝑓 𝑝 𝑖𝑠 𝑜𝑑𝑑  .                         

 

(vii) If 𝐺 is a path  then 𝛾𝑀𝜒(𝐺) = {
⌈
𝑝

6
⌉          , 𝑖𝑓 𝑝 ≡ 1,2 (𝑚𝑜𝑑 6)             

⌈
𝑝

6
⌉ + 1   , 𝑖𝑓  𝑝 ≡ 0,3,4,5 (𝑚𝑜𝑑 6).    

 

(viii) For a graph 𝐺 = 𝐷𝑟,𝑠 , 𝛾𝑀𝜒(𝐺) = 2. 

(ix) Let 𝐺 = 𝐾1,𝑝−1 be a star graph. Then 𝛾𝑀𝜒(𝐺) = 2. 

(x)  [3]  Let 𝐺 be a tree of diameter 3. Then 𝛾𝜒(𝐺) ≤ 𝑝 − ∆(𝐺).  

 

2. Characterisation Theorems for Bipartite Graph 

Theorem: 2.1 Let G be a connected bipartite graph with p vertices. Then   𝛾𝑀𝜒(𝐺) = 2  if 

and only if  𝐺1 = 𝐾𝑚,𝑛 , 𝑚 ≤ 𝑛, a  path 𝐺1 = 𝑃𝑖  , 𝑖 ≤ 8 and  𝐺3 = 𝐵𝑋,𝑌 such that 

|𝑁[𝑢1] ∪ 𝑁[𝑣1]| ≥
𝑝 

2
 and 𝑑(𝑢1, 𝑣1) = 1, where 𝑢1 ∈ 𝑉1(𝐺) 𝑎𝑛𝑑 𝑣1 ∈ 𝑉2(𝐺) . 

Proof :   

       Let  𝛾𝑀𝜒(𝐺) = 2.               (1) Then  

𝜒(𝐺) = 2 = 𝜒(< 𝑆 >), where 𝑆 is a majority dom-chromatic set of 𝐺 with |𝑆| = 2.            

Case: (i)  Suppose 𝑑𝑖𝑎𝑚(𝐺) = 1 then the graph 𝐺 = 𝐾𝑝. Since 𝐾𝑝 is vertex color 

critical, 𝛾𝑀𝜒(𝐺) = 𝑝. By assumption (1), the only graph 𝐺 = 𝐾2 = 𝐾1,1 is complete 

bipartite.  

Case: (ii) Suppose 𝑑𝑖𝑎𝑚(𝐺) = 2  then the graph 𝐺 becomes 𝐾𝑚,𝑛 , 𝑚 ≤ 𝑛 ,  𝑃3 and 𝐾1,𝑝−1 

, a star. Since 𝛾𝑀𝜒(𝐺) = 2, by the result(1.2) , we obtain the graphs which have a structures 

as  𝐺1 = 𝐶4 = 𝐾2,2 and 𝐺1 = 𝐾1,𝑝−1, 𝐺2 = 𝑃3 and also 𝐺3 = 𝐵𝑋,𝑌 includes the following 

structure with 𝑑𝑖𝑎𝑚(𝐺) = 2 . 
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𝐺3: Fig(i) 

For 𝐺3 , 𝑆 = {𝑢2, 𝑣2} ⊆ 𝑉(𝐺) such that  𝑑(𝑢2, 𝑣2) = 1, |𝑁[𝑆]| = |𝑁[𝑢2] ∪ 𝑁[𝑣2]| ≥ ⌈
𝑝

2
⌉ 

and 𝜒(< 𝑆 >) = 2 = 𝜒(𝐺). It implies that 𝑆 is a majority dom-chromatic set of 𝐺3. Hence 

𝐺3 = 𝐵𝑋,𝑌 with these properties. 

Case: (iii) Suppose 𝑑𝑖𝑎𝑚(𝐺) = 3. The bipartite graph 𝐺 becomes 𝑃4 and 𝐷𝑟,𝑠 , a double 

star. Since 𝛾𝑀𝜒(𝐺) = 2, by the result (1.2)(vii), 𝛾𝑀𝜒(𝑃4 ) = 2. Hence 𝐺2 = 𝑃4 . In 𝐷𝑟,𝑠 , 

𝑟 ≤ 𝑠 , by assumption (1),  𝑆 = {𝑢1, 𝑣1} is the subset of 𝐺 such that 𝑑(𝑢1) ≤ ⌈
𝑝

2
⌉ − 1, and 

𝑑(𝑣1) ≥ ⌈
𝑝

2
⌉ − 1 with 𝑑(𝑢1, 𝑣1) = 1, where 𝑢1 ∈ 𝑉1(𝐺) and 𝑣1 ∈ 𝑉2(𝐺) and  |𝑁[𝑆]| =

|𝑁[𝑢2] ∪ 𝑁[𝑣2]| ≥ ⌈
𝑝

2
⌉. Also 𝜒(< 𝑆 >) = 2 = 𝜒(𝐺). Hence 𝑆 is a majority dom-

chromatic set of 𝐺. It implies that  𝐺2 = 𝐵𝑋,𝑌 = 𝐷𝑟,𝑠 , 𝑟 ≤ 𝑠.  

Case: (iv) Suppose 𝑑𝑖𝑎𝑚(𝐺) ≥ 4. Then the bipartite graphs are 𝑃𝑝 , 𝑝 ≥ 5 and any bipartite 

graph 𝐵𝑋,𝑌. By the result (1.2)(vii), 𝛾𝑀𝜒(𝑃𝑝 ) = ⌈
𝑝

6
⌉ = 2 , 𝑝 = 5,6,7,8 and 𝛾𝑀𝜒(𝑃𝑝 ) >

2, 𝑖𝑓 𝑝 ≥ 9. Since  𝛾𝑀𝜒(𝐺) = 2, the only bipartite graph  𝐺2 = 𝑃5  to 𝑃8 . For a bipartite 

graph 𝐵𝑋,𝑌, if 𝑆 = {𝑢1, 𝑣1}𝑢1 ∈ 𝑉(𝐺)  such that |𝑁[𝑢1] ∪ 𝑁[𝑣1]| ≥ ⌈
𝑝

2
⌉ and 𝑑(𝑢1, 𝑣1) = 1, 

where 𝑢1 ∈ 𝑉1(𝐺) 𝑎𝑛𝑑 𝑣1 ∈ 𝑉2(𝐺) with 𝑑𝑖𝑎𝑚(𝐺) = 4 , then 𝑆 is a majority dom-

chromatic set of 𝐵𝑋,𝑌. Also clearly  𝜒(< 𝑆 >) = 2 = 𝜒(𝐺) and satisfies the assumption 

(1). Hence the bipartite graph 𝐺3 = 𝐵𝑋,𝑌 with the above said properties and also the only 

bipartite graphs are 𝐺2 = 𝑃5  to 𝑃8 . 

   Conversely, let  𝐺 = 𝐾𝑚,𝑛 , 𝑚 ≤ 𝑛  which is complete bipartite with  𝑝 =  𝑚 + 𝑛. By the 

result (1.2)(v) and (vii), 𝛾𝑀𝜒(𝐺1) = 2 and  for a path 𝛾𝑀𝜒(𝑃𝑖 ) = 2 , 𝑖𝑓 𝑖 = 2,… ,8. Let 𝐺3 =

𝐵𝑋,𝑌 be a graph with bipartition 𝑉1(𝐺) and 𝑉2(𝐺). Let  𝑢1 ∈ 𝑉1(𝐺) and 𝑣1 ∈ 𝑉2(𝐺) such 
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that 𝑑(𝑢1, 𝑣1) = 1. Since |𝑁[𝑢1] ∪ 𝑁[𝑣1]| ≥
𝑝

2
  and  𝜒(< 𝑆 >) = 2 = 𝜒(𝐺).  Hence  𝑆 =

{𝑢1, 𝑣1} is a majority dom-chromatic set of 𝐺 and 𝛾𝑀𝜒(𝐺3) = 2. 

Proposition: 2.2   Let 𝐺 be any bipartite graph 𝐵𝑋,𝑌  with 𝑝 vertices and without isolates. 

Then 𝛾𝑀𝜒(𝐺) ≤ ⌈
𝑝

4
⌉ + 1 and 𝛾𝑀𝜒(𝐺) = ⌈

𝑝

4
⌉ + 1 if and only if 𝐺 = 𝐾1,𝑗, 𝑗 = 1,2,3 , 𝐾2,2 , 

𝑃4 and 𝑚𝐾2, 𝑚 ≥ 1. 

Proof : Let 𝐺 = 𝐵𝑋,𝑌 be a bipartite graph with {𝑢1 , 𝑢2  , … , 𝑢𝑚 } and {𝑣1 , 𝑣2  , … , 𝑣𝑛 } and  

|𝑉(𝐺)| = 𝑝 =  𝑚 + 𝑛. 

Case : (i)  Suppose 𝐺 = 𝐾𝑚,𝑛,  is a complete bipartite with 𝑚 ≤ 𝑛.  Let 𝑆 =

{𝑢1 , 𝑣1  }, where 𝑢1 ∈ 𝑉(𝑋) and 𝑣1 ∈ 𝑉(𝑌).  Then |𝑁[𝑆]| = |𝑁[𝑢1 ]| + |𝑁[𝑣1  ]|    

= (𝑛 + 1) + (𝑚 + 1) ≥ ⌈
𝑝

2
⌉.  Therefore 𝑆 is a majority dominating set of 𝐺. Since 𝐺 is 

complete bipartite, 𝜒(𝐺) = 2 = 𝜒(< 𝑆 >). It implies that 𝑆 is a majority dom-chromatic 

set of 𝐺. Hence 𝛾𝑀𝜒(𝐺) ≤ |𝑆| = 2 = ⌈
𝑝

4
⌉ + 1, where 𝑝 = 2,3,4. Thus the graph becomes 

𝐺 = 𝐾1,1, 𝐾1,2 , 𝐾1,3 and 𝐾2,2. When 𝑝 ≥ 5, for 𝐺 = 𝐾𝑚,𝑛 , 𝑚 ≤ 𝑛, by the result (1.2)(v), 

𝛾𝑀𝜒(𝐺) = 2 < ⌈
𝑝

4
⌉ + 1. Hence, 𝛾𝑀𝜒(𝐺) ≤ ⌈

𝑝

4
⌉ + 1,for 𝐺 = 𝐾𝑚,𝑛 , 𝑚 ≤ 𝑛. 

Case: (ii) The graph 𝐺 is not complete and connected bipartite. 

    Then the minimally connected bipartite graph is a path 𝑃𝑝 , 𝑝 ≥ 2. By known result 

(1.2)(vii), 𝛾𝑀𝜒( 𝑃𝑝 ) = ⌈
𝑝

6
⌉  𝑜𝑟  ⌈

𝑝

6
⌉ + 1. Hence in this structure, when 𝑝 = 2, 3, 4, 

𝛾𝑀𝜒(𝐺) = 2 = ⌈
𝑝

6
⌉ + 1 = ⌈

𝑝

4
⌉ + 1. When 𝑝 ≥ 5, 𝛾𝑀𝜒(𝐺) = ⌈

𝑝

6
⌉ or ⌈

𝑝

6
⌉ + 1 < ⌈

𝑝

4
⌉ + 1. 

Hence,  𝛾𝑀𝜒(𝐺) ≤ ⌈
𝑝

4
⌉ + 1, if , 𝑝 ≥ 2. 

Case: (iii) The graph 𝐺 is not complete and disconnected bipartite. 

Then the graph structure becomes  𝑚𝐾2 ,𝑚𝑃4 , 𝑚𝐶4 𝑎𝑛𝑑 𝑚𝑃6. In such cases, by the result 

(1.2 )(iii), 𝛾𝑀𝜒(𝑚𝐾2) = ⌈
𝑝

4
⌉ + 1 and all other graphs the majority dom-chromatic number 

is  𝛾𝑀𝜒(𝐺) < ⌈
𝑝

4
⌉ + 1. Hence 𝛾𝑀𝜒(𝐺) ≤ ⌈

𝑝

4
⌉ + 1.      From the above cases, we obtain 

𝛾𝑀𝜒(𝐺) ≤ ⌈
𝑝

4
⌉ + 1.   

   Conversely , let 𝛾𝑀𝜒(𝐺) = ⌈
𝑝

4
⌉ + 1. By case (i), if 𝐺 is a complete bipartite graph, we 

obtain the graphs 𝐺 = 𝐾1,𝑗  , 𝑗 = 1,2,3 𝑎𝑛𝑑  𝐾2,2. By case (ii), if 𝐺 is not complete bipartite 

then the graphs are 𝐺 = 𝑃2 , 𝑃3 , 𝑃4 = 𝐾1,1, 𝐾1,2 , 𝑃4 . Also by case (iii), if 𝐺 is not complete 
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and disconnected bipartite, the graph 𝐺 = 𝑚𝐾2, 𝑚 ≥ 1. Hence 𝛾𝑀𝜒(𝐺) = ⌈
𝑝

4
⌉ + 1 if and 

only if 𝐺 = 𝐾1,𝑗, 𝑗 = 1,2,3 , 𝐾2,2, 𝑃4 and 𝑚𝐾2, 𝑚 ≥ 1. 

Proposition: 2.3   Let 𝐺 be any connected bipartite graph with  𝑝 vertices. Then  𝛾𝑀𝜒(𝐺) =

⌈
𝑝

2
⌉  if and only if 𝐺 = 𝑃3 , 𝑃4 , 𝐶4  and  𝐾1,3 . 

Proof:   Assume that  𝛾𝑀𝜒(𝐺) = ⌈
𝑝

2
⌉.         (1) 

 Since 𝐺 is connected bipartite graph,  𝜒(𝐺) ≥ 2. 

Case: (i) If 𝑑𝑖𝑎𝑚(𝐺) = 1, then 𝐺 = 𝐾2 and 𝛾𝑀𝜒(𝐺) = 2 = 𝑝 , which is a contradiction to 

the assumption (1). Hence 𝐺 ≠ 𝐾2. 

Case: (ii) If 𝑑𝑖𝑎𝑚(𝐺) = 2, then 𝐺 = 𝑃3, 𝐶4, 𝐾1,𝑛. By the result (1.2)(vii),  𝛾𝑀𝜒(𝑃3) = 2 =

⌈
𝑝

2
⌉. By the result (1.2)(vi),  𝛾𝑀𝜒(𝐶4) = ⌈

𝑝

2
⌉. Suppose 𝐺 = 𝐾1,3 , by the result(1.2)(ix) , 

𝛾𝑀𝜒(𝐺) = 2 = ⌈
𝑝

2
⌉.  

Case: (iii)  If 𝑑𝑖𝑎𝑚(𝐺) = 3, then 𝐺 = 𝑃4and 𝐷𝑟,𝑠. By the result (1.2) (vii) ,  𝛾𝑀𝜒(𝐺) = 2 =

⌈
𝑝

2
⌉. In 𝐷𝑟,𝑠 , by the result (1.2)(viii), 𝛾𝑀𝜒(𝐺) = 2. The condition (1) holds when 𝑟 = 𝑠 =

1.  

Case: (iv)  If 𝑑𝑖𝑎𝑚(𝐺) ≥ 4 , then 𝐺 = 𝑃𝑝, 𝐶𝑝 , 𝑝 ≥ 5 and any other graphs. By the result 

(1.2)(vii) , 𝛾𝑀𝜒(𝐺) = ⌈
𝑝

6
⌉ + 1 = 2 < ⌈

𝑝

2
⌉, which is a contradiction to the condition (1).  

 Thus from the above four cases, 𝐺 must be 𝑃3 , 𝑃4 , 𝐶4  and  𝐾1,3 . 

      The converse is obvious.   

Proposition: 2.4  Suppose 𝐺 is a disconnected bipartite graph. If the graph structures are 

𝐺1 = 𝐾1,3 ∪𝑚𝐾2 ,  𝑚 is even and 𝑚 ≥ 2 , 𝐺2 = 𝑚𝑃𝑝 , 𝑚 = 4 , 𝑝 = 3 and 𝐺3 =

𝑚𝐾1,3 , 𝑚 = 3 then 𝛾𝑀𝜒(𝐺) =
𝑝

4
 . 

Corollary: 2.5 Let 𝐺 be a disconnected bipartite graph. . If the graph structure is 𝐾1,3 ∪

𝑚𝐾2 , 𝑚 is odd then 𝛾𝑀𝜒(𝐺) =
𝑝

4
+ 1. 

Proposition: 2.6  Let  𝐺  be a disconnected bipartite graph without isolates. Then  

𝛾𝑀𝜒(𝐺) =
𝑝

2
 if and only if  𝐺 = 𝑚𝐾2 , 1 < 𝑚 ≤ 3 . 

Proof :    Let 𝛾𝑀𝜒(𝐺) =
𝑝

2
.                     (1)  
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Since 𝐺 be a disconnected bipartite graph, let 𝐺1, 𝐺2, … , 𝐺𝑘 are the components of 𝐺 and 

𝑉(𝐺) = 𝑉(𝐺1)…∪ 𝑉(𝐺𝑘).  

Case (i) :  All components are of diameter 1. Then the graph  𝐺 = 𝑚𝐾2. By the assumption 

(1), when 𝐺 = 𝑚𝐾2  if  𝑚 = 2 𝑎𝑛𝑑 3  then 𝐺 = 2𝐾2 𝑎𝑛𝑑 3𝐾2. It implies that 𝛾𝑀𝜒(𝐺) = 2 

and 3 =
𝑝

2
. Suppose 𝑚 ≥ 4 , then by the result (1.2)(iii), 𝛾𝑀𝜒(𝐺) = ⌈

𝑝

4
⌉ + 1 <

𝑝

2
.  It is a 

contradiction to the assumption (1). 

Case (ii) :  Suppose 𝐺 contains the components which are of diameter1 and 2. 

  Then 𝐺 = 𝐾1,𝑡 ∪𝑚𝐾2 , where 𝐺1 = 𝐾1,𝑡, 𝐺2 = 𝑚𝐾2 and 𝑉(𝐺) =

{𝑢, 𝑢1, … , 𝑢𝑡 , 𝑣1, … , 𝑣2𝑚} with 𝑝 = 1 + 𝑡 + 2𝑚. 

subcase : (i) If |𝑡| ≥ ⌈
𝑝

2
⌉ − 1 and 2𝑚 = 𝑝 − (⌈

𝑝

2
⌉ − 1 ) then the majority dom-chromatic 

set 𝑆 = {𝑢, 𝑢1} where 𝑢, 𝑢1 ∈ 𝑉(𝐺1) such that |𝑁[𝑆]| ≥ ⌈
𝑝

2
⌉ and 𝜒(𝐺1) = 2 = 𝜒(< 𝑆 >). 

It implies that 𝑆 is a majority dom-chromatic set of 𝐺 and 𝛾𝑀𝜒(𝐺) = 2 <
𝑝

2
 , if |𝑡| ≥ ⌈

𝑝

2
⌉ −

1, which is a contradiction to (1). Therefore 𝐺 ≠ 𝐾1,𝑡 ∪𝑚𝐾2 . 

subcase : (ii) If |𝑡| ≤ ⌈
𝑝

2
⌉ − 2 then the MDC-set 𝑆 = {𝑢, 𝑢1, 𝑣1, 𝑣2, … , 𝑣𝑘}, where |𝑘| =

⌈
𝑝

2
⌉ − (1 + 𝑡) such that |𝑁[𝑆]| = 1 + 𝑡 + 2𝑘 ≥ ⌈

𝑝

2
⌉. Also 𝜒(𝐺) = 2 = 𝜒(< 𝑆 >). Hence 

𝛾𝑀𝜒(𝐺) = |𝑆| = (2 + 𝑘) <
𝑝

2
, it is a contradiction to (1). Hence the graph 𝐺 ≠ 𝐾1,𝑡 ∪

𝑚𝐾2 . 

Case (iii) :  If the components 𝐺𝑖 of 𝐺 with 𝑑𝑖𝑎𝑚(𝐺𝑖) ≥ 2, 𝑖 = 1,2,… , 𝑘 then  𝛾𝑀𝜒(𝐺) <
𝑝

2
 . From the above cases, we get the graph structures become 𝐺 = 𝑚𝐾2 , 1 < 𝑚 ≤ 3 . 

 Conversely, let 𝐺 = 𝑚𝐾2, 𝑚 ≤ 3. Then by the result (1.3)(iii) , 𝛾𝑀𝜒(𝐺) = ⌈
𝑝

4
⌉ + 1 =

𝑝

2
 . 

Proposition: 2.7  Let 𝐺 be a disconnected graph which is not bipartite with isolates. Then 

𝛾𝑀𝜒(𝐺) ≤ ⌈
𝑝

2
⌉ and 𝛾𝑀𝜒(𝐺) = ⌈

𝑝

2
⌉  if and only if 𝐺 = 𝑝𝐾1. 

Proposition : 2.8  For a disconnected graph  with 𝑝 vertices, 𝛾𝑀𝜒(𝐺) = ⌈
𝑝

2
⌉ if and only if 

𝐺1 = 𝑚𝐾2, 𝑚 = 2,3 and  𝐺2 = 𝐾𝑡 ∪ (𝑝 − 𝑡)𝐾1, where 𝐾𝑡 is a complete graph of 𝑡 

vertices with |𝑡| ≤ ⌈
𝑝

2
⌉. 
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Proof:  Let 𝐺  be a disconnected graph 𝑝 vertices. Suppose 𝛾𝑀𝜒(𝐺) = ⌈
𝑝

2
⌉, then 𝑆 is a 

majority dom-chromatic set with ⌈
𝑝

2
⌉ vertices. Also the chromatic number of the induced 

subgraph < 𝑆 > and the graph 𝐺 are equal. 

Case (i) :  The graph 𝐺 without isolates. Then 𝐺 = 𝑚𝐾2, 𝑚 ≥ 2.  By the result (1.2)(iii), 

𝛾𝑀𝜒(𝐺) = ⌈
𝑝

4
⌉ + 1.  It implies that when 𝐺 = 2𝐾2, 3𝐾2, 𝛾𝑀𝜒(𝐺) = ⌈

𝑝

2
⌉.  If 𝐺 = 𝑚𝐾3 or 

𝐺 = 𝑚𝑃3 then 𝛾𝑀𝜒(𝐺) < ⌈
𝑝

2
⌉. If each components of 𝐺 such as 𝑚𝐾2, 𝑚 ≥ 4 , 

𝑚𝐾𝑡 , 𝑚𝑃𝑡 , 𝑡 ≥ 3  then 𝛾𝑀𝜒(𝐺) < ⌈
𝑝

2
⌉. Hence the graph 𝐺1 = 𝑚𝐾2, 𝑚 = 2,3 . 

Case (ii):  The graph 𝐺 has isolates. Let 𝛾𝑀𝜒(𝐺) = ⌈
𝑝

2
⌉. Then the majority dom-chromatic 

set 𝑆 contains ⌈
𝑝

2
⌉ vertices. It implies that, by the result (1.2) (iii) , the graph 𝐺 = 𝐾𝑝̅̅̅̅ =

𝐾1 ∪ (𝑝 − 1)𝐾1. 

Subcase: (i) If 𝑑𝑖𝑎𝑚(𝐺) = 1 then the components of the given disconnected graph 

becomes a complete graph with isolates. i.e) 𝐺 = 𝐾𝑡 ∪ (𝑝 − 𝑡)𝐾1 , 𝑡 ≥ 2. Since 

𝛾𝑀𝜒(𝐺) = ⌈
𝑝

2
⌉ and |𝑡| ≤ ⌈

𝑝

2
⌉ , the graph structure is 𝐺 = 𝐾𝑡 ∪ (𝑝 − 𝑡)𝐾1, where 𝐾𝑡 is the 

complete graph of 𝑡 vertices. 

Subcase : (ii)  If 𝑑𝑖𝑎𝑚(𝐺) = 2 then the components of the disconnected graph become 

𝐺1 = 𝑃3 ∪ (𝑝 − 3)𝐾1 or 𝐺2 = 𝐾1,𝑡 ∪ (𝑝 − (𝑡 + 1))𝐾1 or 𝐺3 = 𝐶4 ∪ (𝑝 − 4)𝐾1.  Then 

𝛾𝑀𝜒(𝐺1) < ⌈
𝑝

2
⌉ and 𝛾𝑀𝜒(𝐺2) < ⌈

𝑝

2
⌉. In particular, 𝐺2 = 𝐾1,1 ∪ (𝑝 − 2)𝐾1 = 𝐾2 ∪ (𝑝 −

2)𝐾1 and 𝛾𝑀𝜒(𝐺2) = ⌈
𝑝

2
⌉.  Since 𝛾𝑀𝜒(𝐺) = ⌈

𝑝

2
⌉ and |𝑡| ≤ ⌈

𝑝

2
⌉,  the majority dom-chromatic 

set 𝑆 must contain ⌈
𝑝

2
⌉ vertices. Since 𝐺  is disconnected graph with isolates, anyone 

component ′𝑔′ of 𝐺 must be vertex color critical with |𝑉(𝑆)| ≠ 𝑡 ≤ ⌈
𝑝

2
⌉ and other remaining 

vertices are isolates. Hence the graph 𝐺 takes the structure  𝐺 = 𝐾𝑡 ∪ (𝑝 − 𝑡)𝐾1  where 𝐾𝑡 

is a complete graph which is vertex color critical and  (𝑝 − 𝑡) isolates.  

Subcase: (iii)  Let 𝑑𝑖𝑎𝑚(𝐺) ≥ 3. Then the disconnected graph becomes  𝐺1 = 𝑃𝑟 ∪
(𝑝 − 𝑟)𝐾1 or 𝐺2 = 𝐷𝑡1,𝑡2 ∪ (𝑝 − (𝑡1 + 𝑡2))𝐾1 , where 𝑃𝑟 is a path on 𝑟 vertices and 𝐷𝑡1,𝑡2 

is a double star with (𝑡1 + 𝑡2) vertices. The majority dom-chromatic number of these 

graphs 𝐺1 and 𝐺2 is 𝛾𝑀𝜒(𝐺) < ⌈
𝑝

2
⌉. Since 𝛾𝑀𝜒(𝐺) = ⌈

𝑝

2
⌉, 𝐺 must have a vertex color critical 

component ′𝑔′ and isolates. Hence |𝑉(𝑆)| = 𝑡 ≤ ⌈
𝑝

2
⌉ and (𝑝 − 𝑡) isolates. Hence the only 

graph structure 𝐺 = 𝐾𝑡 ∪ (𝑝 − 𝑡)𝐾1, where 𝐾𝑡 is the complete graph of 𝑡 vertices and |𝑡| ≤

⌈
𝑝

2
⌉. 
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   Conversely, let 𝐺 = 𝐾𝑡 ∪ (𝑝 − 𝑡)𝐾1, where |𝑡| ≤ ⌈
𝑝

2
⌉. Since 𝐾𝑡 is the complete graph, it 

is a vertex color critical. Then by result (1.2) (iv), 𝛾𝑀𝜒(𝐺) = 𝑝. If |𝑡| = ⌈
𝑝

2
⌉ then the graph 

𝐺 = 𝐾
⌈
𝑝

2
⌉
∪ (⌊

𝑝

2
⌋ 𝐾1) and 𝛾𝑀𝜒(𝐺) = ⌈

𝑝

2
⌉. If |𝑡| < ⌈

𝑝

2
⌉ then |𝑡| = ⌈

𝑝

4
⌉. The graph 𝐺 becomes 

𝐺 = 𝐾
⌈
𝑝

4
⌉
∪ (𝑝 − ⌈

𝑝

4
⌉)𝐾1. The majority dom-chromatic number 𝛾𝑀𝜒(𝐺) = ⌈

𝑝

4
⌉ + (⌈

𝑝

2
⌉ −

⌈
𝑝

4
⌉) = ⌈

𝑝

2
⌉. Suppose |𝑡| > ⌈

𝑝

2
⌉ then 𝐺 = 𝐾𝑡′ ∪ (𝑝 − 𝑡

′)𝐾1, where |𝑡′| > |𝑡|.  Since 𝐾𝑡′  is a 

complete graph with 𝑡′ vertices , 𝛾𝑀𝜒(𝐺) = 𝑡
′ > 𝑡 = ⌈

𝑝

2
⌉. Hence for a disconnected graph 

with isolates and |𝑡| ≤ ⌈
𝑝

2
⌉, 𝛾𝑀𝜒(𝐺) = ⌈

𝑝

2
⌉. 

3.  𝜸𝑴𝝌 for complement of a graph 𝑮 

Proposition:  3.1  Let the bipartite graph 𝐺 with 𝑑𝑖𝑎𝑚(𝐺) = 3. Then 𝛾𝑀𝜒(𝐺) = 𝛾𝑀𝜒(𝐺̅) 

if and only if 𝐺 = 𝑃4 , where 𝐺̅ is the complement of 𝐺. 

Proof:  Let the equality holds and uv be the dominating edge of 𝐺. Let |𝑁[𝑢]| =

𝑚 , |𝑁[𝑣]| = 𝑛 and 𝑝 = 𝑚 + 𝑛.  In the graph 𝐺,̅ both 𝑁(𝑢) and 𝑁(𝑣) are of cardinality 2. 

The set {𝑁(𝑢) ∪ 𝑁(𝑣)} is a 𝐾𝑚+𝑛−2 graph, 𝜒(𝐺̅) = 𝑚 + 𝑛 − 2 𝑎𝑛𝑑 {𝑁(𝑢) ∪ 𝑁(𝑣)} be the 

majority dom-chromatic set for 𝐺̅ ⇒ 𝛾𝑀𝜒(𝐺̅) =  𝑚 + 𝑛 − 2.  Since 𝛾𝑀𝜒(𝐺) = 𝛾𝑀𝜒(𝐺̅), 
𝑚+𝑛

2
= 𝑚 + 𝑛 − 2. It implies that 𝑚 + 𝑛 = 4. Hence the graph must be 𝑃4  and 𝐶4. The 

converse is obvious.    

Proposition:  3.2  If the graph 𝐺 = 𝐾𝑝 is the vertex color critical graph then 1 ≤ 𝛾𝑀𝜒(𝐺̅) ≤

⌈
𝑝

2
⌉ .  

Proof:  Since the complete graph 𝐺 = 𝐾𝑝 is the vertex color critical graph,  1 ≤ 𝛾𝑀𝜒(𝐺) ≤

𝑝.  The complement of 𝐾𝑝 is 𝐺̅ = 𝐾𝑝̅̅̅̅ .  By  the result (1.2)(ii), the majority dom-chromatic 

number is 𝛾𝑀𝜒(𝐺̅) = ⌈
𝑝

2
⌉. And the lower bound attains for 𝐺̅ = 𝐾2̅̅ ̅. Hence the result. 

Proposition:  3.3  Let  𝐺 = 𝐾𝑚,𝑛, 𝑚 ≤ 𝑛 𝑎𝑛𝑑 𝑚, 𝑛 ≥ 3 be a complete bipartite graph. 

Then majority dom-chromatic number of a complement  𝐺̅ is  𝛾𝑀𝜒(𝐺̅) ≥ ⌈
𝑝

2
⌉ and 𝛾𝑀𝜒(𝐺) <

𝛾𝑀𝜒(𝐺̅).  

Proof:  Let 𝐺̅ =  𝐾𝑚 ∪ 𝐾𝑛 be the complement of 𝐺 where 𝐾𝑚 and  𝐾𝑛 both are complete 

graphs with 𝑚 and 𝑛 vertices. 

Case: (i)   Suppose 𝑚 = 𝑛 , 𝑛 + 1, 𝑛 + 2. Since 𝐾𝑚 and  𝐾𝑛 are vertex color critical and 

𝑝 =  𝑚 + 𝑛 , 𝛾𝑀𝜒(𝐺̅) = 𝑛  𝑜𝑟 𝑛 + 1  and   𝛾𝑀𝜒(𝐺̅) = 𝑛 + 2. Hence 𝛾𝑀𝜒(𝐺̅) = 𝑚𝑎𝑥{𝑚, 𝑛}. 
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Case: (ii)   Let 𝑚 < 𝑛 and 𝑛 ≥ 𝑚 + 3. Since 𝐾𝑚 and  𝐾𝑛 are vertex color critical and 𝑝 =

 𝑚 + 𝑛 ,𝑚 < ⌈
𝑝

2
⌉  𝑎𝑛𝑑 𝑛 > ⌈

𝑝

2
⌉. Hence  𝛾𝑀𝜒(𝐺̅) = 𝑚𝑎𝑥{𝑚, 𝑛}. If  𝐺 = 𝐾𝑚,𝑛 , 𝑚 ≤ 𝑛, then 

by the result(1.2) (v), 𝛾𝑀𝜒(𝐺) = 2.  By case (i), 𝛾𝑀𝜒(𝐺̅) = 𝑛 𝑜𝑟 𝑛 + 1 = ⌈
𝑝

2
⌉ and 

𝛾𝑀𝜒(𝐺̅) = 𝑛 + 2 > ⌈
𝑝

2
⌉. By case (ii), 𝛾𝑀𝜒(𝐺̅) = 𝑛 , if 𝑚 < 𝑛. It implies that 𝛾𝑀𝜒(𝐺̅) > ⌈

𝑝

2
⌉. 

Hence, 𝛾𝑀𝜒(𝐺) < 𝛾𝑀𝜒(𝐺̅),  if  𝑚,𝑛 ≥ 3. 

Proposition: 3.4    Let 𝐺 be a bipartite graph with 𝑑𝑖𝑎𝑚(𝐺) ≥ 6. Then 𝛾𝑀𝜒(𝐺̅)  ≥

𝛾𝑀(𝐺̅) + 1, if 𝐺̅ is the complement of 𝐺 and 𝛾𝑀(𝐺̅) is the majority dominating number of 

𝐺̅. 

Proof :  If  𝑑𝑖𝑎𝑚(𝐺) ≥ 6 , then 𝐺 = 𝑃𝑝, 𝑝 ≥ 7. The complement 𝐺̅ contains two vertices 

with degree 𝑑̅( 𝑢𝑖) = 𝑝 − 2 , 𝑖 = 1, 𝑝 and 𝑑̅( 𝑣𝑖) = 𝑝 − 3 , 𝑖 = 2,… , 𝑝 −1. It gives that 

there are atleast two vertices with degree 𝑑̅( 𝑢𝑖) ≥ ⌈
𝑝

2
⌉ − 1 and the majority dominating 

number of 𝐺̅ is  𝛾𝑀(𝐺̅) = 1. Since  𝐺̅ contains a triangle, 𝜒(𝐺̅ ) = 3 and 𝛾𝑀𝜒(𝐺̅) ≥ 3. 

Hence,  𝛾𝑀𝜒(𝐺̅)  ≥ 𝛾𝑀(𝐺̅) + 1. 

4. Bounds of 𝜸𝑴𝝌(𝑮) 

Proposition : 4.1    If  𝐺 is a vertex color critical and a non-trivial connected graph with 

𝑝 ≥ 2 then 2 ≤ 𝛾𝑀𝜒(𝐺) ≤ 𝑝. These bounds are sharp. 

Proof :  Since 𝐺 is connected and non-trivial graph with 𝑝 ≥ 2, 𝜒(𝐺) ≥ 2 and 𝛾𝑀𝜒(𝐺) ≥

2. Also since 𝐺 is a vertex color critical graph , by known result (1.2)(iv), 𝛾𝑀𝜒(𝐺) = 𝑝. 

Hence 2 ≤ 𝛾𝑀𝜒(𝐺) ≤ 𝑝, 𝑝 ≥ 2. When 𝐺 = 𝐾2 and 𝐺 = 𝐾𝑝, the lower and upper bounds 

are sharp.  

Proposition: 4.2   Let 𝐺  be a connected bipartite graph with 𝑝 vertices. Then 𝛾𝑀𝜒(𝐺) = 𝑝 

if and only if 𝐺 = 𝐾𝑝 , 𝑝 = 2. 

Proof:   Let 𝐺  be a connected bipartite graph with  𝑝 vertices. Since  𝛾𝑀𝜒(𝐺) = 𝑝, then 

the graph must be a vertex color critical. The only connected bipartite vertex color critical 

graph is 𝐾2. It implies that 𝐺 = 𝐾2. The converse is obvious. 

Proposition: 4.3 If 𝐺 be a graph of 𝑑𝑖𝑎𝑚(𝐺) = 3 then 𝛾𝑀𝜒(𝐺) = 2 and 𝛾𝑀𝜒(𝐺) =

𝛾𝑀(𝐺) + 1 . 

Proof:  Let 𝐺 be a connected graph and 𝑑𝑖𝑎𝑚(𝐺) = 3. Then the graph 𝐺 has the structure 

with two central vertices 𝑢 𝑎𝑛𝑑 𝑣 which are adjacent with some pendants. Then 𝐺 = 𝑃4 

and   𝐺 = 𝐷𝑟,𝑠 , 𝑟 ≤ 𝑠 where 𝑟 and 𝑠 number of pendants at 𝑢 and 𝑣 respectively. Then by 

result ((i) 1.2), 𝛾𝑀(𝐺) = |{𝑣}| = 1. 
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Case: (i)  If 𝑠 = 𝑟, 𝑟 + 1, 𝑟 + 2  then both 𝑢 and 𝑣 are adjacent to some number of pendant 

vertices. Since 𝜒(𝐺) = 2, 𝑆 = {𝑢, 𝑣} be the majority dom-chromatic set of 𝐺 and 

𝛾𝑀𝜒(𝐺) = |𝑆| = 2. Hence  𝛾𝑀𝜒(𝐺) = 𝛾𝑀(𝐺) + 1 . 

Case: (ii)  If  𝑟 < 𝑠 and 𝑠 ≥ 𝑟 + 3.  Choose 𝑆 = {𝑢, 𝑣} , where 𝑢 and  𝑣 are central vertices 

of 𝐺 . Then  |𝑁[𝑆]| = 𝑑(𝑢) + 𝑑(𝑣) =  𝑟 + 𝑠 + 2 = 𝑝 > ⌈
𝑝

2
⌉. 

Therefore,  𝑆 is majority dominating set of 𝐺. Also 𝜒(𝐺) = 2 = 𝜒(< 𝑆 >). 

Hence  𝑆 will be the majority dom-chromatic set of 𝐺 and 𝛾𝑀𝜒(𝐺) = |𝑆| = 2. Since 

𝛾𝑀(𝐺) = 1, 𝛾𝑀𝜒(𝐺) = 𝛾𝑀(𝐺) + 1 . This result is true for  𝐺 =  𝑃4. 

Proposition: 4.4 Let  𝐺 be a bipartite graph of 𝑑𝑖𝑎𝑚(𝐺) ≤ 5. Then 𝛾𝑀𝜒(𝐺) = 2 and 

𝛾𝑀𝜒(𝐺) = 𝛾𝑀(𝐺) + 1 . 

Proof:  Since the graph 𝐺 is bipartite, the graph structures are 𝑃𝑝 , 𝑝 ≤ 6 , 𝐾1,𝑛 , 𝐶4 and 𝐾2. 

Case : (i)  Suppose 𝑑𝑖𝑎𝑚(𝐺) = 1, then the bipartite graph 𝐺 becomes only 𝐾2 . By result 

[5], 𝛾𝑀(𝐺) = 1 and 𝜒(𝐺) = 2 and by result (1.2)(iv), 𝛾𝑀𝜒(𝐺) = 2 . Hence  𝛾𝑀𝜒(𝐺) =

𝛾𝑀(𝐺) + 1 . 

case: (ii)  If  𝑑𝑖𝑎𝑚(𝐺) = 2, then the graph structures be 𝐺 = 𝑃3 or 𝐾1,𝑛. By the result 

(1.2)(i) , 𝛾𝑀(𝐺) = 1. Also by result (1.2)(vii), 𝛾𝑀𝜒(𝐺) = 2. In  both graphs, 𝛾𝑀𝜒(𝐺) =

𝛾𝑀(𝐺) + 1 . 

case : (iii)  Let 𝑑𝑖𝑎𝑚(𝐺) = 3. Then the graph becomes  𝐺 = 𝑃4 or and 𝐷𝑟,𝑠 . By Proposition 

(4.3), the result is true. 

case : (iv)  when 𝑑𝑖𝑎𝑚(𝐺) = 4 𝑎𝑛𝑑 5 , the bipartite graph is 𝑃𝑝 , 𝑝 ≤ 6. By the result 

(1.2)(i) , 𝛾𝑀(𝐺) = 1. Since 𝜒(𝐺) = 2 , the set {𝑣2, 𝑣3}  be the majority dom-chromatic set 

of 𝐺, where 𝑣2, 𝑣3 ∈ 𝑉(𝑃5). Hence 𝛾𝑀𝜒(𝐺) = 2 = 𝛾𝑀(𝐺) + 1.  

Hence, for all cases, 𝛾𝑀𝜒(𝐺) = 𝛾𝑀(𝐺) + 1. 

Proposition: 4.5  Let  𝐺 be a bipartite graph with 𝑑𝑖𝑎𝑚(𝐺) ≥ 6. Then  

(i) 𝛾𝑀𝜒(𝐺) = 𝛾𝑀(𝐺) , if  𝑝 = 1,2 (𝑚𝑜𝑑 6 ) 

(ii) 𝛾𝑀𝜒(𝐺) = 𝛾𝑀(𝐺) + 1 , if  𝑝 = 0,3,4,5 (𝑚𝑜𝑑 6 ). 

Proof:  If the bipartite graph 𝐺 with 𝑑𝑖𝑎𝑚(𝐺) ≥ 6, then 𝐺 = 𝑃𝑝 , a path with 𝑝 > 6. By 

the result (1.2)(i), 𝛾𝑀(𝐺) = ⌈
𝑝

6
⌉, for all 𝑝 ≥ 7 and by the result(1.2)(vii), 
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 𝛾𝑀𝜒(𝐺) = {
⌈
𝑝

6
⌉ =  𝛾𝑀(𝐺)    , 𝑖𝑓 𝑝 ≡ 1,2 (𝑚𝑜𝑑 6)                   

⌈
𝑝

6
⌉ + 1 = 𝛾𝑀(𝐺) + 1 , 𝑖𝑓  𝑝 ≡ 0,3,4,5 (𝑚𝑜𝑑 6).

 

      Hence the result. 

Proposition: 4.6  Let  𝐺 be a  3-regular bipartite graph with 𝑝 vertices. Then  

 𝛾𝑀𝜒(𝐺) = {
⌈
𝑝

8
⌉         , 𝑖𝑓 𝑝 ≡ 2, 4 (𝑚𝑜𝑑 8)

⌈
𝑝

8
⌉ + 1  , 𝑖𝑓 𝑝 ≡ 0, 6 (𝑚𝑜𝑑 8).

  

Proof :  Let 𝑉1(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑝
2
} and  𝑉2(𝐺) = {𝑢1, 𝑢2, … , 𝑢𝑝

2
} with 𝑝 = 2𝑚.  

Case: (i)  Let 𝑝 ≡ 2, 4 (𝑚𝑜𝑑 8). Let 𝑆 = {𝑣1, 𝑢1, 𝑣𝑗 , 𝑣𝑗+1, … , 𝑣𝑡} be the subset of 𝐺 with 

|𝑆| = 𝑡 = 𝛾𝑀𝜒(𝐺) such that 𝑑(𝑣1, 𝑢1) = 1 and 𝑑(𝑣𝑖 , 𝑢𝑗) ≥ 4. Then 

|𝑁[𝑆]| = |𝑁[𝑣1] + 𝑁[𝑢1]| +∑𝑑(𝑢𝑗) − (𝑡 − 2) = 6 + 4(𝑡 − 2) = 4𝑡 − 2

𝑡−2

𝑗=1

 

 ≥ ⌈
𝑝

2
⌉. Let 𝑝 = 8𝑟 + 2. Then |𝑁[𝑆]| = 4𝑡 − 2 = 4 ⌈

𝑝

8
⌉ − 2 = 4 (

8𝑟+2

8
) − 2 =

𝑝

2
− 2 +

2 > ⌈
𝑝

2
⌉. Let 𝑝 = 8𝑟 + 4. Then |𝑁[𝑆]| = 4𝑡 − 2 = 4 ⌈

𝑝

8
⌉  − 2 = 4 (

8𝑟+4

8
) − 2 =

𝑝

2
− 2 +

2 > ⌈
𝑝

2
⌉. Since 𝑑(𝑣1, 𝑢1) = 1, the induced subgraph < 𝑆 > contains 𝐾2 and  𝜒(< 𝑆 >) =

2 = 𝜒(𝐺). Thus 𝑆 is a majority dom-chromatic set of 𝐺 and 𝛾𝑀𝜒(𝐺) ≤ |𝑆| = ⌈
𝑝

8
⌉.     

     (1) 

 Suppose that 𝑆 = {𝑣1, 𝑢1, 𝑣𝑗 , … , 𝑣𝑡} with |𝑆| = 𝑡 = 𝛾𝑀𝜒(𝐺) such that 𝑑(𝑣1, 𝑢1) = 1, 

 𝑑(𝑣𝑖 , 𝑣𝑗) ≥ 4 and  |𝑁[𝑆]| ≥ ⌈
𝑝

2
⌉. Since 𝑆 contains the induced subgraph  𝐾2  and 

𝜒(< 𝑆 >) = 2 = 𝜒(𝐺). Therefore |𝑁[𝑆]| ≤ 4𝑡 = 4𝛾𝑀𝜒(𝐺). Since |𝑁[𝑆]| ≥ ⌈
𝑝

2
⌉,  ⌈

𝑝

2
⌉ ≤

4𝛾𝑀𝜒(𝐺). It implies that 𝛾𝑀𝜒(𝐺) ≥
1

4
⌈
𝑝

2
⌉.  

Hence 𝛾𝑀𝜒(𝐺) ≥ ⌈
𝑝

8
⌉.               (2) 

Combining (1) and (2) , 𝛾𝑀𝜒(𝐺) = ⌈
𝑝

8
⌉, if 𝑝 ≡ 2, 4 (𝑚𝑜𝑑 8). 

Case : (ii)  Let  𝑝 ≡ 0, 6 (𝑚𝑜𝑑 8).  Let 𝑆1 = {𝑣1, 𝑢1, 𝑣𝑗… , 𝑣𝑡} be the subset of 𝑉(𝐺) with 

|𝑆1| = 𝑡1 = ⌈
𝑝

8
⌉ + 1 = 𝛾𝑀𝜒(𝐺) and 𝜒(< 𝑆1 >) = 2.  Let 𝑝 = 8𝑟. Then |𝑁[𝑆1]| = 4𝑡 −
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2 = 4 (⌈
𝑝

8
⌉ + 1 ) − 2 = 4 (

8𝑟

8
+ 1) − 2 = 4 ⌈

𝑝

8
⌉ + 2 >

𝑝

2
+ 2 > ⌈

𝑝

2
⌉ . Let 𝑝 = 8𝑟 + 6. Then 

|𝑁[𝑆1]| = 4𝑡1 − 2 = 4(⌈
𝑝

8
⌉ + 1 ) − 2 = 4(

8𝑟+6

8
+ 1) − 2 = 4 ⌈

𝑝

8
⌉ + 2 >

𝑝

2
+ 2 > ⌈

𝑝

2
⌉. 

Hence |𝑁[𝑆1]| ≥ ⌈
𝑝

2
⌉. Therefore 𝑆1is a majority dom-chromatic set of 𝐺 and 𝛾𝑀𝜒(𝐺) ≤

|𝑆1| = 𝑡1 = ⌈
𝑝

8
⌉ + 1.   Applying the same argument as in case (i), 𝛾𝑀𝜒(𝐺) ≥ ⌈

𝑝

8
⌉ + 1.  

Hence 𝛾𝑀𝜒(𝐺) = ⌈
𝑝

8
⌉ + 1 , if 𝑝 ≡ 0, 6 (𝑚𝑜𝑑 8). 

Proposition: 4.6  If the graph 𝐺 is a bipartite with  𝑑𝑖𝑎𝑚(𝐺) ≤ 2  then 𝛾𝑀𝜒(𝐺) ≤ 𝑝 −

∆(𝐺) + 1 and  𝛾𝑀𝜒(𝐺) = 𝑝 − ∆(𝐺) + 1 if and only if 𝐺 = 𝐾2 , 𝑃3 and 𝐾1,𝑝−1 , 𝑝 ≥ 2. 

Proof:  Let 𝐺 be a bipartite graph with  𝑑𝑖𝑎𝑚(𝐺) ≤ 2.  If ∆(𝐺) = 1, the graph 𝐺 becomes 

𝐾2. By the result (), 𝛾𝑀𝜒(𝐺) = 2 = 𝑝 − ∆(𝐺) + 1 , if 𝐺 = 𝐾2 .  If ∆(𝐺) = 2, the graph 

structures becomes  𝑃𝑝 , a path and 𝐾2,2 . Since 𝑑𝑖𝑎𝑚(𝐺) ≤ 2 , if 𝐺 = 𝑃3 , by the result 

(1.2)(vii), 𝛾𝑀𝜒(𝐺) = 2 = 𝑝 − ∆(𝐺) + 1 and 𝛾𝑀𝜒(𝐾2,2 ) = 2 < 𝑝 − ∆(𝐺) + 1. Suppose 

∆(𝐺) = 3. Then 𝐺 = 𝐾3,3 . By the result (1.2)(v), 𝛾𝑀𝜒(𝐾3,3 ) = 2 < 𝑝 − ∆(𝐺) + 1. If 

∆(𝐺) ≥ 4 then the graph 𝐺 becomes 𝐾𝑚,𝑛 , 𝑚 = 𝑛 ≥ 4. By the result (1.2)(v), 𝛾𝑀𝜒(𝐺 ) =

2 < 𝑝 − ∆(𝐺) + 1. This is true for ∆(𝐺) = 1, 2, 3, …, ( 𝑝 − 2). Suppose ∆(𝐺) = 𝑝 − 1. 

Then the only bipartite graph 𝐺 = 𝐾1,𝑝−1 .  By the result (1.2)(ix), 𝛾𝑀𝜒(𝐺) = 2 = 𝑝 −

∆(𝐺) + 1. Hence from the above cases, 𝛾𝑀𝜒(𝐺) ≤ 𝑝 − ∆(𝐺) + 1. Also from the above 

cases, 𝛾𝑀𝜒(𝐺) = 𝑝 − ∆(𝐺) + 1 is true if and only if 𝐺 = 𝐾2 , 𝑃3 and 𝐾1,𝑝−1 , 𝑝 ≥ 2. 

Proposition: 4.7  Let 𝐺 be a bipartite graph with  𝑑𝑖𝑎𝑚(𝐺) = 3.  Then 𝛾𝑀𝜒(𝐺) ≤ 𝑝 −

∆(𝐺). Also 𝛾𝑀𝜒(𝐺) = 𝑝 − ∆(𝐺) if and only if 𝐺 = 𝑃4 and 𝐷𝑟,𝑠  , 𝑟 = 1 and 𝑠 = 𝑝 − 3. 

Proof:  Let 𝐺 be a bipartite graph with  𝑑𝑖𝑎𝑚(𝐺) = 3. By the result (1.2)(x), 𝛾𝜒(𝐺) ≤ 𝑝 −

∆(𝐺). Since 𝛾𝑀𝜒(𝐺) ≤ 𝛾𝜒(𝐺), 𝛾𝑀𝜒(𝐺) ≤ 𝛾𝜒(𝐺) ≤ 𝑝 − ∆(𝐺). Hence 𝛾𝑀𝜒(𝐺) ≤ 𝑝 −

∆(𝐺). 

 Let 𝛾𝑀𝜒(𝐺) = 𝑝 − ∆(𝐺).                   (1) 

Case : (i)  Since 𝑑𝑖𝑎𝑚(𝐺) = 3, the graph 𝐺 has a dominating edge 𝑢𝑣 with some pendants 

at 𝑢 and 𝑣. Let 𝑉(𝐺) = {𝑢, 𝑣, 𝑢1, … , 𝑢𝑟 , 𝑣1, 𝑣2, … , 𝑣𝑠} where 𝑢𝑖 , 𝑖 = 1,… , 𝑟 𝑎𝑛𝑑 𝑣𝑗 , 𝑗 ==

1,… , 𝑠 are pendants with 𝑟 ≤ 𝑝 − 3 and  𝑠 ≥ 1. Clearly , since 𝐺 is  bipartite, 𝜒(𝐺) = 2. 

By the assumption (1), 𝑆 = {𝑢, 𝑣, 𝑣1, … , 𝑢𝑡} is a majority dom-chromatic set with |𝑆| =

𝑝 − ∆(𝐺) = 𝑡. 

Subcase: (i)  Let 𝑑(𝑢) = 𝑝 − 2 and 𝑑(𝑣) = 2. Since 𝐺 has a dominating edge 𝑒 = 𝑢𝑣, 

𝛾𝑀𝜒(𝐺) = |𝑆| = 2.  By the assumption (1),  𝛾𝑀𝜒(𝐺) = 𝑝 − ∆(𝐺). It implies that 2 = 𝑝 −
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𝑑(𝑢) ⟹ 2 = 𝑝 − (𝑝 − 2). It gives the structure of the graph 𝐺 with 𝑑(𝑢) = 𝑝 − 2, 𝑑(𝑣) =

2 and the graph is 𝐺 = 𝐷𝑟,𝑠 , 𝑟 < 𝑠 with 𝑟 = 1 and 𝑠 = 𝑝 − 3. 

Subcase: (ii)   Let 𝑑(𝑢) ≤ 𝑝 − 3 and 𝑑(𝑣) ≥ 3. The majority dom-chromatic set for the 

graph 𝐺 is 𝑆 = {𝑢, 𝑣}. It implies that 𝛾𝑀𝜒(𝐺) = |𝑆| = 2. By the assumption (1), 𝛾𝑀𝜒(𝐺) =

𝑝 − ∆(𝐺) = 𝑝 − 𝑑(𝑢) = 𝑝 − (𝑝 − 3) = 3. Hence,  𝛾𝑀𝜒(𝐺) < 𝑝 − ∆(𝐺). 

Subcase: (iii)   If 𝑑(𝑢) = 𝑝 − 2 and 𝑑(𝑣) = 𝑝 − 2 then the majority dom-chromatic set 

becomes 𝑆 = {𝑢, 𝑣}. It implies that 𝛾𝑀𝜒(𝐺) = |𝑆| = 2. By  the assumption (1),  𝛾𝑀𝜒(𝐺) =

𝑝 − ∆(𝐺) = 𝑝 − 𝑑(𝑢) ⟹ 2 = 𝑝 − (𝑝 − 2). Since  𝑑(𝑢) = 𝑝 − 2 and 𝑑(𝑣) = 𝑝 − 2 , 𝑟 =

𝑠 = 1 ⟹ 𝑝 = 𝑟 + 𝑠 + 2 = 4. 

Hence the graph 𝐺 with 𝑝 = 4 vertices and 𝑑𝑖𝑎𝑚(𝐺) = 3 is 𝑃4 . 

Case: (ii) Suppose 𝐺 has no dominating edge 𝑒 = 𝑢𝑣. Then the graph 𝐺 is a wounded 

spider with 𝑑𝑖𝑎𝑚(𝐺) = 3 and the graph contains a vertex 𝑢 with 𝑑(𝑢) =
𝑝

2
  and 𝑑(𝑢𝑖) ≤

2, 𝑢𝑖 ∈ (𝑉(𝐺) − {𝑢}). Hence 𝑆 = {𝑢, 𝑢1} be the majority dom-chromatic set of 𝐺 with 

𝑑(𝑢1) = 2 , where 𝑑(𝑢, 𝑢1) = 1 and 𝛾𝑀𝜒(𝐺) = |𝑆| = 2. By the assumption (1), 𝛾𝑀𝜒(𝐺) =

𝑝 − ∆(𝐺) = 𝑝 −
𝑝

2
=

𝑝

2
 . Hence   𝛾𝑀𝜒(𝐺) < 𝑝 − ∆(𝐺). 

Thus, 𝛾𝑀𝜒(𝐺) = 𝑝 − ∆(𝐺) if and only if 𝐺 = 𝑃4 and 𝐷𝑟,𝑠, 𝑟 = 1 and 𝑠 = 𝑝 − 3. 

5. Conclusion    

    In this paper, we studied majority dom-chromatic number for a bipartite graph. The 

characterisation theorems on 𝛾𝑀𝜒(𝐺) for bipartite graphs are established and its 

relationship with other domination parameters are discussed. Some results of a 

disconnected graph and the majority dom-chromatic number for the complement 𝐺̅ of the 

graph 𝐺 are investigated. 
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