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Abstract 

Self-similar solution of population balance equation includes the number density function which remains 

invariant or contains a part that is invariant. This paper describes self-similar solution of aggregation 

population balance model with constant kernel. Using this constant kernel, moment of the population 

balance system achieves the form μi(t) ∝ ti−1 and the aggregation population balance equation with 

constant kernel reduces to a first order linear ordinary integro-differential equation whose solution is 

exponential function with negative power. 
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1. Introduction 

Population balance equation mainly introduces aggregation and breakage process. In aggregation process, 

two or more particles are combined to form a large particle whereas in breakage process a particle breaks 

into two or more particles. Aggregation was introduced through Smoluchowski coagulation equation by 

Marian Smoluchowski in 1916 [8]. Direct solution of population balance equation for aggregation consists 

of finding the population density function for given kernel. Mathematical model of aggregation is 

 
∂f(x,t) 

∂t
 =  

1

2
 ∫ a(x − x′, x′)f(x − x′, t)f(x′, t)dx′ − f(x, t) ∫ a(x, x′) f(x′, t) dx′

∞

0
 

x

0
  (1) 

  

where 𝑓(𝑥, 𝑡) is population density function and a(x, x′) is aggregation kernel or aggregation frequency 

for particles of masses x and x′. Self-similarity is very important in case of solving inverse breakage model 

[6]. In this paper, self-similarity is used to solve aggregation model. Similarity transformation for 

population balance equation has been used by Lifshitz and Slyozov [7] for agglomerating crystals, 

Friedlander [4,5] and Friedlander and Wang [2] for coagulating aerosols, Narsimhan et al. [3] and 

Ramkrishna [1] for break-up of bubbles and drops, Kapur [9] for comminution of powders. 

 

2. Preliminaries  

Definition 2.1. Self-similar solution is a solution which is obtained by some transformation in solution 

such that number of co-ordinates is decreases by at least one. One of the forms of self-similar solution of 

equation (1) that is the population density function f(x, t) is  

 

f(x, t) = h1(t) φ(ξ),        ξ = h2(t) x             (2)  
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where ξ is the similarity variable and h1(t), h2(t) and φ(ξ) are nonnegative, smooth and bounded 

functions. 

 

Definition 2.2 Moment for the population density function  f(x, t) is 

μi(t) = ∫ xi f(x, t) dx
∞

0
         (3) 

where μ0(t) represents the total number of particles at time t and μ1(t) represents the total mass of the 

system at time t. 

 

2.1.  Moment in term of similarity variables  

Using equations (2) and (3), the moment μi(t) has form, 

 

μi(t) =
h1(t)

h2(t)i+1  ∫ ξi φ(ξ) dξ
∞

0
         (4) 

 

Moment for similarity variable is defined as [10], 

 

Ki = ∫ ξi φ(ξ) dξ
∞

0
          (5) 

 

The definitions of μ0(t) and μ1(t) [10] requires that 

 

K0 = ∫ φ(ξ) dξ
∞

0
= 1          (6) 

 

K1 = ∫ ξ φ(ξ) dξ = 1
∞

0
         (7) 

 

From equations (4), (6) and (7), we get h1(t) and h2(t) in terms of moment as 

 

h1(t) =
μ0(t)2

μ1
           (8) 

 

h2(t) =
μ0(t)

μ1
           (9) 

 

By use of h1(t), h2(t) from equations (8) and (9) and using similarity transformation from equation (2), 

the moment reduces in the form, 

 

μi(t) =
μ1

i

μ0(t)i−1  K𝑖          (10) 

 

3. Population balance model as moment equation  

For constant kernel, a(x, x′) = c (constant), equation (1) reduces to 

 
𝜕𝑓(𝑥,𝑡) 

𝜕𝑡
 =  

𝑐

2
 ∫  f(x − x′, t) f(x′, t) dx′ − c f(x, t) ∫  f(x′, t) dx′

∞

0
 

𝑥

0
    (11) 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23022684 Volume 5, Issue 2, March-April 2023 3 

 

 

Multiplying equation (11) by xi and integrating over semi-infinite interval, it reduces to 

 
dμi(t)

dt
=

c

2
∫ ∫ (x′ + x)i f(x, t) f(x′, t) dx dx′

∞

0

∞

0
− c ∫ xi f(x, t)

∞

0
∫ f(x′, t) dx′dx

∞

0
  (12) 

 

Using the similarity transformation (2) and the values of h1(t) and h2(t) from equations (8) and (9), 

equation (12) reduces to 

 

dμi(t)

dt
= c 

μ1
i

μ0(t)i−2  [
1

2
 ∑  (

ⅈ
r
) Kr

i
r=0 Ki−r−Ki]       (13) 

 

 

3.1. Zeroth order moment equation  

For, ⅈ = 0 , equation (13) becomes 

 
dμ0(t)

dt
= −

1

2
c μ0(t)2          (14) 

 

3.2. Solution of moment equation  

By solving equation (14), we get 

 
1

μ0(t)
=

1

2
ct +

1

μ0(0)
          (15) 

 

Using equation (15), ⅈth moment (10) becomes 

 

μi(t) = KI μ1
i (

1

2
ct +

1

μ0(0)
)

i−1

        (16) 

 

4. Self-similar solution 

Using the similarity transformations 

 

f(x, t) = h1(t) φ(ξ),                  ξ = h2(t) x       

 

f(x′, t) = h1(t) φ(ξ′),                ξ′ = h2(t) x′       

 

f(x − x′, t) = h1(t) φ(ξ″),        ξ″ = h2(t) (x − x′) = ξ − ξ′   

 

equation (11) reduces to 

 

ξ
dφ(ξ)

dξ
= − ∫ φ(ξ − ξ′) φ(ξ′) dξ′

ξ

0
        (17) 
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This is a linear ordinary first order integro-differential equation. On solving equation (17) by using Laplace 

transformation, we get 

 

φ(ξ) = −
1

b
eξ b⁄           (18) 

 

By using equation (7), we get, b = −1. With this value of b, from equation (18), we get 

 

φ(ξ) = e−ξ 

 

which is the self-similar solution that is of exponential nature. 

 

5. Example of self-similarity 

Take c = 2,  μ1 = 1, μ0(0) = 100, from equation (15), we get 

 

μ0(t) =
1

t+0.01
  

 

From equation (9), we get 

 

h2(t) =
1

t+0.01
  

 

From equation (8), we get 

 

h1(t) = (
1

t+0.01
)

2

  

 

From equation (2), we get 

 

f(x, t) = (
1

t+0.01
)

2

e−(
x

t+0.01
)
  

 

which is the solution in this case and 

 

ξ =
x

t+0.01
  

 

is the similarity variable. 
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6. Conclusion 

In this paper, population balance equation for aggregation has been solved for constant kernel by 

introducing moment equation. Similarity transformation has been used to find self-similar solution. 
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