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Abstract 

Greek terms for concavity and convexity are explored in this study, with the outcomes inferred using 

Vander monde's determinant. 
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1. Introduction 

The primary influence of the Greeks is found in Pappus of Alxendria's works, which were written in the 

fourth century A.D. and described the well-known techniques. On the core of proportion, ten Greek 

meanings are outlined in Pythagorean School, six of which are entitled and four of which are unnamed. 

Arithmetic mean, Geometric mean, Harmonic mean, and Contra harmonic mean are some of the more 

well-known named means. The unnamed Greek phrase signifies are F7(R, S),  F8(R, S),  F9(R, S) and 

F10(R, S) are given in [1]; Here, we analyse the resources required to write this paper. 

   

                                          A(R, S) =
R−m

m−S
=

R

R
=

R+S

2
           (1.1) 

 

   F7(R, S) =
R−m

m−S
=

S

R
=

R−RS+S2

R
   (1.2) 

 

  F8(R, S)= 
R−m

m−S
=

m

R
 =

R2

2R−S
           (1.3)       

 

                                              F9(R, S) =
R−S

m−S
=

R

S
=

S(2R−S)

R
      (1.4) 

 

Results regarding one function's convexity with respect to another function were also thoroughly discussed 

in [1]. Results for convexity for various key means and their relevance to mean inequalities were 

discovered in [2-8]. 

 

2. Preliminaries (concepts and methods) 

 

 

 

https://www.ijfmr.com/
https://scholar.google.co.in/citations?view_op=view_org&hl=en&org=13612790124223876061


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23022692 Volume 5, Issue 2, March-April 2023 2 

 

DEFINITIONS AND LEMMAS 

Recall a few of the lemmas and definitions that were develop to create this essay. 

Vander Monde's determinant:  Zhang et al. in their research work used the following VanderMonde's 

determinants extensively and established some remarkable results and limitations. 

In linear algebra, Vandermonde's matrix, titled after Alexandre-Thophile Vander monde, is a matrix where 

each row is a geometric progression. 

Also provides an definite form of the upper triangular matrix of the LU decomposition method. Using 

Gaussian elimination, determinant of Vander monde matrices may also be estimated. It evaluates a 

polynomial at a set of points.Vander monde determinant is used in the representation theory of the 

symmetric group and applicable for different types of means like AM, HM, GM, CHM etc. 

Definition 2.1. A mean defined as  𝑀:  𝑅+
2 → 𝑅+, which has the property R∧ 𝑆 ≤ 𝑀 (𝑅, 𝑆) ≤ 𝑅 ∨ 𝑆,

∀ 𝑅, 𝑆 >  0, where R∧ 𝑆 = 𝑚𝑖𝑛 (𝑅, 𝑆) and R ∨ 𝑆 = 𝑚𝑎𝑥 (𝑅, 𝑆). 

 

Definition 2.2. Vander Monde's determinant: Suppose that ∅ is a continuous function on an interval, I⊆ 

R, 𝑅 = (R0, R1, R2 … … … Rn) and Ri ∈ I, Ri ≠ Rj for i ≠ j    see [8]. Setting  for i ≠ j    see [8]. Setting 

(2.1) 

                  𝑉(𝑅, ∅) =     
1 𝑅0 𝑅0

2

1 𝑅1 𝑅1
2   

… 𝑅0
𝑛−1 ∅(𝑅0)

… 𝑅1
𝑛−1 ∅(𝑅1)

 

                      

                        ...      ... … 

                               1 𝑅𝑛 𝑅𝑛
2   … 𝑅𝑛

𝑛−1 ∅(𝑅𝑛) 

                                                                           (2.1) 

Let ∅(𝑅) = 𝑅𝑛+ℎ𝑙𝑛𝑘𝑅 in 2.1, we have  

    

𝑉(𝑅, ∅)   =     
1 𝑅0 𝑅0

2

1 𝑅1 𝑅1
2   

… 𝑅0
𝑛−1 𝑅0

𝑛+ℎ𝑙𝑛𝑘𝑅0

… 𝑅1
𝑛−1 𝑅1

𝑛+ℎ𝑙𝑛𝑘𝑅1

 

      …          … 

                                  1 𝑅𝑛 𝑅𝑛
2   … 𝑅𝑛

𝑛−1   𝑅𝑛
𝑛+ℎ𝑙𝑛𝑘𝑅𝑛 

                                                                              (2.2) 

Note that ℎ = 0 and 𝑘 = 0 is only the determinant of the matrix of Vander Monde. of (𝑛 + 1)𝑡ℎ   term. 

the subsequent lemma (2.1) and (2.2) are distinct types of determinant (2.1) or (2.2) 

 

Lemma 2.1. If ∅(𝜂) = 𝜂2 and R= (𝑅0, 𝑅1, 𝑅2) is  the determinant of Vander Monde’s matrix of the 3rd 

order is formed in: 

  𝑉(𝑅; ℎ = 0, 𝑘 = 0) = |

1 𝑅0 𝑅0
2

1 𝑅1 𝑅1
2

1 𝑅2 𝑅2
2

|         (2.3)     

This is analogous  

 

𝑉(R; ℎ = 0, 𝑘 = 0) = (𝑅1 − 𝑅0)(𝑅2 − 𝑅0)(𝑅2 − 𝑅1) (2.4) 
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Lemma 2.2.  If ∅(𝜂) = 𝜂
1

2⁄ = √𝜂  and 𝑅 = (𝑅0, 𝑅1, 𝑅2) is only the determinant of the third-order Vander 

Monde matrix and has the following form:  

  𝑉(𝑅; ℎ = 0, 𝑘 = 0) = |

1 𝑅0 √𝑅0

1 𝑅1 √𝑅1

1 𝑅2 √𝑅2

|           (2.5) 

 

This is analogous  

 

𝑉(𝑅; ℎ = −3/2, 𝑘 = 0) = (√𝑅1 − √𝑅0)(√𝑅2 − √𝑅0)(√𝑅2 − √𝑅1)                                         (2.6) 

 

Lemma 2.3. [1] If 𝐹(𝜂) and 𝐺(𝜂) are two functions, then  𝐺(𝜂) is said to be convex with regard to 𝐹(𝜂) 

for  𝑅 ≤ 𝑆 ≤ 𝑇  iff  

 |

1 𝐹(𝑅) 𝐺(𝑅)
1 𝐹(𝑆) 𝐺(𝑆)
1 𝐹(𝑇) 𝐺(𝑇)

| ≥ 0   ≃      |

1 𝐹(𝑅) 𝐺(𝑅)

0 𝐹(𝑆) − 𝐹(𝑅) 𝐺(𝑆) − 𝐺(𝑅)

0 𝐹(𝑇) − 𝐹(𝑅) 𝐺(𝑇) − 𝐺(𝑅)
| ≥ 0       (2.7) 

This is analogous  

 

   [𝐹(𝑆) − 𝐹(𝑅)][𝐺(𝑇) − 𝐺(𝑅)] − [𝐹(𝑇) −   𝐹(𝑅)][𝐺(𝑆) − 𝐺(𝑅)] ≥ 0.                             (2.8) 

Placing R= 𝜂 and S= 1 in equations (1.1) to (1.4), The standard termed means AM, un-termed means 

𝐹7(𝑅, 𝑆),  𝐹8(𝑅, 𝑆) and 𝐹9(𝑅, 𝑆) takes the subsequent form: 

 

𝐴(𝜂, 1) =
𝜂+1

2
                           (2.9)     

                                       𝐹7(𝜂, 1) =
𝜂2−𝜂+1

𝜂
                    (2.10) 

                                        𝐹8(𝜂, 1) =
𝜂2

2𝜂−1
                     (2.11)  

                                       𝐹9(𝜂, 1) =
(2𝜂−1)

𝜂
                      (2.12) 

 

3. RESULTS 

In this section, the prerequisites and requirements for the convexities and concavities of Arithmetic Mean, 

𝐹7(𝑅, 𝑆),  𝐹8(𝑅, 𝑆) and 𝐹9(𝑅, 𝑆) are discussed. 

 

Theorem 3.1 The AM is concave (convex) with regard to 𝐹7(𝑅, 𝑆) iff 𝑉(𝑅; ℎ = 0, 𝑘 = 0) ≤ (≥)0. 

 

Proof:  The AM and 𝐹7(𝑅, 𝑆) in the form; 

𝐴(𝜂, 1) =
𝜂+1

2
  and  𝐹7(𝜂, 1) =

𝜂2−𝜂+1

𝜂
    

 

Let     𝐹(𝜂) =
𝜂+1

2
     and   𝐺(𝜂) =

𝜂2−𝜂+1

𝜂
  ,  

 

by lemma (2.3) we have   
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    |

1 𝐹(𝑅) 𝐺(𝑅)

0 𝐹(𝑆) − 𝐹(𝑅) 𝐺(𝑆) − 𝐺(𝑅)

0 𝐹(𝑇) − 𝐹(𝑅) 𝐺(𝑇) − 𝐺(𝑅)
|= 

|
|

1
𝑅+1

2

𝑅2−𝑅+1

𝑅

0
𝑆−𝑅

2

𝑆2−S+1

𝑆
−

𝑅2−𝑅+1

𝑅

0
𝑇−𝑅

2

𝑇2−T+1

𝑇
−

𝑅2−𝑅+1

𝑅

|
|
 

On Simplifying the determinant leads to  

 

                                           
 ( S−𝑅)(T−𝑅)(T−𝑆)

2𝑅𝑆𝑇
=

𝑉(R;ℎ=0,𝑘=0)

2RST
≥0.      (3.1)   

 

Similarly by taking 𝐹(𝑦) =
𝜂2−𝜂+1

𝜂
  and   𝐺(𝑦) =

𝜂+1

2
,     by lemma (2.3) we have   

 
(S−𝑅)(T−𝑅)(S−T)

2𝑅𝑆𝑇
=

𝑉(R;ℎ=0,𝑘=0)

2𝑅𝑆𝑇
≤ 0.     (3.2)   

 

The theorem (3.1) is proved by combining equations (3.1) and (3.2). 

  

 Theorem 3.2. The AM is concave (convex) with regard to𝐹8(𝑅, 𝑆) iff 𝑉(𝑅; ℎ = 0, 𝑘 = 0) ≤ (≥)0. 

 

Proof: : The AM and 𝐹8(R, S) in the form; 

 𝐴(𝜂, 1) =
𝜂+1

2
  and  𝐹8(𝑦, 1) =

𝜂2

2𝜂−1
 

 

Let     𝐹(𝜂) =
𝜂+1

2
     and   𝐺(𝜂) =

𝜂2

2𝜂−1
  , by lemma (2.3) we have     

 

    |

1 𝐹(𝑅) 𝐺(𝑅)

0 𝐹(𝑆) − 𝐹(𝑅) 𝐺(𝑆) − 𝐺(𝑅)

0 𝐹(𝑇) − 𝐹(𝑅) 𝐺(𝑇) − 𝐺(𝑅)
|= 

|
|

1
R+1

2

R2

2R−1

0
S−R

2

𝑆2

2S−1
−

R2

2R−1

0
T−R

2

𝑇2

2T−1
−

R2

2R−1

|
|
 

 

On Simplifying the determinant leads to  

 
 (S−R)(T−R)(T−S)

2(2R−1)(2S−1)(2T−1)
=

V(R;h=0,k=0)

2(2R−1)(2S−1)(2T−1)
≥ 0        (3.3) 

 

By taking into account F(𝑦) =
𝜂2

2𝜂−1
  &   G(y) =  

𝜂+1

2
  , by lemma (2.3) we have  

 
 (S−R)(T−R)(T−S)

2(2R−1)(2S−1)(2T−1)
=

V(R;h=0,k=0)

2(2R−1)(2S−1)(2T−1)
≤ 0         (3.4) 

 

The theorem (3.2) is proved by combining equations (3.3) and (3.4). 

                

Theorem.3.3. The AM is concave (convex) with regard to𝐹9(R, S) iff   𝑉(𝑅; ℎ = 0, 𝑘 = 0) ≤ (≥)0. 

https://www.ijfmr.com/
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Proof:  

Consider the AM and 𝐹9(𝑅, 𝑆) in the form; 

 

𝐴(𝜂, 1) =
𝜂+1

2
  and  𝐹9(𝜂, 1) =

2𝜂−1

𝜂
 

 

Let     F(𝜂) =
𝜂+1

2
     &   𝐺(𝜂) =

2𝜂−1

𝜂
 , by lemma (2.3) we have     

z 

  |

1 𝐹(𝑅) 𝐺(𝑅)

0 𝐹(𝑆) − 𝐹(𝑅) 𝐺(𝑆) − 𝐺(𝑅)

0 𝐹(𝑇) − 𝐹(𝑅) 𝐺(𝑇) − 𝐺(𝑅)
|= |

|

1
𝑅+1

2

2𝑅−1

𝑅

0
𝑆−𝑅

2

2𝑆−1

𝑆
−

2𝑅−1

𝑅

0
𝑇−𝑅

2

2𝑇−1

𝑇
−

2𝑅−1

𝑅

|
|             

 

As a result of the determinant's simplification, 

 
 (𝑆−𝑅)(𝑇−𝑅)(𝑆−𝑇)

2𝑅𝑆𝑇
=

𝑉(𝑅;ℎ=0,𝑘=0)

2𝑅𝑆𝑅
≤0                (3.5) 

 

By taking into account 𝐹(𝜂) =
2𝜂−1

𝜂
  &   𝐺(𝜂) =  

𝜂+1

2
 , by lemma (2.3) we get  

 
 (𝑆−𝑅)(𝑇−𝑅)(𝑆−𝑇)

2𝑅𝑆𝑇
=

𝑉(𝑅;ℎ=0,𝑘=0)

2𝑅𝑆𝑅
≥0                 (3.6) 

 

The theorem (3.3) is proved by combining equations (3.5) and (3.6). 

 

Theorem.3.4. The un-named mean 𝐹7(R, S) is concave (convex) with respect to𝐹9(𝑅, S) if  and only if 

𝑉(𝑅; ℎ = 0, 𝑘 = 0) ≤ (≥)0. 

 Proof: Consider the 𝐹7(𝑅, 𝑆)  and 𝐹9(𝑅, 𝑆) in the following way;  

 

𝐹7(𝜂, 1) =  
𝜂2−𝜂+1

𝜂
     and  𝐹9(𝜂, 1) = 

2𝜂−1

𝜂
 

 

Let     𝐹(𝜂) =  
𝜂2−𝜂+1

𝜂
  and   𝐺(𝜂) =

2𝜂−1

𝜂
  , by lemma (2.3) we have     

 

  |

1 𝐹(𝑅) 𝐺(𝑅)

0 𝐹(𝑆) − 𝐹(𝑅) 𝐺(𝑆) − 𝐺(𝑅)

0 𝐹(𝑇) − 𝐹(𝑅) 𝐺(𝑇) − 𝐺(𝑅)
|= 

|
|

1
𝑅2−𝑅+1

𝑅

2𝑅−1

𝑅

0
𝑆2−𝑆+1

𝑆
−

𝑅2−𝑅+1

𝑅

2𝑆−1

𝑆
−

2𝑅−1

𝑅

0
𝑇2−𝑇+1

𝑇
−

𝑅2−𝑅+1

𝑅

2𝑇−1

𝑇
−

2𝑅−1

𝑅

|
|
 

 

As a result of the determinant's simplification, 

 
 (𝑆−𝑅)(𝑇−𝑅)(𝑆−𝑇)

𝑅𝑆𝑇
 =  

𝑉(𝑅;ℎ=0,𝑘=0)

𝑅𝑆𝑇
≤0            (3.7)  

https://www.ijfmr.com/
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By taking into account 𝐹(𝑦) =
2𝜂−1

𝜂
  and   𝐺(𝑦) =

𝜂2−𝜂+1

𝜂
 , by lemma (2.3) we have 

  

 
 (𝑆−𝑅)(𝑇−𝑅)(𝑆−𝑇)

𝑅𝑆𝑇
 =  

𝑉(𝑅;ℎ=0,𝑘=0)

𝑅𝑆𝑇
≥ 0          (3.8) 

 

The theorem (3.4) is proved by combining equations (3.7) and (3.8). 
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