
 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23022147 Volume 5, Issue 2, March-April 2023 1 

 

Pagerank Seo Algorithm : Issues, Complexity And 

Implementation 
 

Mpemba Ngoma Luz1, Kanyinda Kayembe Kam’s2, Likotelo Binene 

Camille3, Nlandu Ngunda Jean4, Nsumbu Lukamba Telesphore5 , 

Balanga Koko Joe6 , Mande Kumwimba Hydrice7 

Mayala Lemba Francis8, Mbikayi Mpanya Jean Marcel 9, Engombe Wedi 

Boniface10  
 

1Head of Works, Dept. of Informatics and Technology, Institut Supérieur Pédagogique(ISP)/ Mbanza-

Ngungu/ DR Congo. 
2Assistant2, Dept. of Informatics and Technology, , Institut Supérieur Pédagogique(ISP)/ Mbanza-

Ngungu/ DR Congo. 
4,5Assistant1, Dept. of Informatics and Technology, , Institut Supérieur Pédagogique(ISP)/ Mbanza-

Ngungu/ DR Congo. 
7Assistant1, Dept. of Mathematics and Computer Science, Université Pédagogique 

Nationale(UPN)/Kinshasa DR Congo. 
3,6Assistant2, Dept. of Mathematics and Computer Science, Université Pédagogique 

Nationale(UPN)/Kinshasa DR Congo.. 
8Head of Works, Dept. Mathematics and Computer Science, Université Pédagogique 

Nationale(UPN)/Kinshasa DR Congo 
9Professor, Dept. of Informatics, Institut Supérieur des Statistiques(ISS)/Kinshasa/ DR Congo.  and 

10 Emeritus Professor, Dept. Mathematics and Computer Science,Université Pédagogique 

Nationale(UPN)/Kinshasa DR Congo. 

 

Abstract  

Today, the Internet users need an optimal search for information on the web. The display of web pages 

within a search engine is not a mystery. This implies good mathematical modeling and good knowledge 

of computer science for its implementation. The web is a directed graph that must be exploited. The 

matrices of its graph contain a structure of the links and the navigation of the Internet user. Considering 

the billions of hosted websites and the dynamism of the web, its links can be added at any time. Changing 

this link structure impacts the PageRank. Thus, for good stability, the algorithms must be improved.  

PageRank algorithm that displays a good web page Search Engine Optimization (SEO) taking into account 

the score of each page, pay attention to many researches that make improvements day by day. Even though 

it is a basic formula, the PageRank algorithm makes a successful business. In this paper, we had not only 

implemented this algorithm in python but also explain how it works and calculated its complexity. 
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1. Introduction  

Every day, many of us use web services for various reasons. For example, for a asked query, today's 

information systems compute hundreds of base score functions between that query and each document in 

a collection. Then combine these scores before assigning a final score to each of the documents [Massih 

at all, 2012]. 

The Information search, once reserved for specialists, has become one of the emancipated technologies of 

the 21st century. Each of us expects today to be able to find various information in record time on any 

type of subject through the Internet and these web services [Amani, 2001], [Beigdeder, 2012]. 

The Internet, being a global computer network, these web services operate in the form of a directed graph,                   

which must be exploited through a search engine, for example [Bollobás, 1998],[Miller at al, 1997]. 

The Google search engine, one of the most powerful web services, offers Internet users the most relevant 

results based on a specific query. Several models are possible for web SEO, but this paper, talks about the 

PageRank scheduling algorithm. 

This Google’s algorithm is based on mathematical modeling, it intelligently sorts its results in order of 

relevance taking into account the best score of a web page j compared to the different links (href) of the 

outgoing pages i pointing to j [Amani, 2001 ], [Boarding 2022].Our contribution is twofold. First of all 

we will study the operation of the PageRank algorithm, its mathematical modeling as well as calculating 

its complexity. Then, normalize the web graph through an adjacent matrix and implement the algorithm 

in python language. And this, to calculate the PageRanks of each web page in order to find the best score 

for an optimal search for information. 

2. General concepts 

 

Definition 2.1 (Research models):are programs that help users find the information they are looking for 

in a collection of textual or multimedia documents. For a given information request, the purpose of these 

models is to return a subset of documents from the collection that could contain the information sought. 

The documents of this subset which actually contain the information sought are called relevant documents. 

[Maron and Kuhns, 1960], [Brini et al, 2006],[Salton and McGill 1986]. 

 

Definition 2.2 (crawler): According to the HTTPs protocol, a crawler retrieves Web pages that are stored 

in a list of URL addresses that the robot has beforehand. These pages are analyzed to extract the texts and 

links they contain. These extracted texts are then indexed and these links go through a series of tests to 

determine whether they should be added to the seed URL list or not. As pages are indexed, the 

corresponding URLs are removed from this list. The crawlers generally perform some type of 

normalization on URL addresses in order to avoid considering the same resource more than once [Amani, 

2001],[Laudon and Laudon, 2013]. 

 

Definition 2.3 (Search engine) :Most search engines today use a two-step approach to order web pages 

with respect to a given user query. At the beginning of the algorithm, the content information of the pages 

is used to calculate scores of correspondence between these pages and the request. In the next step, new 

scores are then calculated, using the additional information of the links between pages. These scores, 

combined with previous scores, provide the final scores against which the pages are ordered [Massih, 

2013]. [Bouzeghoub & Mosseri 2017].  

https://www.ijfmr.com/
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PageRank algorithm Functioning : The Google’s algorithm of search engine uses heavily the popularity 

index called “PageRank”. PageRank [Brin and Page 1998] is the most popular information-based link 

ranking approach. Invented by Sergey Brin and Lawrence Rank, co-founder of Google company, it uses 

the hyperlink structure of the Web to build a Markov chain with a transition matrix P whose purpose is to 

give the probability that a user, randomly following the links of the Web pages on which it navigates, 

arrives on a particular page [Liu, 2011].  

 

Initial formula: The initial formula for calculating PageRank was once given by Stanford University in a 

document entitled “The Anatomy of Large-Scale Hypertuel web Search Engine [Andrieu, 2010], [Martin 

and Chartier, 2016]. 

PR(A) = (1 – d)/d + (
𝑃𝑅(𝑇1)

𝐶(𝑇1)
+

𝑃𝑅(𝑇2)

𝐶(𝑇2)
+ ⋯+ 

𝑃𝑅(𝑇𝑛)

𝐶(𝑇𝑛)
 ) 

Equation 1: Initial formula for calculating PageRank  

Or : 

- PR(A) equals the PageRank of page A; 

- Tn (source pages) refers to the pages pointing (having set up a link) to page A (target page); 

- C(Tn) represents the number of real links in the page Tn; 

- d is a multiplying or damping factor. d is equivalent to Google's launch at 0.85. Google therefore 

justifies its formula: it can be evoked as representative of the behavior of an Internet user who would 

carry out a web browsing session and choose a web page, at random, then click on all the links it 

shows, and thus continue to click on all the links encountered. Eventually, this “crazy clicker” Internet 

user could get tired and start again, at one time or another, from a new starting page [Martin and 

Chartier, 2016]. 

In this myth, the probability that a page is visited by the Internet user is represented by its PageRank. And 

the “d” factor represents the fact that the crazy Internet user changes, at one time or another, the starting 

page to start again on a new surfing.  

 

2.1. Definition and notation 

The PageRank of a page j, denoted by PR(j) is the sum of the normalized PageRanks of all the pages 

pointing to this page. The normalized PageRank of a page is obtained by dividing its PageRank by the 

number of links leaving this page [Massih, 2017]. 

Thus, noting by: R(PR(1),….,PR(N)) 

The row vector whose component j𝜖{1,…,𝑁}corresponds to the PageRank of page j, the recursive matrix 

calculation of the PageRanks is: R=RP 

By initializing the vector R by the row vector where all the components are equal to 
1

𝑁
 , for,  

R(0) = (
1

𝑁
, … ,

1

𝑁
), the PageRanks can then be estimated iteratively: at each iteration l, the new vector𝑅(𝑙+1)is 

simply calculated as𝑅(𝑙+1)=𝑅(𝑙)P. There is however no guarantee a priori that the preceding iterative 

calculation rule converges towards a unique solution. To guarantee this convergence, we rely on 

matricesergodic, which in practice is obtained by constructing P as below. 

The construction of the matrix P takes place from the adjacency matrix A of the graph:𝐴𝑖𝑗= 1, ∃ a link 

from page i to page j, and 0 otherwise. For each page i containing outgoing links, the probability of 

borrowing a link leading to page j can be defined by: 

https://www.ijfmr.com/
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. 

Equation 2: The probability of consulting a link to j 

The probability matrix P which accounts for this process is then a combination of these two types of 

passage: 

 Equation 3: probability matrix pass combination  

 

2.2. Algorithms and complexity 

Definition 3.2.1 (Algorithmic):An algorithm is a succession of actions carried out in stages and which 

allows the realization of a task [Chen, 2022], [Cormen, 1994]. The algorithm below summarizes the 

iterative estimation of the PageRanks vector R. A proof of the convergence of the previous iterative rule 

with the matrix P defined as above can be found in [Langville and Meyer 2004]. λ (λ∈] 0.1[ ) is a damping 

factor usually set at 0.85. 

Input : 

- The adjacency matrix A of the directed web graph at a given instant; 

- Damping factor λ; // usually set to 0.85 

- Accuracy ϵ for the stopping criterion; 

Initialization Calculate the probability matrix P by the equation1; 

Vector PageRank R(0) = ,(
1

𝑁
, … ,

1

𝑁
)I← 0. 

 

 

 

 

Algorithm 1: probability matrix calculation  

 

Definition 3.2.2 (Complexity):The complexity of an algorithm is the number of elementary operations it 

must perform to complete a calculation based on the size of the input data. The complexity of an algorithm 

is the measure of the number of elementary operations it performs on the problem for which it was 

designed. 

We can therefore now define more precisely the time complexity of an algorithm A. It is a function f, 

where f(n) is the maximum number of calculation steps (each instruction or elementary operation is 

associated with a cost called no computation) that A needs to solve a problem having an input of length n 

[Cormen at al, 1994],[ Ngoie and Mpemba, 2015]. 

https://www.ijfmr.com/
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2.2.1. Algorithm of PageRank iteration calculations 

 

Algorithm 2: PageRank interaction calculation 

2.2.2. Calculation of complexity 

f (n) = 1+1+1+1 + 

           1+1+1 

 

   

 

= 8+ 2(n – 0 +1) + 4(n –0+1)+∑ 4𝑛
𝑖=0  +∑ [4(𝑛 − 0 + 1)]𝑛

𝑖=0  

 

= 8 + 2n + 2 + 4n + 4 + 4n +4 +  

 

= 18 +  

= 18 +10𝑛+ 4n (n – 0 + 1) + 4 (n – 0 +1) 

= 18 +10𝑛+ 4n2 + 4n + 4n +4n 

= 4n2 + 22n + 18 

𝝄(n2): It is a quadratic complexity. 

3. Modeling and implementation 

Definition 4.1 (Graph): A graph is a triplet Γ = (V; E, N) where: 

- V is the set of vertices of the graph; it will be convenient to use the notation V (Γ) to denote the 

set of vertices of the graph Γ; 

- N is a set which is used to label the edges. N is the set of edges; 

- E                 x N is the set of edges; notation E = E(Γ). 

https://www.ijfmr.com/
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An edge a  E is written a = ([x, y], n), x, y V, n  N ; x and y are the ends of a and n its label; a is 

incident to x and y; x and y are said to be adjacent; if x = y, the edge is a loop [Laforest, 2017]. 

On this, two edges a and b are said to be adjacent, if they have (at least) one identical end. 

Definition 4.2 (Directed graph):A directed graph or digraph(or simply Γ) is a triple, 

 defined as follows: 

- V is the set of vertices; notation V = V ( ); 

-   V × V × N is the set of arcs; notation (Γ); 

- N is a set used to label arcs. 

A bow a   will be noted a = ((x, y), n): the arc goes from x to y. In the following, we will often denote 

Γ for . Two incidence functions are used in this context: 

  V 

Define a = ((x, y), n)) by:∀ 

- i(a) = x, the initial vertex of a, 

- t(a) = y, the terminal vertex of a. 

Similarly for undirected graphs, we say that arc a is incident to x and y and y is adjacent to x. Since a 

loop is an arc a such that i(a) = t(a). ∀ 𝑥, 𝑦  V fixed, the set {a  , i(a) = x, t(a) = y} of cardinality p is 

called p-arc; if p = 1, we speak of a simple arc; if p ≥ 2, it is a multi-arc. 

Let x∈V. We define 

𝑑−(x) = card{a∈−→ E , t(a) = x}, the indegree of x, 

𝑑+(x) = card{a∈−→ E , i(a) = x}, the outdegree of x. 

 

The degree of x is defined by d(x) := d−(x) + d+(x). If d(x) = 0, vertex x is said to be solitary. 

If 𝑑− (x) = 0 and d−(x) > 0, x is a sink. 

If 𝑑+ (x) = 0 and d+(x) > 0, x is a source. 

If it k ∃ ∈N such that vertex x, we have d + (x) = k, the digraph is said to be outgoing semi-regular. If 

We have the same property for incoming degrees, the digraph is incoming semiregular. The digraph is 

said to be constant if it is both incoming semi-regular and outgoing semi-regular [Gross and Yellen, 

2007]. 

Scenario :In this article, we will develop the principle of an algorithm leading tothe estimation of these 

probabilities on a simple example consisting of a directed graph representing the structure of the hyperlinks 

of 8 Web pages from P1 to P8. The nodes of this graph illustrate the pages and the directed arcs represent 

the links between these pages. The Markov model then represents this graph as a square matrix P where 

an element 𝜋𝑖𝑗 is the transition probability from page i to page j. 

The basic assumption used to construct the matrix P is that a user, being on any page of the web, clicks 

with equiprobability on the links leaving this page to arrive at another page. 

https://www.ijfmr.com/
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Figure 1: Oriented graph P normalized  

3.1. Directed graph normalization 

The normalized PageRank of a page is obtained by dividing its PageRank by the number of links leaving 

this page [Massih, 2013]. 

  
Figure 2: adjacent matrix of normalized 

P graph 

 

𝑃𝑅(𝑖)

|𝑜𝑢𝑡(𝑖)|
 

Let’s calculate the pages of the directed web graph 

P taking into account the following elements: 

PR(p)= ∑
𝑃𝑅(𝑖)

|𝑜𝑢𝑡(𝑖)|𝑖∈𝑖𝑛(𝑝)   

 

Of which :  

∑
𝑖∈𝑖𝑛(𝑝)

 
It is the sum of all elements 

which have a link with p denoted 

by ent(p) 

 

  

 

 

 

 

 

PR(p) = 

 

PR(P1) = +0.85×
1−0,85

8
(
𝑃𝑅(𝑃1)

4
+ 

𝑃𝑅(𝑃3)

4
+ 

𝑃𝑅(𝑃5)

2
+ 

𝑃𝑅(𝑃7)

2
) 

P = 

is the sequence for each element i, we take the PageRank of (i) divided by the number 

of outgoing links from page i 

https://www.ijfmr.com/
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PR( P2) = + 0.85 × 
1−0,85

8
(
𝑃𝑅(𝑃1)

4
+ 

𝑃𝑅(𝑃3)

4
+ 

𝑃𝑅(𝑃5)

2
+ 

𝑃𝑅(𝑃7)

2
) 

PR ( P3) = +0.85 ×
1−0,85

8
(
𝑃𝑅(𝑃1)

4
) 

PR(P4) = +0.85×
1−0,85

8
(
𝑃𝑅(𝑃1)

4
+ 

𝑃𝑅(𝑃3)

4
+ 

𝑃𝑅(𝑃6)

1
) 

PR(P5) = +0.85×
1−0,85

8
(
𝑃𝑅(𝑃4)

2
+ 

𝑃𝑅(𝑃7)

3
+ 

𝑃𝑅(𝑃8)

2
) 

PR(P6) = +0.85×
1−0,85

8
(
𝑃𝑅(𝑃3)

4
+ 

𝑃𝑅(𝑃5)

2
) 

PR(P7) = +0.85×
1−0,85

8
(
𝑃𝑅(𝑃8)

2
) 

PR(P8) = +0.85×
1−0,85

8
(
𝑃𝑅(𝑃1)

4
+ 

𝑃𝑅(𝑃2)

2
+ 

𝑃𝑅(𝑃7)

3
) 

 

3.2. Implementation 

We had chosen the Python language in relation to its characteristics and its recent performances in 

mathematical modeling programming. Python is a language that to evolve [Swinnen, 2009]. 

Python source code at:https://github.com/jnn95/PageRank.git 

3.2.1. Results (Calculation of nodes, edges and unit matrix of graph P) 

The nodes of P are: ['P1', 'P2', 'P3', 'P4', 'P8', 'P6', 'P5', 'P7'] 

 

The edges of P are: [('P1', 'P2'), ('P2', 'P1'), ('P1', 'P3'), ('P3', 

'P1'), ('P1', 'P4' ), ('P4', 'P1'), ('P2', 'P8'), ('P3', 'P2'), ('P3', 'P6'), 

('P6', 'P4' ), ('P5', 'P4'), ('P8', 'P5'), ('P5', 'P2'), ('P7', 'P2'), ('P8', 

'P7' ), ('P7', 'P8'), ('P1', 'P8'), ('P5', 'P6')] 

 

There matrix unitary is :

[
 
 
 
 
 
 
 
0 1 1 1 1 0 0 0
1 0 1 0 1 0 1 1
1 1 0 0 0 1 0 0
1 0 0 0 0 1 1 0
1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 1 1 1 0 0
0 1 0 0 1 0 0 0]

 
 
 
 
 
 
 

 

 

3.2.2. Result of Score Calculations (PageRank) 

{'P1': 0.2252566341110866,  

'P2': 0.1495245661586878,  

'P3': 0.06661752682111585, 

'P4': 0.1459826301138691, 

'P5': 0.09039822672940236, 

'P6': 0.06323766669962978, 

'P7': 0.09039822672940236, 

'P8': 0.16858452263680596} 

 

It is the P1 page which has a better vote or a high score. It is 

therefore the page that gives a better web referencing taking 

into account the graph P. 

 

https://www.ijfmr.com/
https://github.com/jnn95/PageRank.git
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5. Conclusion 

In this article, which deals with the issues, the complexity and the implementation of the PageRank 

algorithm, we showed how the Google research Engine calculates the PageRank. We also demonstrated 

that how its matrix is a combination of stochastic matrices of the structure of the links and the behavior of 

the Internet user in the web operation. 

The complexity calculated in this paper, shows that it is quadratic given the algorithm has two nested 

loops. PageRank’s formula is calculated iteratively as web pages keep growing, so a damping constant of 

0.85 is used to lighten the load. 

This convergence speed also gives the best ranking. The example of the web graph used in this paper 

shows that the web page P1 gives us a better SEO score of 0.2252566341110866, compared to the other 

pages. Note also that we have never finished calculating the PageRank of Web pages because: 

- In terms of complexity, we do not know in advance the number of iterations, it depends on 

amarginerror; 

- Then, it's a distributed algorithm, there is not a super Google computer which calculates all the 

PageRanks of all the web pages of a site, it is rather thousands of computers each of which 

calculates the subsets of the PageRanks and then put the results together; Once these scores are 

calculated, they can be sorted from largest to smallest and display good SEO to the Internet user. 

- And finally, the web is dynamic (there are links that appear and disappear, there are pages that are 

deleted and others can be created). 

PageRank algorithm remains a very open subject because the web has become our daily life and the search 

for the best information remains essential for everyone. Other improvements for the future may be a 

PageRank algorithm that can understand semantics by talking about the Semantic Web taking into account 

ontologies, in order to find accurate results in seconds instead of increasingly complex queries . 
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