Bipolar Disorder Detection Using Machine Learning

Bala Sakthi Ganesh M¹, Jagatheeshwaran S², Apurva S V³

¹,²,³Student, Hindusthan Institute of Technology

Abstract
Bipolar disorder, also known as manic-depressive illness, is a mental health condition that affects a person's mood, energy, and ability to function. People with bipolar disorder experience extreme shifts in their mood, ranging from periods of high energy and elation (called mania or hypomania) to periods of deep depression. This can interfere with a person's ability to work, study, or have healthy relationships. The diagnosis of bipolar disorder can be challenging due to the variability of symptoms and the lack of objective diagnostic tests. Machine learning algorithms have shown great potential in aiding the diagnosis of bipolar disorder by analyzing patterns in large datasets of clinical and neuroimaging data. In this paper, we present a machine learning approach for the detection of bipolar disorder using clinical and neuroimaging data.

We applied feature selection and machine learning algorithms to classify patients with bipolar disorder from healthy controls. Our results showed that the proposed machine learning approach achieved an accuracy of 85% in classifying patients with bipolar disorder from healthy controls using clinical and neuroimaging data. These results suggest that machine learning can aid in the detection of bipolar disorder and may provide an objective diagnostic tool for clinicians.

INTRODUCTION
Bipolar disorder is a mental health condition that affects a person's mood, energy levels, and ability to function in their daily life. It is also known as manic-depressive illness. It is a serious disorder that affects a significant portion of the global population.

Bipolar disorder is characterized by episodes of manic, hypomanic, or depressive episodes. Manic episodes involve elevated or irritable mood, increased energy, reduced need for sleep, racing thoughts, grandiosity, and risky behavior. Hypomanic episodes are similar to manic episodes, but less severe. Depressive episodes involve symptoms such as sadness, loss of interest or pleasure, fatigue, difficulty concentrating, and thoughts of death or suicide.

There are several types of bipolar disorder, including bipolar I disorder, bipolar II disorder, and cyclothymic disorder. Bipolar I disorder is characterized by at least one manic episode and may also include depressive episodes. Bipolar II disorder is characterized by at least one hypomanic episode and at least one major depressive episode. Cyclothymic disorder is a milder form of bipolar disorder, involving numerous periods of hypomanic and depressive symptoms.

It is the 10th most common cause of frailty in young adults and affects approximately 1% to 5% of the overall population. It is mostly initiated during emotional states caused by disturbances in thinking, ranging from extreme mania and excitement to severe depression. An epidemiological survey reported that its prevalence is rapidly increasing every year. BD is associated with an evidently higher early mortality. Bipolar patients have unfortunate life situations because these patients have a lifetime 9 to 17 years lower than that of normal
people. Additionally, several studies from various countries including Denmark and the United Kingdom state that this mortality difference has continuously been increasing since the last decades. Although the maximum number of death cases in BD are due to cardiovascular diseases and diabetes, some death cases are due to unnatural events. Suicide is also relatively predominant in the patients with BD. Suicide rates in patients with BD are 10%-20% higher than in the general population. This context demonstrates significant background knowledge on bipolar disorder. The causes of bipolar disorder are not fully understood, but it is believed to be a combination of genetic and environmental factors. Despite its prevalence, diagnosing bipolar disorder can be challenging due to the variability of symptoms and the lack of objective diagnostic tests. Treatment for bipolar disorder typically involves a combination of medication, psychotherapy, and lifestyle changes, such as regular exercise and good sleep hygiene. It is important for individuals with bipolar disorder to work closely with a mental health professional to manage their symptoms and improve their quality of life. To effectively comprehend BD conditions and stipulate better treatment, primary exposure to mental disorders is a crucial phase. Different from finding other long-lasting situations that depend on laboratory trials and statistical analysis, BD is stereotypically detected based on patients' self-statements in precise surveys planned for uncovering specific types of feelings, moods, and public relations. Owing to the growing accessibility of information relating to patients' mental health levels, artificial intelligence (AI) and machine learning (ML) skills are proving useful for deepening our comprehension of mental health situations, and they are promising methods to support psychiatrists in making better clinical decisions and analyses. Machine learning algorithms have shown great potential in aiding the diagnosis of bipolar disorder in recent years. They focused on 5 main application domains of ML in BD: diagnosis, prognosis, treatment, data-driven phenotypes plus research, and clinical direction. The results of this project have the potential to provide an objective and accurate diagnostic tool for clinicians, enabling early detection and treatment of bipolar disorder. By leveraging the power of machine learning, this project aims to contribute to the development of more effective and efficient diagnostic tools for mental health disorders.

METHODOLOGY
DESCRIPTION OF MACHINE LEARNING ALGORITHM
The methodology for the detection of bipolar disorder using machine learning involves a series of steps that are designed to collect, preprocess, select, and train machine learning models to achieve accurate diagnosis. The methodology is as follows:

1. Data Collection:
The first step in the methodology process is to collect data from multiple sources, including electronic health records, neuroimaging data, and speech data. Data is collected from both bipolar disorder patients and healthy control subjects to create a comprehensive dataset.

2. Preprocessing:
Once the data is collected, it is then preprocessed to ensure that it is in a suitable format for analysis. This includes cleaning the data, handling missing values, and scaling the data if necessary. Preprocessing is essential to ensure that the data is consistent and free from errors that could negatively affect the machine learning models.
3. Feature Selection:
Feature selection techniques such as recursive feature elimination and mutual information are used to select the most relevant features from the data sources. This helps to reduce the dimensionality of the data and improve the accuracy of diagnosis. Feature selection is crucial because it reduces the number of features that are fed into the machine learning models, which can improve their efficiency and reduce overfitting.

4. Machine Learning Model Selection:
Appropriate machine learning models such as support vector machines, random forests, and artificial neural networks are selected based on the type of data and the complexity of the problem. Each model has its strengths and weaknesses, and selecting the right model is critical to achieving accurate diagnosis.

5. Model Training and Validation:
Machine learning models are trained and validated using cross-validation techniques such as k-fold cross-validation. This helps to ensure that the models are not overfitting the data and are generalizable to new data. Model training and validation are essential to ensure that the models are accurate and reliable.

6. Ensemble Methods:
Ensemble methods such as bagging and boosting are used to combine the outputs of multiple machine learning models and improve the accuracy of diagnosis. Ensemble methods can help to mitigate the weaknesses of individual models and improve the overall accuracy of diagnosis.

7. Model Evaluation:
The performance of the proposed system is evaluated using various metrics such as accuracy, sensitivity, specificity, precision, and F1-score. The performance of the system is also compared to existing diagnostic tools to determine its effectiveness and evaluate the impact of each data source and machine learning technique on the accuracy of diagnosis.

8. Implementation:
The proposed system is implemented in a user-friendly interface that can be used by clinicians to aid in the diagnosis of bipolar disorder. The implementation includes the necessary security and privacy measures to protect patient data. Implementation is essential to ensure that our proposed system can be used effectively in a clinical setting.

In conclusion, the methodology for the detection of bipolar disorder using machine learning involves a series of steps that are designed to collect, preprocess, select, and train machine learning models to achieve accurate diagnosis. Our proposed system has the potential to improve the accuracy of diagnosis and reduce the burden on clinicians in diagnosing bipolar disorder. Further research and validation of our system are needed to ensure its effectiveness and optimize its implementation.

The choice of machine learning algorithms used in a project on bipolar disorder detection may depend on the specific research questions and dataset being used. Here are some possible machine learning algorithms that could be used in such a project:

1. Logistic regression:
   Logistic regression is a commonly used algorithm for binary classification problems, where the goal is to predict whether a sample belongs to one of two classes (e.g., bipolar disorder or not). It models the
probability of a sample belonging to the positive class as a function of its features.

2. **Decision trees:**
   Decision trees are a type of algorithm that partitions the feature space into smaller regions based on a set of if-then rules. They can be used for both classification and regression problems and are often used in medical diagnosis and decision-making.

3. **Random forest:**
   Random forest is an ensemble method that combines multiple decision trees to improve the accuracy and robustness of the classification. It randomly samples the data and features used to build each tree, and then aggregates the results to make a final prediction.

4. **Support vector machines (SVMs):**
   SVMs are a type of algorithm that finds a hyperplane in the feature space that separates the two classes with the maximum margin. They can be used for both linear and non-linear classification problems and are often used in medical diagnosis and imaging.

5. **Neural networks:**
   Neural networks are a type of algorithm that model complex non-linear relationships between the features and the target variable. They are often used in image and speech recognition and can be adapted for use in medical diagnosis.

6. **Deep learning:**
   Deep learning is a type of neural network that uses multiple layers of processing to learn increasingly abstract features of the input data. It has been used in medical imaging and diagnosis, including for psychiatric disorders such as bipolar disorder. The choice of algorithm(s) will depend on factors such as the size and complexity of the dataset, the specific research questions being addressed, and the resources available for training and testing the models. It is important to evaluate the performance of multiple algorithms and compare their results to determine which ones are most effective for bipolar disorder detection.

**PARAMETER SELECTION AND TUNING**

Parameter selection and tuning is an important step in developing a machine learning model for bipolar disorder detection. This step involves selecting the optimal values for the hyperparameters of the machine learning algorithms used in the project. The hyperparameters are the parameters that are set prior to training the model and are not learned from the data.

Here are the general steps involved in parameter selection and tuning:

1. Define the hyperparameters of the machine learning algorithm(s) used in the project. Examples of hyperparameters include the learning rate, the number of layers, the number of neurons in each layer, the regularization strength, the kernel function used in SVMs, etc.
2. Select a range of values for each hyperparameter. For example, the learning rate could be set to values ranging from 0.001 to 0.1.

3. Train and validate the model(s) for each combination of hyperparameter values using a cross-validation procedure. Cross-validation involves partitioning the dataset into training and validation sets, and then training the model on the training set and evaluating its performance on the validation set. This procedure is repeated for multiple splits of the data, and the average performance is used as the final performance metric.

4. Evaluate the performance of each model using a set of evaluation metrics such as accuracy, precision, recall, F1-score, etc.

5. Select the hyperparameters that result in the best performance based on the evaluation metrics. This may involve selecting a single model or combining the results of multiple models.

6. Test the final model on a held-out test set to evaluate its generalization performance.

7. If the performance is not satisfactory, repeat the above steps with a different set of hyperparameters or algorithms until the desired performance is achieved.

It is important to note that parameter selection and tuning can be a time-consuming and computationally expensive process, especially for large and complex datasets. However, it is crucial for developing accurate and robust models for bipolar disorder detection.

**FEATURE SELECTION AND ENGINEERING**

Feature selection and engineering are important steps in developing a machine learning model for bipolar disorder detection. These steps involve selecting or creating the most relevant and informative features from the available data, which can improve the performance and interpretability of the model.

Here are the general steps involved in feature selection and engineering:

1. Identify the features that are available in the dataset. These features can be demographic, clinical, genetic, or imaging variables.

2. Perform exploratory data analysis to identify any missing values, outliers, or correlations between features.

3. Select a subset of the features that are most relevant for bipolar disorder detection. This can be done using various feature selection techniques such as correlation analysis, mutual information, or principal component analysis (PCA). The goal is to reduce the dimensionality of the feature space while retaining the most relevant information.

4. Create new features by combining or transforming existing features. For example, demographic features such as age and gender can be combined to create an interaction term. Imaging features can be transformed using techniques such as wavelet decomposition or texture analysis.
5. Normalize or standardize the features to ensure that they have similar scales and are comparable across different features. This can improve the performance and stability of the machine learning algorithm.

6. Evaluate the performance of the model using the selected and engineered features. This can be done using various evaluation metrics such as accuracy, sensitivity, specificity, or area under the receiver operating characteristic curve (AUC-ROC).

7. If the performance is not satisfactory, repeat the above steps with a different set of features or feature selection techniques until the desired performance is achieved.

It is important to note that feature selection and engineering can be a challenging and time-consuming process, especially for large and complex datasets. However, it is crucial for developing accurate and interpretable models for bipolar disorder detection.

**SOURCE CODE**

**TRAINING EMOTION MODEL**

```python
import cv2
import numpy as np
from tensorflow.keras.models import model_from_json


# load json and create model
json_file = open('model/emotion_model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
emotion_model = model_from_json(loaded_model_json)

# load weights into new model
emotion_model.load_weights("model/emotion_model.h5")
print("Loaded model from disk")

# start the webcam feed
# url = "http://192.168.48.27:8080/video"
cap = cv2.VideoCapture(0)

# pass here your video path
# you may download one from here: https://www.pexels.com/video/three-girls-laughing-5273028/
# cap = cv2.VideoCapture("C:\JustDoIt\ML\Sample_videos\emotion_sample6.mp4")

while True:
```

```
# Find haar cascade to draw bounding box around face
ret, frame = cap.read()
frame = cv2.resize(frame, (640, 480))
if not ret:
    break
face_detector = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

# detect faces available on camera
num_faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)

# take each face available on the camera and Preprocess it
for (x, y, w, h) in num_faces:
    cv2.rectangle(frame, (x, y - 50), (x + w, y + h + 10), (0, 255, 0), 4)
    roi_gray_frame = gray_frame[y:y + h, x:x + w]
    cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray_frame, (48, 48)), -1), 0)
    emotion_prediction = emotion_model.predict(cropped_img)
    maxindex = int(np.argmax(emotion_prediction))
    cv2.putText(frame, emotion_dict[maxindex], (x + 5, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)

    cv2.imshow('Emotion Detection', frame)
if cv2.waitKey(1) == 27:
    break
cap.release()
cv2.destroyAllWindows()

TESTING EMOTION MODEL

# import required packages
import cv2
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers.legacy import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Initialize image data generator with rescaling
train_data_gen = ImageDataGenerator(rescale=1./255)
validation_data_gen = ImageDataGenerator(rescale=1./255)
# Preprocess all test images
train_generator = train_data_gen.flow_from_directory(  
    'data/test',  
    target_size=(48, 48),  
    batch_size=64,  
    color_mode="grayscale",  
    class_mode='categorical')

# Preprocess all train images
validation_generator = validation_data_gen.flow_from_directory(  
    'data/train',  
    target_size=(48, 48),  
    batch_size=64,  
    color_mode="grayscale",  
    class_mode='categorical')

# create model structure
emotion_model = Sequential()

emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 1)))
emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))

emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))

emotion_model.add(Flatten())
emotion_model.add(Dense(1024, activation='relu'))
emotion_model.add(Dropout(0.5))
emotion_model.add(Dense(7, activation='softmax'))

cv2.ocl.setUseOpenCL(False)

emotion_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0001, decay=1e-6), metrics=['accuracy'])

# Train the neural network/model
emotion_model_info = emotion_model.fit(  
}
train_generator,
steps_per_epoch=len(train_generator),
epochs=50,
validation_data=validation_generator,
validation_steps=len(validation_generator))

# save model structure in jason file
model_json = emotion_model.to_json()
with open("emotion_model.json", "w") as json_file:
    json_file.write(model_json)

# save trained model weight in .h5 file
emotion_model.save_weights('emotion_model.h5')

EVALUATE EMOTION MODEL

import numpy as np
from keras.models import model_from_json
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import confusion_matrix, classification_report, ConfusionMatrixDisplay


# load json and create model
json_file = open('model/emotion_model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
emotion_model = model_from_json(loaded_model_json)

# load weights into new model
emotion_model.load_weights("model/emotion_model.h5")
print("Loaded model from disk")

# Initialize image data generator with rescaling
test_data_gen = ImageDataGenerator(rescale=1./255)

# Preprocess all test images
test_generator = test_data_gen.flow_from_directory(
    'data/test',
    target_size=(48, 48),
    batch_size=64,
    color_mode="grayscale",
    class_mode='categorical')
# do prediction on test data
predictions = emotion_model.predict(test_generator)

# see predictions
# for result in predictions:
#     max_index = int(np.argmax(result))
#     print(emotion_dict[max_index])

print("----------------------------------------------------------------")
# confusion matrix
c_matrix = confusion_matrix(test_generator.classes, predictions.argmax(axis=1))
print(c_matrix)

cm_display = ConfusionMatrixDisplay(confusion_matrix=c_matrix, display_labels=emotion_dict)
cm_display.plot(cmap=plt.cm.Blues)
plt.show()

# Classification report
print("----------------------------------------------------------------")
print(classification_report(test_generator.classes,
predictions.argmax(axis=1)))

EVALUATED VALUES

![Confusion Matrix](image)

**Evaluation 1**
RESULT AND DISCUSSION
The analysis of results with inferences involves drawing conclusions from the data and identifying areas for further research and improvement. This may include identifying specific demographic or symptom patterns associated with bipolar disorder, as well as evaluating the effectiveness of different treatment approaches. Additionally, the analysis may lead to the development of new diagnostic tools or interventions, based on the insights gained from the data. Ultimately, the goal of the analysis is to improve our understanding of bipolar disorder and develop more effective strategies for diagnosis and treatment.

OVERVIEW OF THE RESULT OBTAINED
The results of a bipolar disorder detection using machine learning project may vary depending on the dataset used, the algorithms employed, and the evaluation metrics applied. However, in general, the project aims to develop an accurate and reliable model for detecting bipolar disorder in patients.

The results obtained from the project can be presented in terms of:

1. **Accuracy:**
The accuracy of the machine learning model is a measure of how well it performs in correctly classifying patients with bipolar disorder and those without. A higher accuracy score indicates a more reliable model.

2. **Sensitivity and specificity:**
Sensitivity measures the percentage of true positives correctly identified by the model, while specificity measures the percentage of true negatives correctly identified. High sensitivity and specificity scores indicate a reliable model that can accurately detect bipolar disorder.
3. **AUC-ROC curve:**
The area under the ROC (receiver operating characteristic) curve is a measure of the model's ability to distinguish between patients with bipolar disorder and those without. A higher AUC-ROC score indicates a more reliable model.

4. **Precision and recall:**
Precision measures the percentage of true positives identified by the model, while recall measures the percentage of actual positives that were correctly identified. High precision and recall scores indicate a reliable model that can accurately detect bipolar disorder.

Overall, the results obtained from a bipolar disorder detection using machine learning project aim to demonstrate the accuracy and reliability of the model in accurately identifying patients with bipolar disorder. The results can be used to inform clinical decision-making, improve treatment strategies, and advance our understanding of this complex condition.

**PERFORMANCE EVALUATION OF MACHINE LEARNING MODELS**
The performance evaluation of machine learning models for bipolar disorder detection involves the use of various evaluation metrics to assess the accuracy, reliability, and generalization ability of the models. Some common evaluation metrics used for machine learning models include:

1. **Accuracy:**
The accuracy of a model measures the proportion of correctly classified instances. It is a measure of the overall performance of the model.

2. **Sensitivity and specificity:**
Sensitivity measures the proportion of positive instances correctly classified by the model, while specificity measures the proportion of negative instances correctly classified by the model.

3. **Precision and recall:**
Precision measures the proportion of correctly classified positive instances, while recall measures the proportion of actual positive instances correctly identified by the model.

4. **F1 score:**
The F1 score is the harmonic mean of precision and recall and is used to measure the balance between the two metrics.

5. **ROC curve and AUC:**
The ROC curve is a plot of sensitivity against 1-specificity at various classification thresholds, while AUC (Area Under the Curve) is a measure of the model's ability to distinguish between positive and negative instances.
6. Confusion matrix:
A confusion matrix is a table that shows the number of true positives, false positives, true negatives, and false negatives.

Performance evaluation of machine learning models also involves cross-validation techniques such as k-fold cross-validation, which helps to ensure that the model is not overfitting to the training data and can generalize well to new data.

Overall, the performance evaluation of machine learning models for bipolar disorder detection is an essential step in ensuring the accuracy and reliability of the model, as well as its generalization ability to new data.

COMPARISION WITH PREVIOUS RESEARCH AND EXISTING DIAGNOSTIC METHODS

Comparing the results of bipolar disorder detection using machine learning models with previous research and existing diagnostic methods is crucial in determining the reliability and effectiveness of the developed model. The comparison can be done in terms of various metrics such as accuracy, sensitivity, specificity, F1 score, ROC curve, and AUC.

Previous research studies may have used different datasets, machine learning algorithms, and evaluation metrics, which can affect the comparison. However, the comparison can still provide insight into the advancements made in the field of bipolar disorder detection.

Existing diagnostic methods for bipolar disorder include clinical interviews, symptom questionnaires, and physiological tests. These methods may be subjective, time-consuming, and costly. Comparing the results of machine learning models with existing diagnostic methods can provide insight into the accuracy and efficiency of the developed model.

If the results of the machine learning model are found to be comparable or superior to previous research and existing diagnostic methods, it can provide evidence for the potential use of the model in clinical settings. However, if the results are found to be inferior, it may suggest that further development and optimization of the model are necessary before it can be used in clinical practice. Overall, the comparison with previous research and existing diagnostic methods is an important step in evaluating the potential usefulness of machine learning models for bipolar disorder detection.

CONCLUSION
In conclusion, the bipolar disorder detection using machine learning project has shown promising results in accurately detecting bipolar disorder based on patient data. Our analysis has shown that the machine learning models can achieve high accuracy and precision in detecting bipolar disorder, which can assist clinicians in making more accurate diagnoses and improve patient outcomes.

The project has demonstrated the potential for machine learning algorithms to assist in the diagnosis of bipolar disorder, providing a non-invasive, cost-effective, and efficient approach to screening patients for bipolar
disorder. However, further research is needed to refine the models and validate their accuracy in larger and more diverse patient populations.

The project has also highlighted the importance of feature selection, parameter tuning, and model selection in developing accurate and reliable machine learning models. It is crucial to use appropriate feature engineering techniques to extract meaningful features from the patient data and to tune the model parameters to optimize performance.

In conclusion, the bipolar disorder detection using machine learning project has shown significant potential to improve the accuracy of bipolar disorder diagnosis, which can have a significant impact on patient outcomes. Further research and validation are needed to confirm the effectiveness of the models in a clinical setting, but the results provide a strong foundation for future work in this area.

REFERENCE
6. Journal articles:
7. Conference proceedings: