

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230335261 Volume 5, Issue 3, May-June 2023 1

Developing QML Remote Machine UI (RMUi)

Application

Binoy Kurikaparambil Revi

Independent Researcher, USA

binoyrevi@live.com

Abstract:

It is often desirable to install lightweight, high-UI-rich applications that do not contain core technologies

but simply expose data and UI controls on a remote machine. In many scenarios, it is advantageous to

install lightweight applications on client systems that offer a rich user interface while not directly

incorporating core functionalities. Instead, these applications focus on effectively presenting data from a

remote machine. Developing a QML application using the QT framework as a Remote Machine User

Interface(RMUi) provides such an advantage.

Keywords: Remote Application, Lightweight UI Client, QT, QML

Introduction:

Using a QML UI application with RESTful services[1] enables the creation of lightweight applications

that utilize a minimal number of Qt packages while providing a rich user interface. This is particularly

useful in client machines where configurations may vary, and security measures may not be fully

implemented. This approach enhances security and reduces computing power requirements, allowing the

client application to remain streamlined and efficient. The more resource-intensive tasks, such as data

processing and storage, are handled on a separate Application Server. As a result, users benefit from an

intuitive interface that quickly retrieves and displays the necessary information without the complexities

of the underlying systems. Consequently, this can improve performance, provide a better user experience,

and make maintenance easier.

Remote Machine User Interface(RMUi) Application Design:

The overall architecture of the QML Remote Machine User Interface (RMUi) application is outlined

below. It primarily consists of three components: the RMUi Application, Network, and Application

Server. A RESTful service is utilized for communication between the RMUi Application and the

Application Server.

https://www.ijfmr.com/
mailto:binoyrevi@live.com

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230335261 Volume 5, Issue 3, May-June 2023 2

Figure 1: Overall Architecture of the System

A QML UI application can be designed and implemented using Qt Studio, Qt Creator, or VS Code. Qt

Studio offers a visual toolkit that facilitates the rapid design of QML components. The application consists

of two main parts: the QML side and the C++ backend. The `main.cpp` file serves as the entry point for

the application, while `main.qml` is integrated into `main.cpp` as an object for the user interface

implementation.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230335261 Volume 5, Issue 3, May-June 2023 3

Figure 2: QML UI Application Design

QML Design: All user interface (UI) components and their subcomponents are derived from `main.qml`.

It is essential to design these QML components and subcomponents in a hierarchical order to ensure a

structured and well-defined data flow. All QML components interact with their subcomponents through

methods, while subcomponents communicate with components using the Signal-Slot mechanism.

Main.cpp: This file is the entry point to the application. The UI component and the backend component

communicate with each other through the main.cpp. Both these components are handled as objects. Mostly

main.cpp initializes the backend module and starts the backend.

Communication Thread: This is a lightweight software thread initiated by the backend, primarily from the

`main.cpp` file. It continuously monitors for RESTful service requests from the application. When it

detects a request in the queue, it utilizes the `QNetworkAccessManager`[7] to send a RESTful request to

the server. QJSON package is used to encode the request and decode the response. QThread package is

used to create the threading framework.

Application Server Design:

Figure 3: Application Server Design

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230335261 Volume 5, Issue 3, May-June 2023 4

The Application Server[3] is designed to provide secure access to accept and respond to RESTful

requests[1]. In addition to this, it performs significant tasks related to application functionality, data

management, and cybersecurity. A typical simple Application Server may include the following

components, assuming it uses a database for data storage, supports communication interfaces to interact

using various protocols and services RESTful requests:

1. QHTTPServer[6]: This package can be utilized to implement the server application functionality that

accepts RESTful service requests and responds with data[2]. The QHTTPServer employs QT

implementation techniques that make it event-driven.

2. QThread[9]: This package allows you to implement threading functionality within the server. It can

be applied to the server itself or communication interfaces. Essentially, it handles any asynchronous

job that needs to be executed in parallel.

3. QJSON[8]: The QJSON package is extremely useful for processing JSON data when dealing with

HTTP requests.

4. Core Functionality and Data Processing: This is the core of the server application and is entirely

dependent on the architecture and design of the system.

5. Database[5]: Depending on the application's needs, various database options can be used, such as in-

memory databases like Redis or on-disk databases like MongoDB or SQL.

6. Communication Interfaces: This feature is optional and depends on the application's requirements and

design.

This clear structure highlights each component's role in the Application Server's functionality[3].

Conclusion:

In the modern world of technology, cybersecurity threats are proliferating at a pace that parallels the rapid

advancement of technology. The deployment of applications on systems characterized by cybersecurity

uncertainties and insufficient hardware resources underscores the necessity of developing the 'Remote

Machine UI Application' (RMUi Application).

QML provides a robust solution for developing Remote Machine User Interface (RMUi) applications that

do not store proprietary technologies or sensitive data on the system. Instead, it simply displays data and

offers an engaging user interface for interaction with the system[4]. This approach also ensures data

security both at rest and during transfer. All core functionalities are managed by a remote application

server, which should be situated in a secure and controlled environment to prevent unauthorized access

and cybersecurity threats. The QT framework provides essential packages for easily developing RMUi

applications and offers a lightweight UI option. On the application server side, the QT framework supplies

all the necessary packages to develop server modules, but it is not limited to QT alone.

References:

1. Silvia Schreier. 2011. Modeling RESTful applications. In Proceedings of the Second International

Workshop on RESTful Design (WS-REST '11). Association for Computing Machinery, New York,

NY, USA, 15–21. https://doi.org/10.1145/1967428.1967434

2. Adamczyk, P., Smith, P.H., Johnson, R.E. and Hafiz, M., 2011. Rest and web services: In theory and

in practice. REST: from research to practice, pp.35-57.

3. I. Kistijantoro, G. Morgan, S. K. Shrivastava and M. C. Little, "Enhancing an Application Server to

Support Available Components," in IEEE Transactions on Software Engineering, vol. 34, no. 4, pp.

https://www.ijfmr.com/
https://doi.org/10.1145/1967428.1967434

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230335261 Volume 5, Issue 3, May-June 2023 5

531-545, July-Aug. 2008, doi: 10.1109/TSE.2008.38.

4. M. Garriga, K. Rozas, D. Anabalon, A. Flores and A. Cechich, "RESTful mobile architecture for social

security services: A case study," 2016 XLII Latin American Computing Conference (CLEI),

Valparaiso, Chile, 2016, pp. 1-11, doi: 10.1109/CLEI.2016.7833367.

5. F. Orellana and M. Niinimaki, "Distributed Computing with RESTful Web Services," 2012 Seventh

International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Victoria, BC, Canada,

2012, pp. 103-110, doi: 10.1109/3PGCIC.2012.30.

6. QT HTTP Server : https://doc.qt.io/qt-6/qthttpserver-index.html

7. QT Network Libraries: https://doc.qt.io/qt-6/qnetworkaccessmanager.html

8. QT JSON Library: https://doc.qt.io/qt-6/qjsonobject.html

9. QT Thread Library: https://doc.qt.io/qt-6/qthread.html

https://www.ijfmr.com/
https://doc.qt.io/qt-6/qthttpserver-index.html
https://doc.qt.io/qt-6/qnetworkaccessmanager.html
https://doc.qt.io/qt-6/qjsonobject.html
https://doc.qt.io/qt-6/qthread.html

