

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Wheel Chair with Attachment of B - Type Oxygen Cylinder for Copd Patient

Dr. K. SENTHIL KUMAR, M.E., Phd¹., Mr. J. JOHN DAVID, DAE²., Mr. R. S. KISHORE, DAE³., Mr. P. SANJAY, DAE⁴

¹PROFESSOR/HEAD OF DEPARTMENT, AUTOMOBILE DEPARTMENT- SNS COLLEGE OF TECHNOLOGY ^{2,3,4}STUDENTS, AUTOMOBILE DEPARTMENT- SNS COLLEGE OF TECHNOLOGY

Abstract:

The Unmanned Wheel Chair with Attachment of B - type Oxygen cylinder accompanied by foldable specification, this project is useful for Medical field. We implement IOT device and fully automatic operation gadget. It Utilitarian to Hospitals and public places and also Tourist spots. Also Oversee the Oxygen level and Oxygen flow uninterrupted by IoT device. Programming for heedful to the Attender when Oxygen level comes low or any problems in Oxygen flow. Using Safety Strap and Decelerate mechanism (Brake) for patient Safety. Manipulate the sensors for monitoring Oxygen cylinder and Wheel Chair. Depiction to fix the Oxygen cylinder vertically with wheel chair for Weight Balancing. Our project design is easily Handling and operated by single person.

CHAPTER 1

INTRODUCTION

People with COPD are at increased risk of developing heart disease, lung cancer and a variety of other conditions. Symptoms include breathing difficulty, cough, mucus (sputum) production and wheezing. It's typically caused by long-term exposure to irritating gases or particulate matter, most often from cigarette smoke. A wheelchair is a chair with wheels, used when walking is difficult or impossible due to illness, injury, problems related to old age, or disability. Wheelchairs come in a wide variety of formats to meet the specific needs of their users. They may include specialized seating adaptions, individualized controls, and may be specific to particular activities. An oxygen tank is an oxygen storage vessel, which is either held under pressure in gas cylinders, or as liquid oxygen in a cryogenic storage tank. Breathing oxygen is delivered from the storage tank to users by use of the following methods: oxygen mask, nasal cannula, full face diving mask, diving helmet, demand valve, oxygen rebreather, built in breathing system (BIBS), oxygen tent, and hyperbaric oxygen chamber. The Internet of things (IoT) describes physical objects (or groups of such objects) with sensors, processing ability, software, and other technologies that connect and exchange data with other devices and systems over the Internet or other communications network. An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates with a reversed flow of power, converting mechanical energy into electrical energy.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

1.1 COPD PATIENT

Chronic obstructive pulmonary disease (COPD) is a chronic disease that is often preventable and treatable. If you or a loved one has COPD, there are steps to take to cope with the lifestyle changes this disease brings. Learning about COPD and its treatment can help you feel more in control. With COPD, the airways in your lungs become inflamed and thicken, and the tissue where oxygen is exchanged is destroyed. The flow of air in and out of your lungs decreases. When that happens, less oxygen gets into your body tissues, and it becomes harder to get rid of the waste gas carbon dioxide. As the disease gets worse, shortness of breath makes it harder to remain active. COPD is the third leading cause of death by disease in the United States. More than 16.4 million people have been diagnosed with COPD, but millions more may have the disease without even knowing it. COPD causes serious long-term disability and early death.

Smoking is by far recognized to be the most important risk factor for development of COPD. Smoking behaviors in India are also peculiar with a large number of people using nonconventional form of tobacco in hookah, bidi, or chillum. Traditionally these forms of tobacco have been believed to be innocuous because of a variety of reasons like passage of smoke through water in case of hookah.

Apart from the issues in reliable epidemiology, peculiar problems remain in the diagnosis, management and follow-up of Indian COPD patients. Lack of awareness of the disease, its symptoms or implications contribute significantly in preventing people at risk from seeking help from their primary care physicians or eliminating risk factors. Even when a person with symptoms does present to general practitioners, levels of under-diagnosis are high. Spirometries are not routine and diagnosis is largely symptom based. Prescription of inhalational devices is attributed to the 'terminal stage' of the disease and such devices carry a virtual stigma in rural settings. Additionally, a good majority gets treated by local 'hakims', practitioners of alternative medicine and faith-healers; who not infrequently dispense harmful and toxic agents that have at times included steroids.

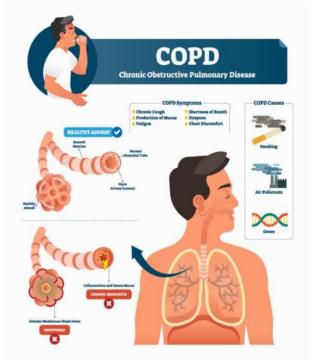


Fig.1.1.1 Copd Pateint Volume 5, Issue 2, March-April 2023

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Fig.1.2.1 Copd Pateint With

CHAPTER 2

2.1 OUT COME FOR LITERATURE SURVEY

1. The motivation of this research work is to design an automated wheelchair for the physically disabled people of both developed and developing countries. This design also facilitates the users to adjust the wheelchair seat vertically according to their needs. Though many designs of automatic wheelchairs are published in different research works, those are not so available in present market that common people can buy and use it for their personal purpose. Beside this, the high price restricts most of the disabled people of developing countries like Bangladesh from using the automated wheelchair for their maneuvering. For this reason, A microcontroller based embedded system is designed to control the wheelchair motion comfortably along with the vertical movements of the seat. On the contrary, the price of the wheelchair will not exceed the economic range of general people. The feasibility of this design is also verified through simulation works.

2. As the usage of the Android smart phones has been considerably increasing, a lot of applications have been developed for the benefits of mobile users. In the past, many applications have been designed aiming to help physically disabled persons. This paper presents an android application which providers several options for controlling the movement of wheelchairs effectively. The proposed application enables People with Disabilities (PWDs) to operate the wheel chair with minimum effort. Apart from voice commands, the proposed application detects and measures the tilt change, and moves the wheelchair based on the degree of the tilt. It also provides a soft joystick as in mobile games to ease the operation of the wheelchairs. Furthermore, sensors that are fixed in the wheelchair can detect and avoid obstacles when the chair is on the move. Hence, it ensures the safety while using the wheelchairs. The

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

proposed application will help both physically challenged persons and elders to operate the wheelchairs more comfortably.

3. A gear-less drive for a wheel chair based on brushless DC motor is presented. The motor has external rotor equipped with neodymium-based permanent magnets and the inner stator is attached to the wheel axle. The performance of the motor is determined using three-dimensional FEM modeling. They are validated by the experimental measurements carried out on the motor prototype.

4. The purpose of an automatic wheelchair (AWC) is to assist and support paraplegics. The proposed chair is particularly suited for people with a higher level of impairment, such as quadriplegics who are unable to move any of their body parts except their head due to their advanced age or infirmity. We created a microcontroller-based wheelchair that moves with the patient's head motion. Electronic and mechanical components make up the system. An accelerometer monitors the patient's head nodes in all four dimensions for head motion recognition. The paper goes over the Bluetooth technology on the wheelchair, as well as the accelerometer that powers the motors and controls the chair's motions inside the house. Our wheelchair is designed with the patient's health in mind as well as the device's maneuverability. The pulse rate and blood oxygen levels are monitored by sensors using an Internet of Things approach. The ultrasonic sensors aid with obstacle recognition, making it easier to move the chair in a certain direction. By observing the directions of head movement along the x and y axes, the implanted accelerometer aids the chair in determining which movement the patient wishes to make. The signal is then sent to the microcontroller. The wheelchair is controlled by a microprocessor-based on the direction of acceleration, and it moves in LEFT, RIGHT, FORWARD, and BACKWARD with the help of viper motors.

5. The wide spread prevailing loss of limbs in everyday situation because of wars, mishaps, accidents, age and medical issues. The main aim of the project is to automate the Control of Wheelchair movements with all directions and producing the emergency alert as well. Elderly peoples can't walk; we have to deal with these peoples each day. Thus, we are utilizing the wheelchair for transporting these peoples. It is difficult for the incapacitated and elderly individuals to move a mechanical wheelchair, which huge numbers of them typically use for velocity. Subsequently there is a requirement for outlining a wheelchair that is clever and gives simple transportation to the physicallychallenged peoples as well as elderly peoples. In this specific circumstance, an endeavor has been made to propose an idea controlled wheelchair, which utilizes the caught signals from the client's activity and procedures it to control the wheelchair. The triggers which are caught are converted into movement triggers by the microcontroller which thus moves the wheelchair. For all the entire system properly supports the elderly people to supplement their physical illness and provides an wonderful solution to live the independent life without other's physical needs for moving from one place to other place in respective places.

2.2 PROBLEM FORMATION

DESIGN THINKING

- **O** Empathize
- **O** Define
- **O** Ideate
- **O** Prototype And Test \succ Evolve

2.2.1 EMPATHIZE

A chronic disease that is often preventable and treatable. If you or a loved one has Breathing diseases, there are steps to take to cope with the lifestyle changes this disease brings. Learning about Breathing diseases and its treatment can help you feel more in control.

With Breathing diseases, the airways in your lungs become inflamed and thicken, and the tissue where oxygen is exchanged is destroyed. The flow of air in and out of your lungs decreases.

When that happens, less oxygen gets into your body tissues, and it becomes harder to get rid of the waste gas carbon dioxide. As the disease gets worse, shortness of breath makes it harder to remain active.

Breathing diseases is the third leading cause of death by disease in the United States.

More than 16.4 million people have been d iagnosed with breathing diseases, but millions more may have the disease without even

knowing it.

COPD causes serious long-term disability and early death.

2.2.2 DEFINE

- 1. Wheelchairs are used by people for whom walking is difficult or impossible due to illness, injury, or disability. People who have difficulty sitting and walking often make use of a wheel bench.
- 2. COPD is characterized by long-term respiratory symptoms and airflow limitation. That Patient is moving with the help of wheel chair attached oxygen cylinder.
- 3. Now a day the oxygen cylinder is not attached with the wheel chair, it will placed separately in a trolly.
- 4. The wheelchair is one of the most commonly used assistive devices to promote mobility and enhance quality of life for people who have difficulties in walking.
- 5. Wheelchair mobility opens up opportunities for wheelchair users to study, work, engage in social activities and access services such as healthcare.
- 6. In addition to providing mobility, an appropriate wheelchair benefits the physical health and quality of life of the users by helping in reducing common problems such as pressure sores, progression of deformities and improve respiration and digestion.

2.2.3 IDEATE

- i. The Unmanned Wheel Chair with Attachment of Oxygen cylinder accompanied by foldable specification, this project is useful for Medical field.
- ii. We implement IOT device and fully automatic operation gadget. It Utilitarian to Hospitals and public places and also Tourist spots.
- iii. Also Oversee the Oxygen level and Oxygen flow uninterrupted by IoT device.
- iv. Programming for heedful to the Attender when Oxygen level comes low or any problems in Oxygen flow. Using Safety Strap and Decelerate mechanism (Brake) for patient Safety.
- v. Manipulate the sensors for monitoring Oxygen cylinder and Wheel Chair.

- vi. We Depiction to fix the Oxygen cylinder incline with wheel chair for Weight Balancing.
- vii. Our project design is easily Handling and operated by single person.

2.2.4 PROTOTYPE AND TEST

Fig 2.2.4.(i) Side View

Fig 2.2.4.(ii) Front View

2.2.5 EVOLVE

2.2.5.1MODEL GENERATION

- i. Specify jobname (this step is optional but recommended).
- ii. Enter Preprocessor.
- iii. Define element types and options.
- iv. Define real constant for the element types (if the element type(s) require real constants).
- v. Define material properties.

- vi. Create the model vii. Build solid model (using either top-down or bottom-up approach).
- viii. Define meshing controls. ix. Create the mesh.
- x. Exit the Preprocessor.

2.2.5.2 BOUNDARY/INITIAL CONDITIONS AND SOLUTION

- i. Enterolution processor.
- ii. Define analysis type and analysis options.
- iii. Specify boundary/initial conditions:
- iv. Degree of freedom constraints.
- v. Nodal force loads.

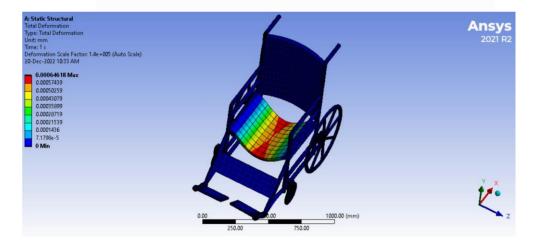


Fig 2.2.5.(I) Ansys Report

Evolve Source : <u>https://youtu.be/qi5nhVW1beQ</u>

CHAPTER 3

3.1 EXPERIMENTAL FACILITY

- **O** Wheelchair
- **O** Oxygen Cylinder (B Type)
- O Sensor
- Pneumatic Pump
- Electric Motor
- **O** Brake
- O Seat Belt
- **O** Regulator
- Flexible Hose
- Electric System
- **O** IOT Device
- Respire Device

3.1.1 WHEEL CHAIR

A wheelchair is defined as a chair fitted with wheels. The device comes in variations, allowing either manual propulsion by the seated occupant turning the rear wheels manually, or electric propulsion by motors. There are often handles behind the seat to allow for different individuals to push. Wheelchairs are used by people for whom walking is difficult or impossible due to illness, injury, or disability. People who have difficulty sitting and walking often make use of a wheel bench. A basic manual wheelchair incorporates a seat, foot rests and four wheels: two, caster wheels at the front and two large wheels at the back. The two larger wheels in the back usually have hand-rims; two metal or plastic circles approximately 3/4" thick. An electric-powered wheelchair, commonly called a "powerchair" is a wheelchair that additionally incorporates batteries and electric motors into the frame and that is controlled by either the user or an attendant, most commonly via a small joystick mounted on the armrest, or on the upper rear of the frame. The wheelchair is one of the most commonly used assistive devices to promote mobility and enhance quality of life for people who have difficulties in walking. Wheelchair mobility opens up opportunities for wheelchair users to study, work, engage in social activities and access services such as healthcare. In addition to providing mobility, an appropriate wheelchair benefits the physical health and quality of life of the users by helping in reducing common problems such as pressure sores, progression of deformities and improve respiration and digestion.

Fig 3.1.1 Wheel chair

3.1.2 OXYGEN CYLINDER (B - TYPE)

This is useful for patients requiring continuous intake of oxygen such as those with COPD, ILD and/or those requiring support in end of life conditions. At 2 lit/per min, it lasts for up to 10/12 hours after which it requires to be refilled. This is to be used under guidance of a consulting physician only. This can give a maximum of liters per minute. It is provided with required valve fittings, flow meter, humidifier bottle and spanner and stand with casters. It does not require any power to use so is ideal for situations as a back up where power supply is likely to be interrupted. It only an assisting device and is ideal for home use as it requires less space for storage and is very simple to use.

Oxygen Cylinder 10.2 Liter is also known as B type oxygen cylinder mostly used as Bedside Oxygen Cylinders in Hospital and Clinic and also with Oxygen Cylinder kit for home use (as medical

Oxygen cylinder and with Oxygen cylinder kit for home use). Clinical Purpose: A Container designed as a refillable cylinder used to hold compressed medical Oxygen (O2) under safe conditions at high pressure; O2 is used as an essential life support gas, for anesthesia, and for therapeutic purposes.

Fig 3.1.2 B-Type Oxygen Cylinder

3.1.3 SENSOR

As sensors, actuators, gadgets, appliances, or machines, that are programmed for certain applications and can transmit data over the internet or other networks.

- I. Flow Sensor
- II. Level Senso
- III. SOS (Emergency Switch)

3.1.3.(i) FLOW SENSOR

Flow sensors are devices used for measuring the flow rate or quantity of a moving liquid or gas. Flow sensors utilize both mechanical and electrical subsystems to measure changes in the fluid's physical attributes and calculate its flow. Contact flow sensors are used in applications where the liquid or gas measured is not expected to become clogged in the pipe when it comes into contact with the sensor's moving parts.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Fig 3.1.3(I) Flow Sensor

3.1.3(ii) LEVEL SENSOR

The amount of oxygen present inside the cylinder is measured by the pressure at the outlet nozzle. The pressure is measured using a high precision MEMS Pressure Sensor. The output of the MEMS pressure sensor is voltage of the order milli. An amplifier is used to amplify this milli volt signal.

The substance to be measured can be inside a container or can be in its natural form. The level measurement can be either continuous or point values. Continuous level sensors measure level within a specified range and determine the exact amount of substance in a certain place, while point-level sensors only indicate whether the substance is above or below the sensing point. Generally the latter detect levels that are excessively high or low.

Fig 3.1.3(ii) Level Sensor

3.1.3(iii) SOS (EMERGENCY SWITCH)

More and more vehicles now have an SOS button linked to eCall. The eCall system automatically notifies the emergency services if your vehicle is involved in an accident. You can also call the emergency services manually by pressing the SOS button.

The SOS button is a safety function that lets you send a pre-made custom SMS message or call the emergency services. Depending on whether you have a regular smartphone or a rugged phone, this feature is activated and used in different ways.

The SOS emergency panic button inside the Crises Control app, enables any employee to trigger an alert if they are in trouble, for example caught in a terror attack, or trapped during a crisis. Pressing the SOS emergency panic button alerts the rapid response team, deploying them to the location of the user who activated it. The SOS emergency panic button is available with the Crises Control Incident Manager module.

SOS Call Button

Fig 3.1.3 SOS

3.1.4 PNEUMATIC PUMP

A pneumatic cylinder is a mechanical device that utilizes compressed air to move a piston, and in the process, the compressed air energy produces linear motion. Depending on the operating principle, pneumatic cylinders can be classified into two types: single and doubleacting pneumatic cylinders. We shall discuss these two types in detail in the later sections. sensors are usually mounted on the pneumatic cylinders body to send position feedback to the piston in the case of automated machinery.

Like hydraulic cylinders, something forces a piston to move in the desired direction. The piston is a disc or cylinder, and the piston rod transfers the force it develops to the object to be moved Engineers sometimes prefer to use pneumatics because they are quieter, cleaner, and do not require large amounts of space for fluid storage Because the operating fluid is a gas, leakage from a pneumatic cylinder will not drip out and contaminate the surroundings, making pneumatics more desirable where cleanliness is a requirement. Pneumatic cylinders (sometimes known as air cylinders) are mechanical devices which use the power of compressed gas to produce a force in a reciprocating linear motion.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Fig.3.1.4 Pneumatic Pump

3.1.5 ELECTRIC MOTOR

An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates with a reversed flow of power, converting mechanical energy into electrical energy. Electric motors can be powered by direct current (DC) sources, such as from batteries, or rectifiers, or by alternating current (AC) sources, such as a power grid, inverters or electrical generators. Electric motors produce linear or rotary force (torque) intended to propel some external mechanism, such as a fan or an elevator.

An electric motor is generally designed for continuous rotation, or for linear movement over a significant distance compared to its size. Magnetic solenoids are also transducers that convert electrical power to mechanical motion, but can produce motion over only a limited distance. DC motors were the first form of motors widely used, as they could be powered from existing direct-current lighting power distribution systems. A DC motor's speed can be controlled over a wide range, using either a variable supply voltage or by changing the strength of current in its field windings.

Fig. 3.1.5 Electric Motor

3.1.6 BRAKE

A disc brake consists of a metal disc, or "rotor", attached to the wheel hub that rotates with the wheel. Calipers are attached to the frame or fork along with pads that squeeze the rotors for braking. Disc brakes may be actuated mechanically by cable, or hydraulically. A disc brake is a type of brake that uses the calipers to squeeze pairs of pads against a disc or a "rotor" to create friction. This action slows the rotation of a shaft, such as a vehicle axle, either to reduce its rotational speed or to hold it stationary.

The energy of motion is converted into waste heat which must be dispersed. Primarily a wheelchair user will apply friction to the push-rim and/or wheel with either a bare or gloved hand bare hands can be burned from high friction rims during braking, while gloves can reduce sensation for propulsion. Some users will lean forward to engage the wheel locks against the tire to slow down.

Fig.3.1.6 Brake And Parts

3.1.7 SEAT BELT

A seat belt (also known as a safety belt, or spelled seatbelt) is a vehicle safety device designed to secure the driver or a passenger of a vehicle against harmful movement that may result during a collision or a sudden stop. A seat belt reduces the likelihood of death or serious injury in a traffic collision by reducing the force of secondary impacts with interior strike hazards, by keeping occupants positioned correctly for maximum effectiveness of the airbag (if equipped), and by preventing occupants being ejected from the vehicle in a crash or if the vehicle rolls over.

Choose between a simple two piece belt with velcro buckle, plastic buckle or auto buckle. Equipped with your choice of ends to attach to wheelchair, axle mount or beneath upholstery screws. The belts come in three standard sizes, special sizes are available upon request. Specify color of webbing when ordering your belts.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Fig.3.1.7 Seat Belt

3.1.8 REGULATOR (OXYGEN FLOW)

Oxygen regulator is oxygen conserving device used with oxygen supplying unit can be oxygen cylinder or medical gas supply outlet. Oxygen regulator control flow rate from an oxygen cylinder. You can regulate oxygen flow, simply an oxygen regulator controls the rate of continuous flow of oxygen. Oxygen regulators are intended for the administration of oxygen to patients that are deemed by a physician to need increased oxygen levels to improve or stabilize their breathing conditions.

It is a pressure-reducing device that lowers the pressure of the oxygen from a cylinder to a level that can safely be used. With an optional oxygen therapy flow rate range of 0-15 L/min or 0-25 L/min you can choose the range that most suits the needs of your patient in respiratory distress who requires oxygen therapy. For powering oxygen equipment, different configurations of pressure outlets are available The regulator (sometimes called the adjustable regulator, flowmeter, or control valve) reduces, controls, and measures the flow of oxygen to the patient to ensure a safe and effective working pressure. The regulator and flowmeter usually are coupled together into one mechanical fitting on the oxygen tank.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Fig.3.1.8 Oxygen Regurator

3.1.9 FLEXIBLE HOSE

A flexi hose, also known as flexible tap connectors, are used to connect taps to the Oxygen supply and are a great solution when connecting taps in confined spaces. Choose from the range of highly durable, quickly and easily installed options, some being demountable and reusable. Weather / Ozone/ Abrasion resistant synthetic rubber (Red-Blue-Green in colour), Temperature range: (-) 20° C to (+) 70° C, Colour: Red colour hose is used for Acetylene or other fuel gases, Blue and Green colour hose for Oxygen. This Medical Oxygen Respiratory Supply Tubing by Responsive Respiratory maximizes concentrator and liquid system flow output and features standard connectors for a universal fit; six channel, star-lumen tubing made of 85 durometer materials prevents kinks and twisting.

A variety of accessories include an in-line water trap to reduce moisture buildup and Ear Mates to protect the ears from chafing and uncomfortable rubbing. A flexible hose is a type of piping used to connect two distant points to transport or transfer fluid. In Oil & Gas applications hoses are used when there is a considerable relative movements. A variety of fluids and fluidized solids can easily be transferred through flexible hoses to other locations.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

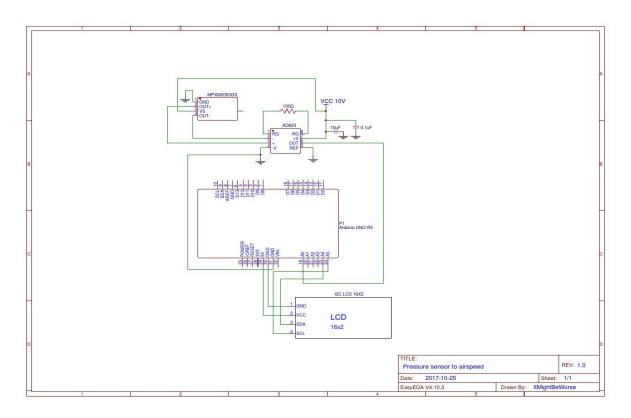
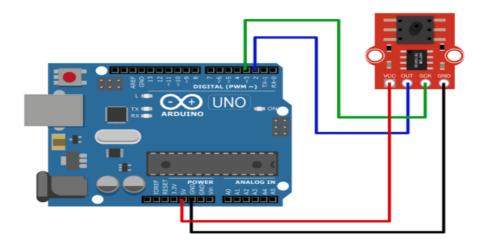


Fig.3.1.9 Flexible Hose

3.1.10 ELECTRICAL SYSTEM (CIRCUIT)

Electric circuit, path for transmitting electric current. An electric circuit includes a device that gives energy to the charged particles constituting the current, such as a battery or a generator; devices that use current, such as lamps, electric motors, or computers; and the connecting wires or transmission lines.


An electrical network is an interconnection of electrical components or a model of such an interconnection, consisting of electrical elements. An electrical circuit is a network consisting of a closed loop, giving a return path for the current.

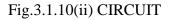


Fig.3.1.10(i) Circuit

Simple electric circuit consists of a source (such as a battery), wires as conducting medium and a load (such as a light bulb). The battery provides required energy for flow of electrons, to the light bulb. As mentioned above in the introduction, a circuit is an interconnection of elements The point where electrons enter an electrical circuit is called the "source" of electrons. The point where the electrons leave an electrical circuit is called the "return" or "earth ground". The exit point is called the "return" because electrons always end up at the source when they complete the path of an electrical circuit.

3.1.11 IOT DEVICE

The Internet of things (iot) describes physical objects or groups of such objects with sensors, processing ability, software and other technologies that connect and exchange data with other devices and systems over the Internet or other communications networks. Internet of things has been considered a misnomer because devices do not need to be connected to the public internet, they only need to be connected to a network and be individually addressable. The field has evolved due to the convergence of multiple technologies, including ubiquitous computing, commodity sensors, increasingly powerful embedded systems, as well as machine learning.

Traditional fields of embedded systems, wireless sensor networks, control systems, automation including home and building automation, independently and collectively enable the Internet of things. In the consumer market, iot technology is most synonymous with products pertaining to the concept of the "smart home", including devices and appliances such as lighting fixtures, thermostats, home security systems, cameras, and other home appliances that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem, such as smartphones and smart speakers.

Iot is also used in healthcare systems There are a number of concerns about the risks in the growth of iot technologies and products, especially in the areas of privacy and security, and

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

consequently, industry and governmental moves to address these concerns have begun, including the development of international and local standards, guidelines, and regulatory frameworks Smart Wheelchair is known as a Power Wheelchair that is integrated into multiple sensors, assistive technology, and computers that give the user with a disability such as impairment, handicaps, and permanent injury, the required mobility to move freely and safely.

These types of wheelchairs are gradually replacing the traditional wheelchairs; however, their expensive costs are preventing a large size of disabled people from having one. According to the organization of World Health (WHO), only 5 to 15% out of 70 million disabled people have access to wheelchairs.

Therefore, we need to offer a cost-effective Smart that not only minimized the cost but also provides plenty of features that use the latest components and technologies. In the last years, there have been many pleasant efforts that serve this purpose.

They have adopted various technologies such as artificial intelligence, where they have designed an autonomous wheelchair that used machine learning concepts to navigate, and some also used Internet of Thing technology to control the wheelchair-using voice recognition system. This report will present a cost-effective Smart Wheelchair-based Arduino Nano microcontroller and iot technology that have several features to gain disabled people, especially poor people who cannot afford expensive Smart Wheelchair, the required help to finish daily life tasks without external help.

To conclude this project will make the Smart Wheelchair affordable to a wide range of disabled people and will be based on Arduino Nano, ESP-12e module to give Wi-Fi access, MPU6050 to detect fall with Voice message notification using IFTTT platform, obstacle detection with buzzer and LED to work as hazards, voice recognition system, and joysticks to control the wheelchair.

Iot technologies and Artificial Intelligence technologies to help the users gain mobility and moving freely and safely without needing someone's help. However, they are too expensive, and their hardware is too heavy which makes the software system response too slow. The wish of most of the people in this world is to be wealthy and successful. However, some just want to have a comfortable and normal life. Due to illness, car accidents, impairment, and eldership this wish became impossible at least to them. People with the mentioned disabilities are increasing every year, therefore people who do not have a suitable wheelchair are increasing, too.

There are many cases where disabled people get fall and injured and sometimes for days nobody knows about their situation. Wheelchair besides other commands. In the autonomous mode, the author used a map designed using an RGBD camera that scans the surrounding environment and an IR sensor to detect obstacles, as using only an RGB-D camera will not be enough as the author declared. In contrast with the above paper who used only one unit of obstacle sensor, have used 4 units of IR sensor surrounding the wheelchair from each side, depending on the direction of the wheelchair, one of the four IR sensors will be activated.

Jayakody and other authors presented a project that also contains a health monitoring system that is implemented for the users who have a heart issue and cannot walk permanently.

To provide them the required help, this system will mainly consist of a temperature sensor to measure the patient's temperature and a heart rate sensor beside the output readings will be connected to the medical officers, so they can easily track the patient's status. Comparing to the obtained result of the voice recognition system by shows that system takes about 2 to3 seconds to recognize the voice which is more than the obtained results of To conclude, authors in have succeeded in presenting a smart wheelchair that used the latest technology such ros system to help people with disabilities to move freely and safely without required help For safety purposes, real children were not used to testing how much weight the wheelchair can carry.

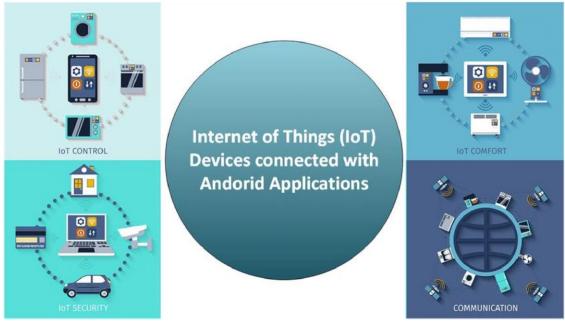


Fig.3.1.11 Internet Of Things

3.1.12 RASPBERRY DEVICE

Easy respire device is a sensor integrated device designed to help people cope with asthma. It senses the asthma triggering attributes using various sensors and notifies the patient to use the inhaler using telegram notifications. It transforms sensor data into an interactive application allowing users to recognize and respond to their asthma symptoms regardless of their location. These sensor data are stored on an open source cloud platform called thing speak, which can be used by the doctor to personalize asthma patient treatment based on the data available. Many AI algorithms can be further applied to detect the severity of asthma in a patient.

Asthma treatment focuses on improving overall lung function, reducing daily symptoms and preventing acute asthma attacks. Each patient has a personalized treatment and disease self-management plan designed to reduce daily symptoms, maintain optimal lung function, and allow for participation in daily life activities, while limiting the number of acute asthma attacks. It is very difficult to predict an acute asthma attack since it often occurs suddenly. with little warning. Predicting the severity level of an asthma attack is even harder because it depends on multiple factors including the person's disease characteristics and severity.

Data for monitoring and managing chronic respiratory illness have led to the development of an Artificial Intelligence algorithm to perform adaptive learning for personalized prediction and

treatment plans. Smart Mobile Phones are the most accessible form of technology globally aAccording to some researches, patients of all ages are participated in a study which clearly verified the effectiveness of the mobile use for tracking the asthma.

power for "sensoring" tracking of environment and health

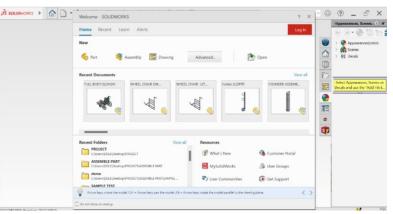
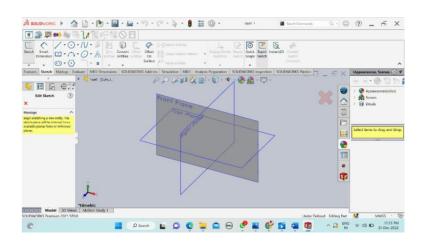


Fig.3.1.12 Raspberry Device

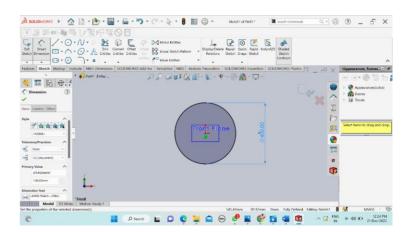
CHAPTER 4

4.1 DESIGN OF THE FACILITY USING SOLIDMODELLING SOFTWARE


- 1. Open solid works software.
- 2. There are three types in solid works. They are
- a) Part
- b) Assemble
- c) Drawing

- 3. Select the part file.
- 4. There are three types of plane in solid works. They are
- a) Front Plane
- b) Top Plane
- c) Right Plane

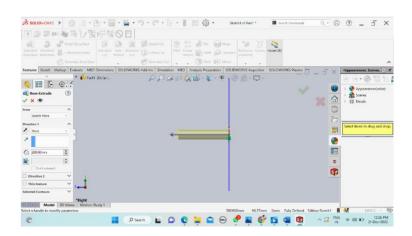
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

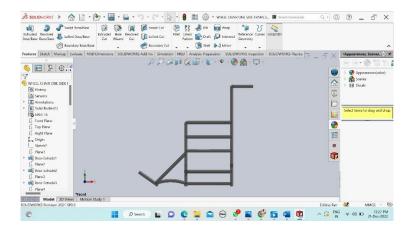


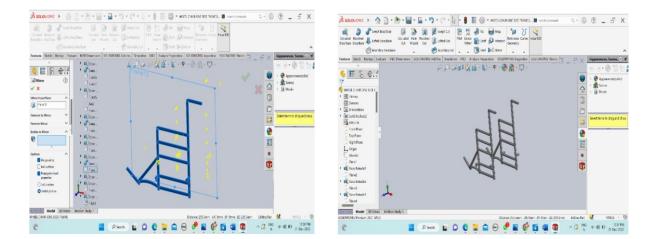
5.Select the front plane.

		Sketch Pattern - Display/Delete Rep Relations Sko			~
stures Stetch Markup Lyskuste MUD Dimens	ons SOLIDWORKS Add-Ins Simulatio	n MDD Analysis Preparation SOL	DWORKS Inspection SOLIDWORKS		Appearances, Scenes, (2) Appearances(color) Appearances(color) Appearances(color) Appearances Appearances Appearances Appearances
Andreators Moleculators Moleculators Moleculators Moleculators Moleculators Top Since Nop Since Top Since Top Since Top Since Top Since Top Since Top Since	•	t,	·		Select items to drag and dro
Front Wood: 30 Views: Motion Study 1 1996/2015 Denies 2021 5920	-	•	129.42mm 1.43mm 9mm 1.4	ster Defined - Filling Steldy)	MM65

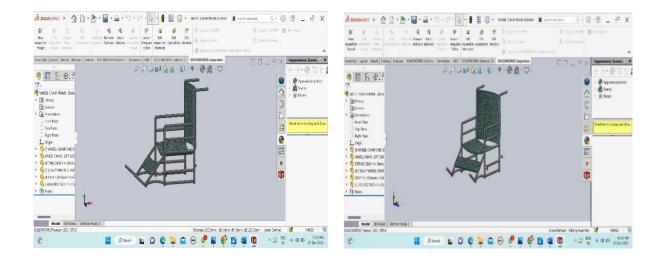
6.Select the sketch, choose circle and draw in the plane.


7.And give the dimension by using dimensions tool.

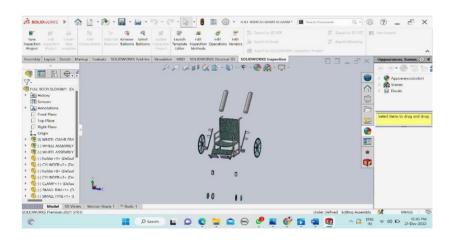

8. Then select the extrude boss and choose the drawn figure and give dimension to the sketch.


E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

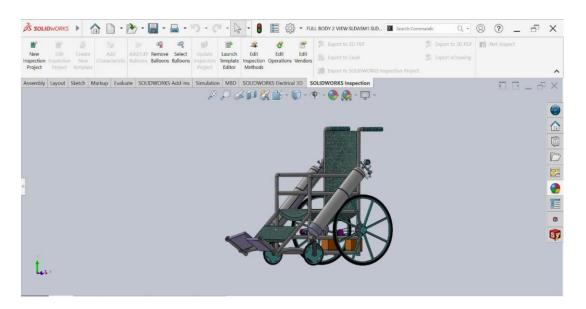
9. Repeat the Procedure and create the wheel chair.



10. Next the wheel chair frame completed and then mirror the frame by using mirror command.



11. The mirror frame is completed. Then draw the seat and other components using sketch and features.


12. Next the completed components are make to assemble using assemble view.

13. Now the components are correctly assembled using mate commands. And now the "Automated Wheel Chair with Attachment Of Oxygen Cylinder Using Iot Device" is completed.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

4.2 EXPLOLDED VIEW

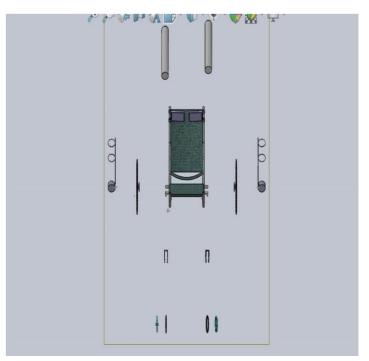


Fig 5.1.1 Front View

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Fig 5.1.2 Side View

CALCULATION

4.3 LOAD:

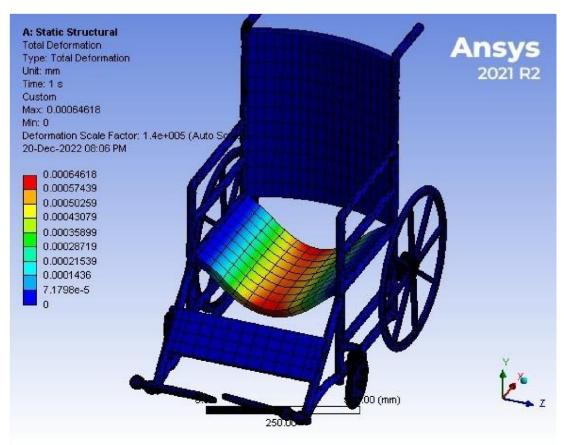
F (force) = m (mass) * a (acceleration) F = m * a.

Fw (weight) = m (mass) * g (gravity, 9.8 m/s^2) Fw = m * 9.8 m/s^2 .

To change from mass to weight multiply by gravity (9.8 m/s^2)

Example Change 30 kg (mass) to Newtons (weight) $Fw = m * 9.8 \text{ m/s}^2$ $Fw = 150 \text{ kg} * 9.8 \text{ m/s}^2 = 1470 \text{ N}.$

To change from weight to mass divide by gravity (9.8 m/s^2).


Example Change 1470 N (weight) to mass $m = Fw / 9.8 m/s^2 m = 1470N / 9.8 m/s^2 = 150 kg$

• Email: editor@ijfmr.com

CHAPTER 5 5.1 ANSYS REPORT

AUTOMATED WHEEL CHAIR WITH ATTACHMENT OF OXYGEN CYLINDER USING IOT DEVICE*

Subject	PROJECT			
Prepared for	PROJECT I			
First Saved	Tuesday,			
	December 20,			
	2022			
Last Saved	Tuesday,			
	December 20,			
	2022			
Product	2021 R2			
Version				
Save Project	Yes			
Before				
Solution				
Save Project	Yes			

JFMR

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

After Solution

Contents

l <u>Units</u>

1 <u>Model (A4</u>)

<u>Geometry</u>

■ Parts

; Materials

- i Coordinate Systems
- ; Connections
 - <u>Contacts</u>
 - Contact Regions

<u>; Mesh</u>

- Face Sizing
- ; <u>Static Structural (A5</u>)
 - <u>Analysis Settings</u>
 - <u>Loads</u>
 - <u>Solution (A6)</u> ■ <u>Solution</u> <u>Informatio</u> <u>n</u> ■ <u>Total</u> Deformatio

<u>Material</u>

<u>Data</u>

; Structural Steel

Units

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational	rad/s
Velocity	
Temperature	Celsius

Model (A4)

TABLE 2

Model (A4) > Geometry

	Wodel (A4) > Geometry							
Object	Geometry							
Name	Eviller Defined							
State	Fully Defined							
	Definition							
Source	$C:\label{eq:c:lberk} C:\label{eq:c:lberk} C:\label{eq:cberk} C:\lab$							
	p0\SYS\DM\SYS.scdoc							
Туре	SpaceClaim							
Length	Meters							
Unit								
Element	Program Controlled							
Control								
Display	Part Color							
Style								
	Bounding Box							
Length X	1259. mm							
Length Y	1127.7 mm							
Length Z	694.06 mm							
	Properties							
Volume	3.2347e+007 mm ³							
Mass	253.93 kg							
Scale	1.							
Factor								
Value								
	Statistics							
Bodies	38							
Active	38							
Bodies								
Nodes	136951							
Elements	67081							
Mesh	None							
Metric								
	Update Options							
Assign	No							
Default								
Material								
	Basic Geometry Options							
Solid	Yes							
Bodies								
Surface	Yes							
Bodies								

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

.	••
Line	Yes
Bodies	
Paramete	Independent
rs	
Paramete	
r Key	
Attributes	Yes
Attribute	
Key	
Named	Yes
Selection	
S	
Named	
Selection	
Key	
Material	Yes
Propertie	
S	
	Advanced Geometry Options
Use	Yes
Associati	
vity	
Coordinat	Yes
e Systems	
Coordinat	
e System	
Key	
Reader	No
Mode	
Saves	
Updated	
File	
Use	Yes
Instances	
Smart	Yes
CAD	
Update	
Compare	No
Parts On	
Update	
Analysis	3-D
Туре	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Mixed	None
Import	
Resolutio	
n	
Import	Source
Facet	
Quality	
Clean	No
Bodies	
On	
Import	
Stitch	None
Surfaces	
On	
Import	
Decompo	Yes
se	
Disjoint	
Geometry	
Enclosure	Yes
and	
Symmetr	
У	
Processin	
g	
· · · · · · · · · · · · · · · · · · ·	1

WHEEL CHAIR LEFT SIDE FRAME\NONE	WHEEL CHAIR LEFT SIDE FRAME\NONE	WHEEL CHAIR LEFT SIDE FRAME\Boss- Extrude35	WHEEL CHAIR LEFT SIDE FRAME\Sweep15	SITTING SEAT\Boss- Extrude5	SEAT\Boss- Extrude7	LEG REST BED\Boss- Extrude1	TYRE
 			Me she	ed			
		Gra	phics Propertie s				
			Y es				
			1				
			Definition				
			No				
 			Fle xib	ole			
			Default Coor dir	nate System			
			By Envi ro	nment			

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

				N or	ne			
				Material				
				Structu ra	al Steel			
				Y e	es			
				Y e	s			
				Bounding Box				
	1151.3 mm		20. mm	30. mm	435. mm	87.102 mm	127.28 mm	596.1
	1019.3 mm		20. mm	30. mm	86.592 mm	630.5 mm	127.28 mm	596.1
	95. r	nm	70. mm	30. mm		521. mm	•	
•				Properties				
06	3.5245 e +	-006 mm ³	21991 mm ³	16655 mm ³	6.0996e+006	8.73e+006	2.2385e+006	4.
					mm ³	mm ³	mm ³	
ŗ.	27.66	58 kg	0.17263 kg	0.13074 kg	47.882 kg	68.531 kg	17.572 kg	
n	445.62	2 mm	722.19 mm	725.26 mm	496.69 mm	767.14 mm	103.6 mm	722.2
n	485.12	2 mm	340.24 mm	1132.2 mm	442.31 mm	804.99 mm	305.72 mm	
n	630. 7	7 mm	596.61 mm	631.61 mm	892.11 mm	890.21 mm	892.11 mm	1220.
06	2.9632e+ 00)6 kg∙mm²	74.614	16.662 kg·mm ²	1.7686e+006	3.7194e+006	3.9557e+005	1.3
			kg∙mm²		kg∙mm²	kg∙mm²	kg∙mm²	
05	9.3138e+ 00)5 kg∙mm²	74.614	12.188 kg·mm ²	7.7249e+005	1.4748e+006	3.6396e+005	1.3
			kg∙mm²		kg∙mm²	kg∙mm²	kg∙mm²	
06	3.8893e+ 00)6 kg∙mm²	8.5896	14.183 kg·mm ²	1.0309e+006	2.2941e+006	34284	2.6
			kg∙mm²		kg∙mm²	kg∙mm²	kg∙mm²	
				Statistics	-	•	•	
	17694	17708	506	524	1254	2415	974	
	10203	10219	88	254	198	396	156	
•				Nor	ne	1		

CAD Attributes

0.00000001

Model (A4) > Geometry > Parts

TABLE 4

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

				Model (A4) > Geometr	y > Parts				
Object Name	RIM\Cut- Extrude3	BEARING\Boss- Extrude1	BEARING\Boss- Extrude1	BIG PULLEY\Cut- Extrude6	BIG PULLEY\Cut- Extrude6	BOLT\Chamfer1	BOLT\Chamfer1	BOLT\Chamfer1	BOLT\Chamfer1	BOLT\Cham
State			•			Meshed	•			
					Graph	ics Properties				
Visible						Yes				
Transparency						1				
						Definition				
Suppressed						No				
Stiffness Behavior						Flexible				
Coordinate						Default Coordinat	e System			
System Reference							-			
Temperature						By Environm	nent			
Treatment						None				
						Material				
Assignment						Structural S	teel			
Nonlinear Effects						Yes				
Thermal Strain						Yes				
Effects										
						unding Box				
Length X		45.498 mm	46.06 mm	109.77 mm	110.32 mm	2.3273 mm			53 mm	
Length Y	573.69 mm	45.498 mm	46.06 mm	109.77 mm	110.32 mm	2.6391 mm			31 mm	
Length Z	20. mm	12.	mm	28.	mm		31. mm			
	5 0700 005				P	roperties				
volume	5.9706e+005 mm ³		.5 mm³		3 mm³		98.276 mm ³			
Mass	4.6869 kg	5.9656e-002 kg 0.70912 kg			912 kg				e-004 kg	
Centroid X			722.19 mm			719.62 mm	719.47 mm	697.42 mm	746.96 mm	724.91 m
Centroid Y			340.24 mm			365.03 mm	365.01 mm	337.52 mm	342.96 mm	315.47 m
Centroid Z	563.5 mm	1216.6 mm	567.61 mm	1191.2 mm	593.07 mm	1216.3 mm		567.9	97 mm	
Moment of Inertia	90760	10.596	kg∙mm²	423.07	kg∙mm²			6.2684e-0	l02 kg∙mm²	
lp1	kg∙mm²									
Moment of Inertia	90760 kg·mm²	10.596	kg∙mm²	423.07	kg∙mm²			6.2684e-0	l02 kg∙mm²	
Moment of Inertia	1.8133e+005	19.76	kg∙mm²	796.96	kg·mm²			3.8671e-0	04 kg·mm²	
lp3	kg∙mm²		• • • • •		•	Statistics			3	
Nodes	6631	3	43	12	660			10)44	
Elements	3172		12		983				95	
Mesh Metric						None				
					CA	D Attributes				
PartTolerance:						0.000000)1			
Color:143.163.175										
Color:175.160.143										
Color:225.225.225										

TABLE 5

	SMALL	SMALL	CLAMP\Mirror1	CLAMP\Boss-	CLAMP\Mirror1	CLAMP\Boss-	CLAM
BOLT\Chamfer1	RIM\Boss-	RIM\Boss-	[1]	Extrude6	[2]	Extrude4	
	Extrude4	Extrude4					
				Meshed			
			Graphics Pr	operties			
				Yes			
				1			
			Defi niti	ion			
				No			
				Flexible			
			D efau	It Coordinate S	ystem		
			E	By Environm ent			
				None			
			Ma teri	al			
IJFMR23022	009		Volume 5, Issu	e 2, March-April 2	2023	32	
	BOLT\Chamfer1	BOLT\Chamfer1 RIM\Boss-	BOLT\Chamfer1 RIM\Boss- Extrude4 Extrude4 Extrude4	BOLT\Chamfer1 RIM\Boss- Extrude4 Extrude4 [1] Graphics Pr Defi niti Defi niti D efau E	BOLT\Chamfer1 RIM\Boss- Extrude4 RIM\Boss- Extrude4 [1] Extrude6 Meshed Graphics Properties Yes 1 Ves 1 1 1 Defi nition No Flexible 1 Default Coordinate System SystemSystem1 1 No SystemSystemSystemSystem1 1 No System<	BOLT\Chamfer1 RIM\Boss- Extrude4 RIM\Boss- Extrude4 [1] Extrude6 [2] Meshed Graphics Properties Yes 1 Defi nition No Flexible D efault Coordinate System None Ma terial	BOLT\Chamfer1 RIM\Boss- Extrude4 RIM\Boss- Extrude4 [1] Extrude6 [2] Extrude4 Meshed Graphics Properties Yes 1 Definition Flexible Journal of the system System No Flexible Default Coordinate System None Ma terial

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

				<u> </u>	Structural St eel			
					Yes			
					Yes			
				Boun ding	g Box			
27	3 mm	215.19	216.31	36.54 2	mm	32.42 7	′ mm	
		mm	mm					
39	1 mm	215.1	9 mm	128. n	nm	10. n	nm	
1.1	mm	42. mm	48.155	51. m	im	26. n	nm	
			mm					
				Pro pert	ties			
27 (6 mm ³	2.8056 e +	-005 mm ³	29584	mm ³	2081.5	mm ³	
17 e	e-004 kg	2.20 2	24 kg	0.23224 kg	0.23223 kg	1.634e0	02 kg	0.232
	724.76 mm		-	2 (54.19 mm	1	-	264.6
	315.45 mm	151.2	4 mm	211.0 9	mm	256.2 4	mm	
16.	3 mm	571.34	1212.9	555.24 mm	587.44 mm	552.91 mm	589.77 mm	1229
		mm	mm					
-00)2 kg·mm²	3221.31	kg∙mm²	436.82 kg	g∙mm²	0.74895 k	kg∙mm²	
-00)2 kg·mm²	3221.31	kg∙mm²	48.388 kg	g∙mm²	3.2054 k	g∙mm²	
:-00)4 kg·mm²	6303.61	kg∙mm²	428.46 kg	g∙mm²	2.7289 k	g∙mm²	
				Sta tisti	ics			
10	44	70)9	726	733	48	1	7
49	95	29	98	293	300	56		2
				1				

None CAD Attributes

0.00000001

	Ν	Model (A4)	> Geometry	> Parts				
		Т	ABLE 6					
	N	Model (A4)	> Geometry	> Parts				
Object Name	CLAMP\Bo	SMALL	SMALL	FOOT	FOOT			
	ss-Extrude4	TYRE\Fil	<i>TYRE\Fill</i>	<i>REST\Chamf</i>	<i>REST\Chamf</i>			
		let1	et1	erl	erl			
State				Μ				
			eshed					
		Graphics						
Visible		Properties						

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

				Yes	
Transparency				1	
			De	fi	
			niti	on	
Suppressed			-	No	
Stiffness		Flexible			
Behavior					
Coordinate		Default Coordinate Sys tem			
System					
Reference			By Env	vironment	
Temperature					
Treatment				Ν	
			one	e	
			Ma	nt	
			eri	al	
Assignment			Structu	ural Steel	
Nonlinear		Yes			
Effects					
Thermal Strain				Y	
Effects			es		
			Bour	nd	
			ing E	Box	
	33.159 mm	242.09	242.42	165.07 mm	173.35 mm
Length X		mm	mm		
Length Y	10. mm		242.0 9 mm	134.37 mm	146.19 mm
Length Z	26.919 mm	15. mm	21.938	250.5 mm	252.69 mm
			mm		
		Proj	perties		
Volume	2081.5 mm ³		68424 mm ³	7.147e+	005 mm ³
Mass	1.634e-002		0.53713 kg	5.61	04 kg
	kg				-
Centroid X	263.66 mm	264.19 mm	n -135.84	mm	-131.94 mm
Centroid Y	256.24 mm	151.24 mm	n 226.44 r	nm	232.01 mm
Centroid Z	1194.5 mm	571.34 mm	1212.9 mm	748.9	91 mm
Moment of	0.74895	1912.6	13843 kg·	mm²	
Inertia Ip1	kg∙mm²	kg∙mm²			
Moment of	3.2054	1912.6	36202 kg·	mm²	
Inertia Ip2	kg∙mm²	kg∙mm²			
Moment of	2.7289	3808.6	22794 kg·	mm²	
Inertia Ip3	kg∙mm²	kg∙mm²			
		Statistics			

E-ISSN: 2582-2160	٠	Website: www.ijfmr.com	٠	Email: editor@ijfmr.com
-------------------	---	------------------------	---	-------------------------

Nodes	481	8219	2124
Elements	56	4247	1027
Mesh Metric		None	
		CAD	
		Attributes	
PartTolerance:		0.00000001	
Color:143.153.1			

75 Color:225.225.2 25

TABLE 7

Model (A4) > Materials

Object Name	Materials			
State	Fully			
	Defined			
Statistic s				
Materials	1			
Material	0			
Assignments				

Coordinate Systems

Model (A4) > CoordinateTABLE Systems 8 > Coordinate System

	· · · · · · · · · · · · · · · · · · ·			
Object	Global			
Name	Coordinate			
	System			
State	Fully Defined			
D efinition				
Туре	Cartesian			
Coordinate	0.			
System ID				
Origin				
Origin X	0. mm			
Origin Y	0. mm			
Origin Z	0. mm			
Directi onal Vectors				
X Axis	[1. 0. 0.]			
Data				
Y Axis	[0.1.0.]			
Data				
Z Axis	[0.0.1.]			
Data				
г	ARLE 9			

TABLE 9

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Model (A4) > Connections

Object Name	Connections		
State	Fully		
	Defined		
Auto Detection			
Generate	Yes		
Automatic			
Connection On			
Refresh			
Transparency			
Enabled	Yes		

TABLE 10Model (A4) > Connections > Contacts

()		
Object Name	Contacts	
State	Fully	
	Defined	
Definiti	o n	
Connection	Contact	
Туре		
Scope	e	
Scoping	Geometry	
Method	Selection	
Geometry	All	
	Bodies	
Auto Dete	c tion	
Tolerance	Slider	
Туре		
Tolerance	0.	
Slider		
Tolerance	4.5679	
Value	mm	
Use Range	No	
Face/Face	Yes	
Face-Face	75. °	
Angle		
Tolerance		
Face Overlap	Off	
Tolerance		
Cylindrical	Include	
Faces		

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Face/Edge	No
Edge/Edge	No
Priority	Include
	All
Group By	Bodies
Search Across	Bodies
Statisti	c s
Connections	84
Active	84
Connections	

TABLE 11

Model (A4) > Connections > Contacts > Contact Regions

5	ontact egion	ontact egion	'ontact egion	ontac	ontact egion 5	'ontaci egion (ontact egion 8	ontact 2gion 9	Contact egion	Contact egion 11
				egion							
State						ılly De	efi ned				
						cope					
oping lethod		eometry Se lection									
Contact	Faces	Faces			Face		3 Fa	ices	1 Face	Faces	1 Face
Target	2 Fa	aces		1	Face		2 Fac	ces	1 Face	3 Faces	4 Faces
Co					WHE	EEL CHA	IR ONE S	IDE			
nta					FRA	ME\NON	Έ				
ct											
Bo											
die											
s											
Та	SITTI	SEAT \	LEG F	RIM\ B	EARIN	BIG	CLAMP	CLAMP	CLAMP	SMALL	FOOT

			~ (\			(
	rge	NG	Boss-	RES	Cut-	G\Boss-	PULLE	Mirror1	\Boss-	\Boss-	TYRE\	REST\Ch	
	t	SEAT	Extrud	Т	Extru	Extrude1	Y\Cut-	[1]	Extrud	Extrude	Fillet1	amfer1	
	Bo	Boss-	e7	BED	de3		Extrude		e6	4			
	die	Extrud		Boss-			6						
	s	e5		Extrud									
	5			e1									
	Protect						No						
	ed												
							Definitio	n					
	Туре		Bonded										
	Scope		Automatic										
<u> </u>	JFMR23	Volume 5, Issue 2, March-April 2023 37										7	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

M1	
Mode	
Behavi	Program Controlled
or	
Trim	Program Controlled
Conta	
ct	
Trim	4.5679 mm
Tolera	
nce	
Suppre	No
ssed	
	Advanced
Formul	Program Controlled
ation	
Small	Program Controlled
Slidin	
g	
Detecti	Program Controlled
on	
Metho	
d	
Penetra	Program Controlled
tion	
Tolera	
nce	
Elasti	Program Controlled
c	
Slip	
Tole	
ranc	
e	
Normal	Program Controlled
Stiffne	
SS	
Update	Program Controlled
Stiffne	
SS	
Pinball	Program Controlled
Region	
	Geometric Modification
Contac	
t	

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Cas	None
Geo	None
metr	
У	
Corr	
ectio	
n	
Target Geo	
Geo	None
metr	
у	
Corr	
ectio	
n	

	TABLE 12
Model $(A4) > 0$	Connections > Contacts > Contact Regions

	Model (A								T	1	1
	Contact	Conta	Con	Cont	Con	Con	Contact	Cont	Contact	Cont	Cont
Objec	Region	ct	tact	act	tact	tact	Regi	act	Region	act	act
t	12	Re	Regi	Regi	Regi	Reg ion	on	Regio	20	Regio	Regio
Name		gio	on	on 15	on	10n 17	18	n 19		n 21	n 22
		n	14		16	17					
		13									
State						lly Def	i ned				
					S	c ope					
Sc					G eon	netry S	e lection				
op											
in											
g											
Μ											
et											
ho											
d		•									
Conta	2 Faces	1 Face	2	4		1 Fac	e		2 F a	ces	1 Face
ct			Faces	Faces							
Target	2 Faces	1 Face	2 F a	aces		1 Fac	e		2 F a	ces	1 Face
Co					WHEE	L C	HAI R				
nt					LEFT	SI	DE				
ac					FRAM	E\NON	JΕ				
t											
В											
od											
od ie											

IJFMR

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

ted Definition Type Bonded Scop Automatic e Automatic e Automatic Behav Program Controlled ior Program Controlled Ort Automatic Trim Program Controlled Cont Automatic act Automatic Trim Program Controlled Cont Automatic act Automatic Supp No resse Automatic d Program Controlled Julatio Program Controlled Small Program Controlled Slidin Program Controlled Stridin Program Controlled Shall Program Controlled Slidin Program Controlled Superior Program Controlled Sidin Program Controlled Superior Program Controlled Superior Program Controlled Openint Prog	Target Bodie s	WHEE L CHAI R LEFT SIDE FRAM E\NON E	WHE EL CHAI R LEFT SIDE FRAM E\Boss - Extrud e35	SITTI NG SEAT \Boss- Extru de5	SEAT \Boss- Extru de7	LEG RES T BED \Bos s- Extr ude1	RIM \Cut - Extr ude 3	BEARI NG\Bos s- Extrude1	BIG PULL EY\Cut - Extrud e6	CLAMP \Mirror1 [1]	CLAM P\Bos s- Extru de6	CLAM P\Boss- Extrud e4
Type Bonded Scop Automatic e Mod Mod e Behav Program Controlled ior Program Controlled Cont act Trim Program Controlled Cont act Trim 4.5679 mm Tolera nce No resse d Modanced Form Program Controlled ulatio n Small Program Controlled Sidin g Detect Program Controlled ion Metho d Program Controlled	ted											
Scop Automatic e Mod Mod Program Controlled ior Program Controlled Cont Program Controlled Cont Automatic act Program Controlled Trim Program Controlled Cont Program Controlled Supp No resse Program Controlled Jupp No resse Program Controlled Supp No Stidin Program Controlled Stidin Program Controlled Stidin Program Controlled Sheat Program Controlled Penetr Program Controlled		1				D						
e Mod e Program Controlled ior Trim Program Controlled Cont act 1000 Cont 10												
Mod Program Controlled Behav Program Controlled ior Program Controlled Cont Program Controlled Cont Program Controlled Cont Program Controlled act Program Controlled Trim 4.5679 mm Tolera No nce Program Controlled Supp No resse Program Controlled Juatio Program Controlled Small Program Controlled Sidin Program Controlled Sidin Program Controlled Sidin Program Controlled Petect Program Controlled Ion Program Controlled Sidin Program Controlled Petect Program Controlled Ion Program Controlled Ion Program Controlled						1	Autom	atic				
e Program Controlled Behav Program Controlled frim Program Controlled Cont 4.5679 mm Tolera												
Behav ior Program Controlled Trim Program Controlled Cont Program Controlled act Program Controlled Trim 4.5679 mm Tolera No nce Program Controlled Supp No resse Program Controlled d Program Controlled supp Program Controlled supp Program Controlled on Program Controlled Supp Program Controlled on Program Controlled Supp Program Controlled Pretet Program Controlled Penetr Program Controlled												
ior ior ior ior ior ior ior ion			Due super Constrallad									
Trim Program Controlled Cont			Program Controlled									
Cont act Trim 4.5679 mm Tolera nce Supp No resse d Form Program Controlled Slidin g Small Program Controlled Slidin g Detect Program Controlled Slidin g Program Controlled Small Program Controlled			Program Controlled									
actTrim4.5679 mmTolera			r rogram Controlleu									
Tolera nce Supp Supp resse d d Form Program Controlled ulatio n Small Small Program Controlled Slidin g Detect ion Metho d Program Controlled												
nceSuppNoresseNodAdvancedFormProgram ControlledulatioProgram ControlledsmallProgram ControlledSidinProgram ControlledgDetectIonProgram ControlledMethoProgram ControlleddProgram Controlled	Trim					4	.5679	mm				
Supp resse No d Advanced Form Program Controlled ulatio n n Small Small Program Controlled Slidin g Detect Program Controlled ion Metho d Program Controlled	Tolera											
resse d Advanced Form Program Controlled ulatio n Small Program Controlled Slidin g Detect Program Controlled ion Metho d Program Controlled	nce											
dAdvancedForm ulatio nSmallProgram ControlledSidin gProgram ControlledDetect ion Metho dProgram ControlledMetho dProgram Controlled	Supp						No					
AdvancedForm ulatioProgram ControllednSmallProgram ControlledSlidin gDetect ionProgram ControlledMetho dPenetrProgram Controlled												
Form ulatioProgram ControllednNSmallProgram ControlledSlidinProgram ControlledgProgram ControlledDetectProgram ControlledionMethodProgram Controlled	d							_				
ulatio n n Program Controlled Small Program Controlled Slidin Program Controlled g Program Controlled ion Program Controlled Metho Program Controlled d Program Controlled		[
nSmallSmallSlidingDetectionMethoQPenetrProgram Controlled						Prog	am Co	ntrolled				
Small Program Controlled Slidin g g Detect Detect Program Controlled ion Metho d Program Controlled												
Slidin g Detect ion Metho d Penetr Program Controlled						Droce	om Co	ntrollad				
gDetectionMethodPenetrProgram Controlled						riogi		nuoneu				
Detect Program Controlled ion Metho d Penetr Program Controlled												
ion Metho d Penetr Program Controlled						Prog	am Co	ntrolled				
Metho d Penetr Program Controlled							00					
d Penetr Program Controlled												
	Penetr					Prog	am Co	ntrolled				
ation	ation					_						

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Tolera	
nce	
Elas	Program Controlled
tic	
Slip	
Tol	
eran	
ce	
Norm	Program Controlled
al	
Stiffn	
ess	
Updat	Program Controlled
e	
Stiffn	
ess	
Pinbal	Program Controlled
1	
Regio	
n	
	Geometric
	Modification
Conta	
ct	
Geo	None
metr	
у	
Corr	
ecti	
on	
Target	
Geo	None
metr	
у	
Corr	
ecti	
on	

 TABLE 13

 Model (A4) > Connections > Contacts > Contact Regions

	Conta	Contact	Contac	Cont	Cont	Cont	Cont	Contact	Conta	Contact	Conta
Object	ct	Regi	t	act	act	act	act	Regio	ct	Regio	ct
Name	Region	on 24	Reg	Regio	Regio	Regi	Regi	n 30	Regio	n 32	Region

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

	23		ion 25	n 26	n 27	on 28	on 29		n 31		33
State			•		Fully D	Defined		•			
						cope					
Sco					Geon	netry Se	election	n			
pin											
g											
Me											
tho											
d		l				1				1	
Contac	2 Faces	1 Fa	ice	2	4		1 Fa	ce		2 Fa	ces
t			I	Faces	Faces						
	3 Faces	5 Faces	1 Face	2 F :			1 Fa			2 Fa	ces
Co				WI	HEEL C			SIDE			
nta					FR.	AME\N	ONE				
ct											
Bo											
die											
S				~	1			1		1	1
Τ-	CNAAT	БООТ	WHEE	SITTI		LEG	DIM		BIG		CLAM
Ta	SMAL L	FOOT REST\C	L CHAI	NG SEAT∖	SEAT\ Boss-	RES T	RIM	BEARIN G\Boss-		CLAMP\ Mirror1	
rge	TYRE\	hamfer1	R	Boss-	Extrud	BED		Extrude1	Y\Cut- Extrude	[1]	P\Boss- Extrude
t Do	Fillet1	nameri	TET	Extrud	e7	Boss-	ude3			[-]	
Bo			SIDE	e5	e/	Extru			6		6
die			FRAM	0.5		de1					
S			E\Boss-								
			Extrude								
			35								
Protect						No					
ed											
					De	finitio					
Туре						Bonde					
Scope					I	Automa	tic				
Mode											
Behavi					Progr	am Coi	ntrolle	d			
or											
Trim					Progr	am Coi	ntrolle	d			
Conta											
ct											
Trim					4	.5679 r	nm				
Tolera											
nce											

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: e

Email: editor@ijfmr.com

Suppr	No
essed	110
	Advanced
Formu	Program Controlled
lation	
Small	Program Controlled
Slidin	
g	
Detecti	Program Controlled
on	
Metho	
d	
Penetr	Program Controlled
ation	
Tolera	
nce	
Elast	Program Controlled
ic	
Slip	
Tole	
ranc	
e	
Norma	Program Controlled
1	
Stiffne	
SS	
Update	
Stiffne	
SS	
Pinball	
Region	
	Geometric Modification
Contac	
	None
Geo	None
metr	
y Corr	
Corr ectio	
n Target	
Target	
Geo	None

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

met
У
Cor ecti
ecti
n

Cont Contact Conta Co Co Contact Cont Co Co Objec Contact *Contact* nta nta nta nta act ct Regi act Regi ct ct ct ct Region Region t Regio Regio on on Regio Reg Reg Reg Reg Name 37 38 n 34 n 35 36 41 n 42 ion ion ion ion 39 44 40 43 State Fully Defined Scope Sc **Geometry Select** opi ion ng Μ eth od 2 Faces Contac 1 Face 2 Faces 1 Face 2 Faces 1 Face 1 Face 2 Faces t 1 Face 3 Faces 5 Faces 1 Face 2 Faces 1 Face 2 Faces 4 Faces 2 Faces Target WHE WHEEL WHEEL CH AIR LEFT EL **TYRE**|Fill Contac CHAIR CHAI LEFT SIDE FRAME\NONE et1 **Bodies** R SIDE LEFT **FRAME** RIM\Cut-Extrud e3 SIDE Sweep15 FRAM E\Boss-Extrude 35 CLAM SMAL FOOT BEARIN BIG RIM∖C PULLE Target L SEAT\Bo RIM\Cut-BOLT\Ch P\Boss-**REST\C** G\Boss-TYRE\ Bodie utss-Extrude3 Y\Cutamfer1 Extrude hamfer1 Extrude1 Fillet1 Extrude7 Extrude Extrud S 4 6 e3 Protect No ed Definition Bonded Type

TABLE 14

Model (A4) > Connections > Contacts > Contact Regions

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Scope	Automatic
Mode	
Behavi	Program
or	Controlled
Trim	Program
Contac	Controlled
t	
Trim	4.5679 mm
Tolera	
nce	
Suppre	No
ssed	
	Advanced
Formul	Program
ation	Controlled
Small	Program
Sliding	Controlled
Detecti	Program
on	Controlled
Metho	
d	
Penetr	Program
ation	Controlled
Tolera	
nce	
Elast	Program
ic	Controlled
Slip	
Tole	
ranc	
e	
Norma	Program
1	Controlled
Stiffne	
SS	
Update	Program
Stiffne	Controlled
SS	
Pinball	Program
Region	Controlled
	Geometric Modification
Contac	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

t	
Geo	None
metr	
У	
Corr	
ectio	
n	
Target	
Geo	None
metr	
у	
Corr	
ectio	
n	

TABLE 15 Model (A4) > Connections > Contacts > Contact Regions

Object	Con	Con	<i>Contact</i>	Contact	Con	Con	Con	Con	Con	Con	Con
Name	tact	tact	Region 47	Region	tact	tact	tact	tact	tact	tact	tact
	Regi	Regi		48	Regi	Regi	Regi	Regi	Regi	Regi	Regi
	on	on			on	on	on	on	on	on	on
	45	46			49	50	51	52	53	54	55
State					Ful	ly Defir	ned			•	•
Scope											
Scoping		Geometry Selection									
Method											
Contact		2 Fa	ces	1 Face		2 Fa	ices		1 Face		
Target		2 Fa	ces	4 Faces		2 Fa	ices		1 Face		
Contact				RIM\Cut	-Extrud	e3			BEA	RING\I	Boss-
Bodies									E	Extrude	l
Target	BOLT	Cham	BEARING	BIG			BOL	T\Chan	nfer1		
Bodies	fe	r1	Boss-	PULLEY							
			Extrude1	\Cut-							
				Extrude6							
Protected					1	No					
				Ι	Definiti	on					
Туре					Bo	onded					
Scope					Au	itomatic	;				
Mode											

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

Behavior	Program Controlled
Trim	Program Controlled
Contact	
Trim	4.5679 mm
Tolerance	
Suppresse	No
d	
	Advanced
Formulati	Program Controlled
on	
Small	Program Controlled
Sliding	
Detection	Program Controlled
Method	
Penetr	Program Controlled
ation	
Toler	
ance	
Elasti	Program Controlled
с	
Slip	
Toler	
ance	
Normal	Program Controlled
Stiffness	
Update	Program Controlled
Stiffness	
Pinball	Program Controlled
Region	
	Geometric Modification
Contact	None
Geometry	
Correction	
Target	None
Geometry	
Correction	

Model (A4) >	> Conne	ctions >	Contac	ts > Con		LE 16 gions				
Object	Cont	Cont	Cont	Cont	Cont	Cont	Cont	Cont	Cont	Cor
Name	act	act	act	act	act	act	act	act	act	act

Object	Cont	Cont	Cont	Cont	Cont	Cont	Cont	Cont	Cont	Cont	Cont
Name	act	act	act	act	act	act	act	act	act	act	act
IJFMR2302200)9			Volum	ne 5, Issu	e 2, Marc	h-April 20)23			47

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	
	n 56	n 57	n 58	n 59	n 60	n 61	n 62	n 63	n 64	n 65	n 66	
State	Fully Defined											
~					Sco							
Scoping					G eon	netry Sel	ection					
Method			1 1			1						
Contact			1 Face						aces			
Target		1 Face 2 Faces										
Contact		BEARING\Boss- Extrude1										
Bodies		Extrude1 PULLEY\Cut -Extrude6										
Target					BOI		nfer1					
Bodies						,						
Protected						No						
					Defi	nition						
Туре						Bonded						
Scope					A	Automati	c					
Mode												
Behavior		Program Controlled										
Trim		Program Controlled										
Contact												
Trim					4	.5679 m	m					
Tolerance												
Suppressed						No						
						anced						
Formulatio					Progr	am Cont	rolled					
n												
Small					Progr	am Cont	rolled					
Sliding							11 1					
Detection					Progr	am Cont	rolled					
Method					Duo ou	Cont						
Penetr ation					Progr	am Cont	roneu					
Tolera												
nce												
Elastic					Progr	am Cont	rolled					
Slip					11081		101100					
Tolera												
nce												
Normal					Progr	am Cont	rolled					
Stiffness					0							
Update					Progr	am Cont	rolled					
IJFMR2302200	19			Volum	_	e 2, Marc		023			48	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Stiffness								
Pinball	Program Controlled							
Region								
	Geometric							
	Modification							
Contact	None							
Geometry								
Correction								
Target	None							
Geometry								
Correction								

TABLE 17

Model (A4) > Connections > Contacts > Contact Regions

	Co	Co	Contact	Contac	Cont	Contact	Contac	Cont	Contac	Contact	Contac
Object	nta	nta	Regi	t	act	Regi	t	act	t	Regi	t
Name	ct	ct	on	Region	Regio	on	Region	Regio	Region	on	Region
	Re	Re	69	70	n 71	72	73	n 74	75	76	77
	gio	gio									
	n 67	n 68									
State		1			Fı	ılly Defi n	ed		1		
	1					Scope					
Sc						Geomet	ry S				
op						election					
in											
g											
Μ											
et											
ho											
d									1		-1
Conta			2 Faces		1 Face	2 F a	ces	1 Face	2 Faces	4 Faces	3 Faces
ct											
Target			2 Faces		1 Face	2 F a		1 Face	2 Faces		3 Faces
С	BI					L RIM\ Bo	SS-		CLA	MP\Mirro	r1[1]
0	PULI	•			Extrude	24					
nt	Cu										
ac	Extru	ide6									
t											
В											
0											
di											
es											

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Targe	BOLT\Ch	CLAMP	CLAM	SMAL	CLAMP	CLAM	SMAL	CLAM	CLAMP	CLAM
t	amfer1	\Mirror1	P\Boss-	L	\Mirror1	P\Boss-	L	P\Boss-	\Mirror1	P\Boss-
Bodie		[1]	Extrud	TYRE	[1]	Extrud	TYRE	Extrud	[2]	Extrud
s			e6	\Fillet		e6	\Fillet	e6		e4
				1			1			
Protec					No					
ted										
	1				Definition	n				
Туре					Bonde	ed				
Scope					Automa	atic				
Mode										
Behav				Р	rogram Co	ntrolled				
ior										
Trim				P	rogram Co	ntrolled				
Conta										
ct										
Trim					4.5679	mm				
Toler										
ance										
Suppr					No					
essed										
	T				Advanced					
Formu				Р	rogram Co	ntrolled				
lation					~	, 11 1				
Small				Р	rogram Co	ntrolled				
Slidin										
g Detect				מ	rogram Co	ntrollad				
ion				P	iografii Co	nuonea				
Metho										
d										
Penetr				P	rogram Co	ntrolled				
ation				1						
Tolera										
nce										
Elas				Р	rogram Co	ntrolled				
tic				_	6 00					
Slip										
Tol										
era										
nce										
	1									

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

1Stiffne ssUpdatProgram ControlledeStiffne ssPinbal 1 Regio		r						
Stiffne ss Updat Program Controlled e Program Controlled ss Program Controlled 1 Program Controlled 1 Regio n Geometric Modification Conta Conta ct None ry None ry None rect None Target None Geo None rett None ry None rett None	Norma	Program Controlled						
ss Updat Program Controlled e Program Controlled ss Program Controlled 1 Program Controlled 1 Regio n Geometric Modification Conta None rt None rty None rt None Target None Geo None rt None rt None rt None	1							
Updat Program Controlled e Program Controlled ss Program Controlled l Program Controlled l Regio n Conta ct Geometric Modification Conta None rt None <td< td=""><td>Stiffne</td><td></td></td<>	Stiffne							
e Stiffne ss Pinbal Program Controlled 1 Program Controled 1 Program Controled </td <td>SS</td> <td></td>	SS							
e Stiffne ss Pinbal Program Controlled 1 Program Controled 1 Program Controled </td <td>Updat</td> <td>Program Controlled</td>	Updat	Program Controlled						
ss Pinbal Program Controlled 1 Program Controlled Regio Image: Controlled Controlled n Conta Conta Conta ct Conta ry Cort ry Cort rect Image: Conta ion None Target None Geo None met Ymme ry Cort ry Conta ry Cort ry <td></td> <td></td>								
Pinbal Program Controlled 1 Program Controlled Regio n n Geometric Modification Conta None ct None Geo None met Y Cor None Target None Geo None met Y Target None Geo None met Y Cor None rect None foo None	Stiffne							
I Regio Regio Geometric Modification Conta Geometric Modification Cota None dc None met Other ry Other cota None met None ry None rect None ion None Target None ry None rect None ry None rect None ry None	SS							
I Regio Regio Geometric Modification Conta Geometric Modification Cota None dc None met Other ry Other cota None met None ry None rect None ion None Target None ry None rect None ry None rect None ry None	Pinbal	Program Controlled						
n Geometric Modification Conta ct Geo Mone Mone Mone Mone Mone Mone Mone Mo	1							
n Geometric Modification Conta ct Geo Mone Mone Mone Mone Mone Mone Mone Mo	Regio							
ContactGeometryCorrectionTargetGeoMetryCorretrycorretrycorret	n							
ctGeoNonemetryCorrectionTargetGeoNonemetryrycorret								
ctGeoNonemetryCorrectionTargetGeoNonemetryrycorrect	Conta							
metryCorrectionTargetGeometryryCorrect								
ry CorrectionTargetGeoMetry Cor rect	Geo	None						
CorrectionTargetGeometryCorrect	met							
CorrectionTargetGeometryCorrect	ry							
rectionTargetGeoMetrytCorrect								
ionTargetGeoMetryCorrect								
GeoNonemetryCorrect								
GeoNonemetryCorrect	Target							
met ry Cor rect		None						
Cor rect								
Cor rect	ry							
rect								

TABLE 18

Model (A4) > Connections > Contacts > Contact Regions

Object	Contact	Contact	Contact	Contact	Contact	Contact	Contact
Name	Region 78	Region	Region	Region 81	Region	Region 83	Region
		79	80		82		84
State		Fully Defined					
	Scope						
Scoping	Geometry Selection						
Method							
Contact	3 Faces	4 Faces	2 Faces	4 Faces	3 Fac	es	4 Faces
Target	3 Faces	4 Faces	2 Faces	4 Faces	3 Fac	es	4 Faces
Contact	CLAMP\ Boss	s-Extrude6	CLAN	MP\Mirror1[1]		CLAMP\ Boss	s-Extrude6
Bodies							

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

	1	1	1	1	1	1	1
-	CLAMP\Mir	CLAMP	CLAMP	CLAMP\Mir	CLAMP	CLAMP\Mir	CLAMP\
Bodies	ror1[2]	Boss-	Boss-	ror1[2]	Boss-	ror1[2]	Boss-
		Extrude4	Extrude6		Extrude4		Extrude4
Protected				No			
	-		Def	inition			
Туре				Bonded			
Scope				Automatic			
Mode							
Behavior			Progr	am Controlled			
Trim			Progr	am Controlled			
Contact							
Trim				4.5679 mm			
Tolerance							
Suppresse				No			
d							
			Adv	vanced			
Formulati	Program Controlled						
on							
Small	Program Controlled						
Sliding							
Detection	Program Controlled						
Method							
Penetratio	Program Controlled						
n							
Tolerance							
Elastic	Program Controlled						
Slip							
Tolerance							
Normal	Program Controlled						
Stiffness							
Update	Program Controlled						
Stiffness							
Pinball	Program Controlled						
Region							
			Geome				
	1		Modifi				
Cont				None			
a							
с							
t							
G	r						
e							

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

	I
0	
m	
e	
t	
r	
У	
C	
0	
r	
r	
e	
с	
t	
i	
0	
n	
Target	None
Geometry	
Correctio	
n	

Mesh

Model (A4) > Mesh				
Object Name	Mesh			
State	Solved			
Display				
Display Style	Use			
	Geometry			
	Setting			
Defaults				
Physics Preference	Mechanical			
Element Order	Program			
	Controlled			
Element Size	Default			
Sizing	•			
Use Adaptive Sizing	Yes			
Resolution	Default (2)			
Mesh Defeaturing	Yes			
Defeature Size	Default			
Transition	Fast			
Volume 5, Issue 2, March-April 2				

TABLE 19

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Span Angle Center	Coarse
Initial Size Seed	Assembly
Bounding Box	1827.2 mm
Diagonal	
Average Surface Area	6477.9 mm ²
Minimum Edge	1.0 mm
Length	
Quality	
Check Mesh Quality	Yes, Errors
Error Limits	Aggressive
	Mechanical
Target Quality	Default
	(0.050000)

Smoothing	Medium			
Mesh Metric	None			
Inflatio	n			
Use Automatic	None			
Inflation				
Inflation Option	Smooth			
	Transition			
Transition Ratio	0.272			
Maximum Layers	5			
Growth Rate	1.2			
Inflation Algorithm	Pre			
View Advanced	No			
Options				
Advanced				
Number of CPUs	Program			
for Parallel Part	Controlled			
Meshing				
Straight Sided	No			
Elements				
Rigid Body	Dimensionally			
Behavior	Reduced			
Triangle Surface	Program			
Mesher	Controlled			
Topology Checking	Yes			
Pinch Tolerance	Please Define			
T men Toleranee				

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@jjfmr.com

	Refresh	1		
	Statis	tics		
	Node	8 136951	136951	
	Elements	s 67081		
	TABL	E 20		
Model	(A4) > Mesh	> Mesh Con	trols	
	Object	Face		
	Name	Sizing		
	State	Fully		
		Defined		
	S c	ope		
	Scoping	Geometry		
	Method	Selection		
	Geometry	1 Face		
	Def in	nition		
	Suppressed	No		
	Туре	Element		
		Size		
	Element	50.0 mm		
	Size			
	Ad va	anced		
	Defeature	Default		
	Size			
	Influence	No		
	Volume			
	Behavior	Soft		
	Static Struct			
Г	Model (A4) >	-	1	
	Object Name	Static Structural		
	Inallie	(A5)		
_	State	Solved	-	
_	Defini		-	
_	Physics		-	
		Structural		
-	Type Analysis	Static	-	
	Туре	Structural		
-	Solver	Mechanical	-	
	Target	APDL		
-			-	
I	Environment	22. °C	-	
1		22. C		

Temperature	
Generate	No
Input Only	

TABLE 22
Model (A4) > Static Structural (A5) > Analysis Settings

Object Name	Analysis Settings
State	Fully Defined
	Step Controls
Number Of	1.
Steps	
Current Step	1.
Number	
Step End Time	1. s
Auto Time	Program Controlled
Stepping	
	Solver Controls
Solver Type	Program Controlled
Weak Springs	Off
Solver Pivot	Program Controlled
Checking	
Large	Off
Deflection	
Inertia Relief	Off
Quasi-Static	Off
Solution	
	Rotordynamics Controls
Coriolis Effect	Off
	Restart Controls
Generate	Program Controlled
Restart Points	
Retain Files	No
After Full	
Solve	
Combine	Program Controlled
Restart Files	
	Nonlinear Controls
Newton-	Program Controlled
Raphson	
Option	
Force	Program Controlled
Convergence	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Program Controlled
Program Controlled
riogram Controlled
Program Controlled
Program Controlled
Program Controlled
Advanced
No
Off
Output Controls
Yes

Surface	No
Stress	
Back	No
Stress	
Strain	Yes
Contact	Yes
Data	
Nonlinear	No
Data	
Nodal	No
Forces	
Volume	Yes
and	
Energy	
Euler	Yes
Angles	
General	No
Miscellane	
ous	
Contact	No
Miscellane	
ous	
Store	All Time Points
Results At	
Result File	Program Controlled

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Compressi	
on	
	Analysis Data Management
Solver	C:\Users\DELL\AppData\Local\Temp\WB_DELL_16956_2\wbnew_fi
Files	les\dp0\SYS\MECH\
Directory	
Future	None
Analysis	
Scratch	
Solver	
Files	
Directory	
Save	No
MAPDL	
db	
Contact	Program Controlled
Summary	
Delete	Yes
Unneeded	
Files	
Nonlinear	No
Solution	
Solver	Active System
Units	
Solver	nmm
Unit	
System	

TABLE 23					
Model (A4) > Static Structural (A5) > Loads					

Model (A4) > Static Structural (A5) > Loads				
Fixed	Fixed	Fixed	Fixed	Force
Support	Support	Support	Support	
	2	3	4	
State Fully Defined				
Scope				
Scoping Geometry Selection				
Method				
etry 1 Face				
Definition				
Fixed Support Force				
Suppressed No				
y Vector			Vector	
	Fixed Support	FixedFixedSupportSupport2Fully DScopeGeometry1 FaDefinitionFixed S	FixedFixedFixedSupportSupportSupport23Fully DefinedScopeGeometry Selection1 FaceDefinitionFixed Support	FixedFixedFixedFixedSupportSupportSupportSupport234Fully DefinedScopeGeometry Selection1 FaceDefinitionFixed Support

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Applied	Surfac	e
By	Effec	t
Magnitude	1470.	Ν
	(rampe	ed)
Direction	Define	ed

Solution (A6)

TABLE 24 Model (A4) > Static Structural (A5) > Solution

> Static Structural (A5)				
Object	Solution			
Name	(A6)			
State	Solved			
Adaptive M	esh Ref			
ineme	nt			
Max	1.			
Refinement				
Loops				
Refinement	2.			
Depth				
Informa	Information			
Status	Done			
MAPDL	51. s			
Elapsed				
Time				
MAPDL	1.0039			
Memory	GB			
Used				
MAPDL	52.063			
Result File	MB			
Size				
Post Proce	Post Process ing			
Beam	No			
Section				
Results				
On Demand	No			
Stress/Strain				

TABLE 25	
Model (A4) > Static Structural (A5) > Solution	(A6) > Solution Information

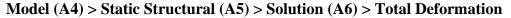
Object Name	Solution Information
State	Solved

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Solution Infor mation			
Solution	Solver		
Output	Output		
Newton-	0		
Raphson			
Residuals			
Identify	0		
Element			
Violations			
Update	2.5 s		
Interval			
Display Points All			
FE Connection V isibility			
Activate	Yes		
Visibility			
Display	All FE		
	Connectors		
Draw	All Nodes		
Connections			
Attached To			
Line Color	Connection		
	Туре		
Visible on	No		
Results			
Line	Single		
Thickness			
Display Type	Lines		

TABLE 26

Model (A4) > Static Structural (A5) > Solution (A6) > Results


Object	Total Deformation				
Name					
State	Solved				
	Scope				
Scoping	Geometry Selection				
Method					
Geometry	All Bodies				
	Definition				
Туре	Total Deformation				
By	Time				
Display	Last				
Time					

Calculate	Yes
Time	
History	
Identifier	
Suppressed	No

Suppressed	ino ino		
Results			
Minimum	0. mm		
Maximum	6.4618e-	004 mm	
Average	3.8599e-006 mm		
Minimum	WHEEL	CHAIR	
Occurs On	ONE	SIDE	
FRAME\NONE			
Maximum	SITTING		
Occurs	SEAT\Boss-Extrude5		
On	On		
I	nformation		
Time	Time 1. s		
Load Step	1		
Substep	1		
Iteration	1		
Number	Number		
FICUDE 1			

FIGURE 1

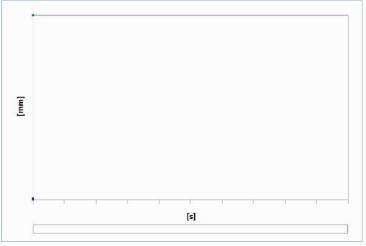
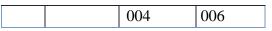


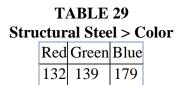
 TABLE 27

 Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation

 Time
 Minimum


 Movimum
 Average

Time	Minimum	Maximum	Average
[s]	[mm]	[mm]	[mm]
1.	0.	6.4618e-	3.8599e-


E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Material Data

Structural Steel

TABLE 28Structural Steel > Constants			
Density	7.85e-006 kg		
	mm^-3		
Coefficient of	1.2e-005 C^-		
Thermal	1		
Expansion			
Specific Heat	4.34e+005		
	mJ kg^-1		
	C^-1		
Thermal	6.05e-002 W		
Conductivity	mm^-1 C^-1		
Resistivity	1.7e-004		
	ohm mm		

TABLE 30Structural Steel > Compressive Ultimate Strength

Compressi	ve
Ultimate	Strength
MPa	
0	

TABLE 31 Structural Steel > Compressive Yield Strength

Compre	ssive
Yield	Strength
MPa	
4	250

 TABLE 32

 Structural Steel > Tensile Yield Strength

 Tensile Yield Strength MPa

TABLE 33 Structural Steel > Tensile Ultimate Strength Tensile Ultimate

Strength MPa 460

TABLE 34 Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C 22

TABLE 35Structural Steel > S-N Curve

Alternating		Mean
Stress MPa	Cycles	Stress
		MPa
3999	10	0
2827	20	0
1896	50	0
1413	100	0
1069	200	0
441	2000	0
262	10000	0
214	20000	0
138	1.e+005	0
114	2.e+005	0
86.2	1.e+006	0

TABLE 36 Structural Steel > Strain-Life Parameters

Strength	Strength	Ductility	Ductility	Cyclic Strength	Cyclic	Strain
Coefficient	Exponent	Coefficient	Exponent	Coefficient MPa	Hardening	
MPa					Exponent	
920	-0.106	0.213	-0.47	1000	0.2	

TABLE 37
Structural Steel > Isotropic Elasticity

			.	ť
Young's	Poisson's	Bulk	Shear	Temperature
Modulus	Ratio	Modulus	Modulus	С
MPa		MPa	MPa	

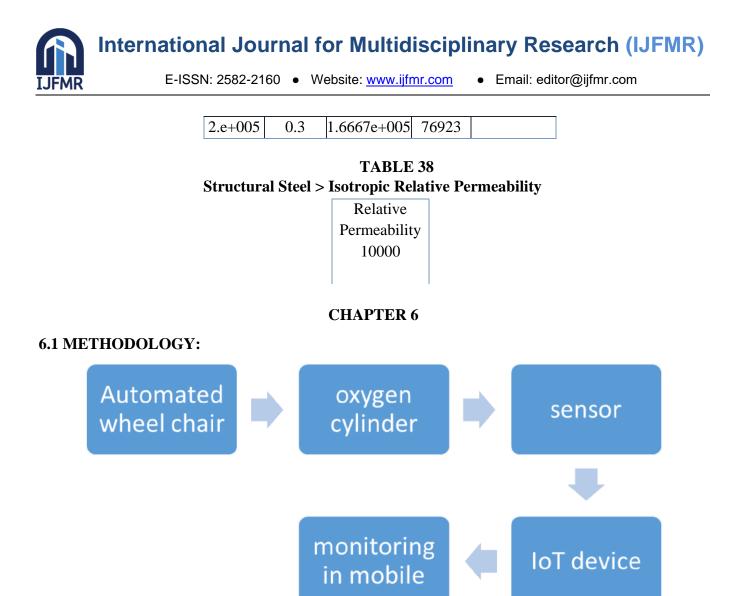


Fig. 6.1 Methodology

6.1.1 AUTOMATED WHEEL CHAIR

A motorized wheelchair, powerchair, electric wheelchair or electric-powered wheelchair (EPW) is a wheelchair that is propelled by means of an electric motor (usually using differential steering) rather than manual power. Motorized wheelchairs are useful for those unable to propel a manual wheelchair or who may need to use a wheelchair for distances or over terrain which would be fatiguing in a manual wheelchair.

They may also be used not just by people with 'traditional' mobility impairments, but also by people with cardiovascular and fatigue-based conditions. Powerchairs are generally four-wheeled or six-wheeled and non-folding, however some folding designs exist and other designs may have some ability to partially dismantle for transit.

Four general styles of powerchair drive systems exist: front, centre or rear wheel drive and allwheel drive. Powered wheels are typically somewhat larger than the trailing/castoring wheels, while castoring wheels are typically larger than the castors on a manual chair. Centre wheel drive powerchairs have castors at both front and rear for a six-wheel layout.

Powerchairs are generally four-wheeled or six-wheeled and non-folding, however some folding designs exist and other designs may have some ability to partially dismantle for transit.

6.1.2 OXYGEN CYLINDER

In a hospital you have to follow these steps for the easy use of the o2 cylinder.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

- i. Place the cylinder on the trolly, stand.
- ii. After that, you have to connect the regulator with the cylinder.
- iii. Ste the pressure and oxygen flow rate by giving instructions.
- iv. Connect one end of the gas pipe/cannula to the outflow knob and the other end to the oxygen nasal mask

6.1.3 SENSOR

Technological progress allows more and more sensors to be manufactured on a microscopic scale as microsensors using MEMS technology. In most cases, a microsensor reaches a significantly faster measurement time and higher sensitivity compared with macroscopic approaches. Due to the increasing demand for rapid, affordable and reliable information in today's world, disposable sensors—low-cost and easy-to-use devices for shortterm monitoring or single-shot measurements—have recently gained growing importance. Using this class of sensors, critical analytical information can be obtained by anyone, anywhere and at any time, without the need for recalibration and worrying about contamination.

Analog sensors such as potentiometers and force-sensing resistors are still widely used. Their applications include manufacturing and machinery, airplanes and medicine, of our dayto-day life. There is a wide range of other sensors that measure chemical and physical properties of materials, including optical sensors for refractive index measurement, vibrational sensors for fluid viscosity measurement, and electro-chemical sensors for monitoring pH of fluids.

6.1.4 IOT DEVICE

Iot technologies and Artificial Intelligence technologies to help the users gain mobility and moving freely and safely without needing someone's help. However, they are too expensive, and their hardware is too heavy which makes the software system response too slow. The wish of most of the people in this world is to be wealthy and successful. However, some just want to have a comfortable and normal life. Due to illness, car accidents, impairment, and eldership this wish became impossible at least to them. People with the mentioned disabilities are increasing every year, therefore people who do not have a suitable wheelchair are increasing, too.

There are many cases where disabled people get fall and injured and sometimes for days nobody knows about their situation. Wheelchair besides other commands. In the autonomous mode, the author used a map designed using an RGBD camera that scans the surrounding environment and an IR sensor to detect obstacles, as using only an RGB-D camera will not be enough as the author declared. In contrast with the above paper who used only one unit of obstacle sensor, have used 4 units of IR sensor surrounding the wheelchair from each side, depending on the direction of the wheelchair, one of the four IR sensors will be activated.

6.1.5 MONITORING IN MOBILE

Here is our list of the seven best IoT monitoring tools

- I. Domotz Editor's Choice
- II. Splunk Industrial For Iot
- III. Datadog Iot Monitoring
- IV. Senseye Pdm V. Sky spark
- VI. Team viewer

VII. Aws Iot Device Management

6.2 PARTS

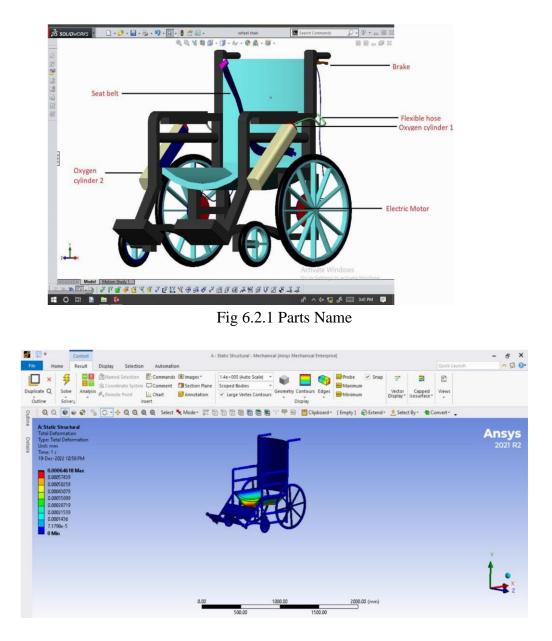


Fig 6.2.2 Ansys

6.3 COST ESTIMATION

SO.NO	MATERIAL	COST RS
1	WHEEL CHAIR	8000
2	OXYGEN CYLINDER'S	16400
3	SENSOR	4000

4	ELECTRIC MOTOR	16500
5	IOT SYSTEM	10800
6	RASPBERRY KIT	7500
7	BRAKE AND MOVING JOYSTICK MECHANISMS	5600
8	REGULATORS AND ATTACHMENTS	3500
	TOTAL	72,300

REFERANCE:

- 1 Kazi Ehsanul Karim, design and simulation of an automated wheelchair with vertically adjustable seat, December 2014.
- 2 Mohammed Haiyan alsibai, a study on smart wheelchair system, December 2015.
- 3 Pacha Shobha, mobile controlled automated wheel chair for disabilities,October 2020. 4 Priyanka Mishra, iot based automated wheel chair for physically challenged, 5 feb 2022.
- 6 V. Gokula Krishnan, automated wheel chair using multiple methods in android technology, sep 2021.
- 7 T.nasima bagum, designing an automated wheel chair with stair crossing facility, April 2012.
- 8 J. Boopala, android solicitation hinge automated wheel chair for physically crippled persons, feb 2019.
- 9 P. Sidharth, iot based wheel chair fall detection, Sep 2021.
- 10 Jun Kanai, measurement of the cervical movement for the control of the omnidirectional motorized wheel chair, oct 2000.
- 11 Prasanna vernekar, gesture controlled wheel chair and convertible wheel chair into stretcher, June 2020.
- 12 Yoshihiro Kaiya, robotization of motorized wheel-chair and prospect for assistant robot ,Jan 2020.
- 13 Adeniran bade Joko okenite, development of a wheel chair Automator, Sep 2020. 14 M wajahat sohail Godalming-based control of wheel chair, may 2022.
- 15 Pavani gottipati, in-wheel brushless dc motor for a wheel chair drive, dec 2010.
- 16 Marzuki ibrahim, the process of designing special wheel chair for people with physical disabilities, Aug. 2020.