A Parametrization of Theta Functions ϕ and ψ

Sabahat Parveen
Assistant professor, Department of Mathematics, Maharashtra College of Arts, Sc. And Comm., Mumbai-08

Abstract

This paper defines a parameter of theta functions ϕ and ψ depending on two positive real numbers a and b. Some properties of which are also proved.

Keywords: Theta function, q- shifted factorial, transformation formula.

1.Introduction:

Jinhee Yi [2] has discovered several interesting theta function parametrizations. Inspired by Yi's work, a parametrization $I_{a, b}$ of theta functions ϕ and ψ for any positive real numbers a and b is introduced.
Several features of this parameter are also explored.
The general definition of Ramanujan's theta function is:
For $|a b|<1, f(a, b)=\sum_{n=-\infty}^{n=\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}$.
Now consider the following theta functions, each of which has a key role to play in this paper.
For $\operatorname{Im}(z)>0$ and $q=e^{2 \pi i z}$,

$$
\phi(q)=f(q, q)=\sum_{n=-\infty}^{n=\infty} q^{n^{2}}
$$

$\psi(q)=f\left(q, q^{3}\right)=\sum_{n=0}^{n=\infty} q^{\frac{n(n+1)}{2}}$,
$f(-q)=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{n=\infty}(-1)^{n} q^{\frac{n(3 n-1)}{2}}=(q ; q)_{\infty}$,
$\chi(q)=\left(-q ; q^{2}\right)_{\infty}$.
Where $(a ; q)_{\infty}$ is a q- shifted factorial defined as,
$(a ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right), \quad|q|<1$.

2.Preliminary Result:

From Ramanujan's notebook [1, Entry 24(iii), p. 39], we have
$\phi(q)=\chi(q) f(q)$.
$\psi(-q)=\frac{f\left(-q^{2}\right)}{\chi(q)}$.
Yi $[2,2.1 .1$, p. 11], has defined a following parameter for two positive real numbers n and k as:
$r_{k, n}=\frac{f(-q)}{k^{\frac{1}{4}} \frac{(k-1)}{24} f\left(-q^{k}\right)}, \quad q=e^{-2 \pi \sqrt{\frac{n}{k}}}$.
Yi [2, 8.1.1, p. 133], has established parametrization of theta function ϕ for two positive real numbers n and k as:
$h_{k, n}^{\prime}=\frac{\phi\left(-e^{-2 \pi \sqrt{\frac{n}{k}}}\right)}{k^{\frac{1}{4}} \phi\left(-e^{-2 \pi \sqrt{n k}}\right)}$.
Jinhee Yi in her thesis [2, Theorem 8.2.1(ii), p. 138], has discovered a following relation,

$$
\begin{equation*}
h_{k, n}^{\prime}=\frac{r_{2,2 n}^{k}}{r_{2,2 n k}} \times r_{n, k} . \tag{2.2}
\end{equation*}
$$

From Yi [2, Lemma 2.1.3(i), p. 13], we find that
$r_{k, \frac{n}{m}}=r_{m k, n} \cdot r^{-1}{ }_{n k, m}$.
Yi [2, corollary 2.1.5(i), p. 14], has established the relation
$r_{k^{2}, n}=r_{k, n k} \cdot r_{k, \bar{k}}$.

3.Main Results:

In this section, a parameter of theta function is defined. Following that certain properties are also established.
Definition: For any positive real numbers a and b, define a function $I_{a, b}$ as;

$$
\begin{equation*}
I_{a, b}=\frac{\phi\left(-q^{2}\right)}{\sqrt{2} a^{\frac{1}{4}} q^{\frac{a}{8}} \psi\left(q^{a}\right)}, \quad q=e^{-\pi \sqrt{\frac{b}{a}}} . \tag{3.1}
\end{equation*}
$$

Remark 1:

Ramanujan [1, entry 27(ii), p.43], provides the transformation formula for ϕ and ψ functions as;
If $\alpha \beta=\pi$ then $2 \sqrt{\alpha} \psi\left(e^{-2 \alpha^{2}}\right)=\sqrt{\beta} e^{\frac{\alpha^{2}}{4}} \phi\left(-e^{-\beta^{2}}\right)$.
Substitute $\beta^{2}=\frac{2 \pi}{\sqrt{n}}$, for any real n, then we get
$\phi\left(-e^{\frac{-2 \pi}{\sqrt{n}}}\right)=\sqrt{2} n^{\frac{1}{4}} e^{\frac{-\pi \sqrt{n}}{8}} \psi\left(e^{-\pi \sqrt{n}}\right)$.
Setting $q=e^{-\pi}$ and $n=4$ in equation (3.2), we get
$\phi(-q)=2 q^{1 / 4} \psi\left(q^{2}\right)$.
Theorem 1: For all positive real numbers a and b, we have

1. $I_{a, 1}=1$,
2. $I_{a, \frac{1}{b}}=I_{a, b}^{-1}=\frac{1}{I_{a, b}}$,
3. $I_{a, b}=r_{4, \frac{b}{a}} \cdot I_{b, a}$.

Proof:

1. By putting $b=1$ in the definition (3.1) and using the identity (3.2), we get the required result.
2. From the definition (3.1), we get

$$
\begin{equation*}
I_{a, b} \cdot I_{a, \frac{1}{b}}=\frac{\phi\left(-e^{-2 \pi \sqrt{b / a}}\right) \phi\left(-e^{-2 \pi \sqrt{1 / a b}}\right)}{2 \cdot a^{1 / 4} \cdot e^{\frac{-\pi \sqrt{a b}}{8}} \cdot e^{\frac{-\pi \sqrt{a / b}}{8}} \cdot \psi\left(e^{-\pi \sqrt{a b}}\right) \cdot \psi\left(e^{-\pi \sqrt{a / b}}\right)} . \tag{3.4}
\end{equation*}
$$

When $n=a b$ and $n=a / b$ are substituted in the equation (3.2) then the equation (3.4) becomes
$I_{a, b} \cdot I_{a, \frac{1}{b}}=1$ and hence the result follows.
3. Again, by using the definition (3.1), we find that

$$
\begin{equation*}
\frac{I_{a, b}}{I_{b, a}}=\frac{b^{1 / 4} \cdot \phi\left(-e^{-2 \pi \sqrt{b / a}}\right)}{a^{1 / 4} \cdot \phi\left(-e^{-2 \pi \sqrt{a / b}}\right)} . \tag{3.5}
\end{equation*}
$$

Applying (2.1) and (2.2) to the ratio (3.5), we get

Remark 2:

1. From the theorem 1(2), it is clear that $a>1$ then $I_{a, b}<1, \forall b<1$.
2. From the theorem $1(3)$, we find that $I_{a, b}>1, \forall a, b>1$.

Lemma: Let a, b and c are positive real numbers, then $I_{a, \frac{b}{c}}=I_{c a, b} \cdot I_{a b, c}^{-1}$.
Proof: From the definition (3.1), we get

$$
I_{a, \frac{b}{c}}=\frac{\phi\left(-e^{-2 \pi \sqrt{b / c a}}\right)}{\sqrt{2} a^{\frac{1}{4}} e^{-\pi \frac{\sqrt{a b / c}}{8}} \psi\left(e^{-\pi \sqrt{a b / c}}\right)} .
$$

Using the identity (3.2) for $n=a b / c$, we find that

$$
I_{a, \frac{b}{c}}=\frac{b^{\frac{1}{4}} \phi\left(-e^{-2 \pi \sqrt{b / c a}}\right)}{c^{\frac{1}{4}} \phi\left(-e^{-2 \pi \sqrt{c / a b}}\right)} .
$$

Then the lemma follows by multiplying and dividing the above equation with
$\sqrt{2} a^{\frac{1}{4}} e^{-\pi \frac{\sqrt{a b c}}{8}} \psi\left(e^{-\pi \sqrt{a b c}}\right)$.

Theorem 2: If a, b and c are positive real numbers, then $I_{\frac{a}{b} \frac{c}{d}}=\frac{I_{a d, b c}}{I_{a c, b d}}$.
Proof: From the lemma, we found that

$$
\begin{equation*}
I_{n, \bar{b}}=I_{n b, a} \cdot I_{a n, b}^{-1} \tag{3.6}
\end{equation*}
$$

Put $n=c / d$ in the equation (3.6) and use the theorem 1(3), we get

$$
\begin{equation*}
I_{\bar{d}^{\prime}, \frac{a}{b}}=I_{a d, b c} \cdot I_{b d, a c}^{-1} \cdot r_{4, \frac{a d}{b c}} \cdot r_{4, \frac{b d}{a c}}^{-1} . \tag{3.7}
\end{equation*}
$$

Substituting $a=c / d$ and $b=a / b$ in the theorem 1(3), we get

$$
\begin{equation*}
I_{\frac{a}{b^{\prime}} \frac{c}{d}}=r_{4, \frac{c / d}{a / b}} \cdot I_{\frac{c}{d^{\prime}} \frac{a}{b}} . \tag{3.8}
\end{equation*}
$$

With the help of the identity (2.3), we simplify the equation (3.7) and (3.8) to get the main result.
Corollary 1: $I_{a^{2}, b}=I_{a b, a} \cdot I_{a, b / a}$, where a and b are positive real numbers.
Proof: We complete the proof by substituting $b=\frac{1}{a}, c=b$ and $d=1$ in the theorem 2 .
Corollary 2: For all positive real numbers a and b,

1. $I_{\bar{b}} \frac{a}{b}=I_{b, b} \cdot I_{a, \frac{a}{b^{2}}}$,
2. $I_{a, a} \cdot I_{a, \frac{b^{2}}{a}}=r_{4, \frac{b^{2}}{a^{2}}} \cdot I_{b, b} \cdot I_{b, \frac{a^{2}}{b}}$,
3. $I_{a, a} \cdot I_{a^{2} b, b}=I_{b, b} \cdot I_{a b^{2}, a}$.

Proof:

1. When we substitute $c=1$ and $d=b / a$ in the theorem 2, we get that $I_{\bar{b}^{\prime}, \bar{b}}=\frac{I_{b, b}}{I_{a, b^{2} / a}}$. Then use of the theorem 1(2) completes the proof.
2. By changing the position of a and b in the corollary 2(1), it is found that
$I_{\frac{b}{a^{\prime}} \cdot \frac{b}{a}}=I_{a, a} \cdot I_{b, \frac{b}{a^{2}}}$.
Put $c=a$ and $d=b$ in the theorem 2, we get
$I_{\frac{a}{b^{\prime}} \frac{a}{b}}=\frac{I_{a b, a b}}{I_{a^{2}, b^{2}}}$.
Change the position of a and b in (3.10), we found that
$I_{\frac{b}{a^{\prime}}, \frac{b}{a}}=\frac{I_{a b, a b}}{I_{b^{2}, a^{2}}}$.
Comparing the equations (3.10) and (3.11), we get

$$
I_{\frac{a}{b^{\prime}}, \bar{b}} \cdot I_{a^{2}, b^{2}}=I_{\frac{b}{a}}{ }^{\prime} \cdot \frac{b}{a} \cdot I_{b^{2}, a^{2}} .
$$

Now by using corollary 2(1), equation (3.9), the theorem 1(3) for $I_{a^{2}, b^{2}}$, we discover that
$I_{b, b} \cdot I_{a, \frac{a}{b^{2}}} \cdot r_{4, \frac{b^{2}}{a^{2}}}=I_{a, a} \cdot I_{b, \frac{b}{a^{2}}}$.
We complete the proof by making use of the theorem 1(2).
3. Put $b=1, c=b^{2}, d=a$ and then $a=b, b=1, c=a^{2}, d=b$ in the theorem 2 , we get

$$
I_{a, \frac{b^{2}}{a}}=\frac{I_{a^{2}, b^{2}}}{I_{a b^{2}, a}}, \quad I_{a, \frac{a^{2}}{b}}=\frac{I_{b^{2}, a^{2}}}{I_{a^{2} b, b}} .
$$

We reach the result by substituting the above values in the corollary 2(2) and the applying the theorem 1(3).
Theorem 3: Let a, b, c, d and k be positive real numbers such that $a b=c d$, then

$$
I_{a, b} \cdot I_{k c, k d}=I_{k a, k b} \cdot I_{c, d} .
$$

Proof: From the definition (3.1), we get
$\frac{I_{k a, k b}}{I_{a, b}}=\frac{\psi\left(e^{-2 \pi \sqrt{a b}}\right)}{k^{1 / 4} \psi\left(e^{-\pi k \sqrt{a b}}\right)}=\frac{\psi\left(e^{-2 \pi \sqrt{c d}}\right)}{k^{1 / 4} \psi\left(e^{-\pi k \sqrt{c d}}\right)}=\frac{I_{k c, k d}}{I_{c, d}}$.
And hence the theorem follows.
Corollary 3: Let n and p be two positive real numbers then
$I_{n p, n p}=I_{n, n p^{2}} \cdot I_{p, p} \cdot r_{4, p^{2}}^{-1}$.
Proof: Substitute $a=p^{2}, b=1, k=n$ and $c=d=p$ in the theorem 3, we get $I_{p^{2}, 1} \cdot I_{n p, n p}=I_{n p^{2}, n} \cdot I_{p, p}$.
We derive the result by using the theorem 1(1) and (3).
Theorem 4: For all positive real numbers n,

$$
\frac{\phi\left(-e^{-2^{n} \pi}\right)}{\psi\left(e^{-2 \pi}\right)}=2^{\frac{4-n}{4}} e^{-\pi / 4} \prod_{i=1}^{n} I_{2,2^{2 i-1}} .
$$

Proof: We use mathematical induction to prove the theorem.

- Step I: Let $n=1$.

From definition (3.1), we have

$$
I_{2,2^{2-1}}=I_{2,2}=\frac{\phi\left(-e^{-2 \pi}\right)}{2^{3 / 4} e^{-\pi / 4} \psi\left(e^{-2 \pi}\right)} .
$$

IJFMR

By rearranging the above equation, we get

$$
2^{\frac{4-1}{4}} e^{-\pi / 4} I_{2,2}=\frac{\phi\left(-e^{-2 \pi}\right)}{\psi\left(e^{-2 \pi}\right)},
$$

Hence result is true for $n=1$.

- Step 2: Suppose result is true for $n=k$.

$$
\frac{\phi\left(-e^{-2^{k} \pi}\right)}{\psi\left(e^{-2 \pi}\right)}=2^{\frac{4-k}{4}} e^{-\pi / 4} \prod_{i=1}^{k} I_{2,2^{2 i-1}}
$$

- Step 3: To prove for $n=k+1$.

$$
\prod_{i=1}^{k+1} I_{2,2^{2 i-1}}=\prod_{i=1}^{k} I_{2,2^{2 i-1}} \cdot I_{2,2^{k+1}} .
$$

Now by using step 2 and the definition (3.1), we get

$$
\prod_{i=1}^{k+1} I_{2,2^{2 i-1}}=\frac{\phi\left(-e^{-2^{k} \pi}\right) \phi\left(-e^{-2^{(k+1)} \pi}\right)}{2^{\frac{7-k}{4}} e^{-\pi / 4} \psi\left(e^{-2 \pi}\right) \psi\left(e^{-2^{(k+1)} \pi}\right)} .
$$

Using the equation (3.3) for $q=e^{-2^{k} \pi}$, we get

$$
\frac{\phi\left(-e^{-2^{(k+1)} \pi}\right)}{\psi\left(e^{-2 \pi}\right)}=2^{\frac{4-(k+1)}{4}} e^{-\pi / 4} \prod_{i=1}^{k+1} I_{2,2^{2 i-1}} .
$$

The above equation demonstrate that result is true for $n=k+1$.

References:

1. B. C. Berndt, Ramanujan's notebook: Part III. Springer Science and Business Media, 2012.
2. Yi, Jinhee. The construction and applications of modular equations. University of Illinois at UrbanChampaign,2001.
