Non-Linear Diophantine Equation

S. N. Adhikary1, Jeetendra Kumar2

1Head, University Department of Mathematics, S.K.M. University, Dumka, Jharkhand, India
2Research Scholar, University Department of Mathematics, S.K.M. University, Dumka, Jharkhand, India

ABSTRACT
This paper is an important study about these Non-Linear Equation which have integer solution exists. i.e., Non-Linear Diophantine Equation, which have named by the famous Greek Mathematician Diophantus of Alexandria. In this paper we have focused to solve Non-Linear Diophantine Equations.

Key Words: -Non-linear Diophantine equations, factor method, some algebric rules.

Mathematics Subject Classification: -97F10,97F20,97F60.

Introduction: Let we have a linear equation \(ax + by = c \),
where \(a, b, c \in \mathbb{Z} \); \(a \neq 0, b \neq 0 \)
and \(x, y \in \mathbb{Z} \) with \(x \geq 0, y \geq 0 \), then this equation is called LinearDiophantine Equation.
Ex: \(10x + 6y = 110 \)
Here \(a = 10, b = 6, c = 110 \)
Clearly \(a \neq 0, b \neq 0 \)

Now we consider Non- linear Diophantine equation.
Some rules to find out the solution of Non-Linear Diophantine Equation
Factor Method: -
Any Non-Linear Diophantine Equation can be solved by this method.
Rules: -
(1) Factorized the equation into two parts (If possible).
(2) Consider such cases.
(3) Find values of \((x, y) \)
(4) Satisfied the condition.

SOME EXAMPLES:-
(1) Solve \((x^2 + 1)(y^2 + 1) + 2(x - y)(1 - xy) = 4(1 + xy)\).
Sola:-
\[(x^2 + 1)(y^2 + 1) + 2(x - y)(1 - xy) = 4 + 4xy.
\]
\[x^2y^2 + x^2 + y^2 + 1 + 2(x - y)(1 - xy) - 2xy - 2xy = 4 \]
\[x^2 - 2xy + y^2 + x^2y^2 - 2xy + 1 + 2(x - y)(1 - xy) = 4 \]
\[(x - y)^2 + (xy - 1)^2 + 2(x - y)(1 - xy) = 4 \]
\[((x - y) - (xy - 1))^2 = 4 \]
\[x(1 - y) + 1(1 - y))^2 = 4 \]
\[(1 - y)(x + 1) = \pm 2\]
\[
\begin{align*}
(1 - y) &= 2 \\
(x + 1) &= 1
\end{align*}
\begin{align*}
(1 - y) &= 2 \\
(x + 1) &= -1
\end{align*}
\begin{align*}
(1 - y) &= 1 \\
(x + 1) &= 2
\end{align*}
\begin{align*}
(1 - y) &= -1 \\
(x + 1) &= 2
\end{align*}
\begin{align*}
(1 - y) &= 1 \\
(x + 1) &= -2
\end{align*}
\begin{align*}
(1 - y) &= -1 \\
(x + 1) &= -2
\end{align*}

We get values from above \((0,-1), (-2,-1), (1,0), (1,2), (-3,0), (0,3), (-2,3), (-3,2)\).

Above are the required solution.

(2) Determine all non-negative pairs \((x, y)\) for which \((xy - 7)^2 = x^2 + y^2\)

Sol\(^n\): -

\[(xy - 7)^2 = x^2 + y^2 \]
\[x^2y^2 - 14xy + 49 = x^2 + y^2 \]
\[x^2y^2 - 12xy + 49 = x^2 + 2xy + y^2 \]
\[x^2y^2 - 2. xy. 6 + 36 + 13 = (x + y)^2 \]
\[(xy - 6)^2 + 13 = (x + y)^2 \]
\[(xy - 6)^2 - (x + y)^2 = -13 \]
\[(x + y)^2 - (xy - 6)^2 = 13 \]
\[(x + y + xy - 6)(x + y - xy + 6) = 13 \]

So,
\[x + y + xy - 6 = 13 \] \[(x + y - xy + 6) = 1 \]

(1)-(2) we get
\[x + y + xy - 6 - x - y + xy - 6 = 12 \]
\[2xy - 12 = 12 \]
\[2xy = 24 \]
\[xy = 12 \]

(3) Solve the following equation in integer \(x, y\):

\[x^2(y - 1) + y^2(x - 1) = 1 \]

Sol\(^n\): -

\[x^2(y - 1) + y^2(x - 1) = 1 \]

Put \((x - 1) = u, \ (y - 1) = v\)
\[x = u + 1, \ y = v + 1 \]

So, \((u + 1)^2v + (v + 1)^2u = 1\)
\[(u^2 + 2uv + v + (v^2 + 2v + 1)u = 1 \]
\[u^2v + 2uv + v + v^2u + 2uv + u = 1 \]
\[u^2v + v^2u + 4uv + u + v = 1 \]
\[uv(u + v + 4) + 1(u + v + 4) = 5 \]
\[(u + v + 4)(1 + uv) = 5 \]

So, condition(1) will be
\[u + v + 4 = 5 \]

1. ** Condition (2) will be**
 \[u + v + 4 = -5 \]

2. ** Condition (3) will be**
 \[u + v + 4 = 1 \]
 \[1 + uv = 1 \]

3. ** Condition (4) will be**
 \[u + v + 4 = -1 \]
 \[1 + uv = -5 \]

So, from equ (1) we get,
\[uv = 0 \]
\[u + v = 1 \]
\[uv + v^2 = v \]
\[v(v - 1) = 0 \]
\[v = 0 \ or \ 1, \ u = 0 \ or \ 1 \]
\[v^2 + 9v - 2 = 0 \]
\[v = \frac{-9 \pm \sqrt{81 + 4}}{2} \]
\[v = \frac{-9 \pm \sqrt{85}}{2} \notin \mathbb{Z} \]

So not possible.

Now from equation (3) we get,
\[u + v = -3 \]
\[uv = 4 \]
\[uv + v^2 = -3v \]
\[4 + v^2 = -3v \]
\[v^2 + 3v + 4 = 0 \]

Here we see No integer solution.

So case is not possible.

Now, from equation (4) we get,
\[u + v = -5, \ uv = -6 \]

So,
\[uv + v^2 = -5v \]
\[-6 + v^2 = -5v \]
\[v^2 + 5v - 6 = 0 \]
\[v^2 + (6 - 1)v - 6 = 0 \]
\[v^2 + 6v - v - 6 = 0 \]
\[v(v + 6) - 1(v + 6) = 0 \]
\[v = 1, -6 \ and \ u = -6 \ or \ 1 \]

So, required pairs are:
\[-(1, 2), (2, 1), (-5, 2), (2, -5). \]
(4) Find +ve Z solution to the equation \(x^3 - y^3 = xy + 61 \)

\[
\text{Sol}^n: \quad x^3 - y^3 = xy + 61 \\
(x - y)(x^2 + xy + y^2) = xy + 61 \\
\text{Clearly, } (x^2 + y^2) = 61 \ldots \ldots \ldots (1) \\
(x - y) = 1 \ldots \ldots \ldots \ldots \ldots \ldots (2)
\]

Now,
\[
(x - y)^2 = (1)^2 \\
x^2 - 2xy + y^2 = 1 \\
61 - 2xy = 1 \\
2xy = 60 \\
xy = 30 \ldots \ldots \ldots \ldots \ldots \ldots (3)
\]

From equation (2) we get, \(xy = 30 \) \text{ and } \(x - y = 1 \)

So, \((x, y) = (15, 2) \) or \((6, 5) \)

But \(15 - 2 = 13 \neq 1 \)

So above pair is not acceptable.
So, our required pair is, \((x, y) = (6, 5)\).

Advantages:

(i) This method is very much easy to be computed.

Disadvantages:

(i) Convert to any Non-Linear Diophantine Equation to factor form is not easy to compute.

(ii) If we cannot convert it to be factor form, then the method will be failed.

REFERENCES