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Abstract 

Pearson’s correlation coefficient serves as a vital statistical measure in predictive analytics and machine 

learning by offering profound insights into linear relationships between variables. It is, thus, instrumental in 

understanding variable relationships, selecting features, detecting multicollinearity, and assessing the model 

performance. This paper explores the applications of Pearson’s correlation in selecting features, reducing 

dimensionality, and interpreting the selected model. The paper highlights importance of Pearson’s 

correlation in identifying suitable predictors and improving algorithmic performance in predictive analytics 

and machine learning. The paper also takes into account the limitations of Pearson’s correlation that 

includes its sensitivity to outliers and reliance on assumptions of linearity and normality at the exclusion of 

non-linear associations. Alternative correlation measures like Spearman’s rank and mutual information that 

address the shortcomings of Pearson’s correlation are also taken within the purview of discussion. Through 

an examination of both the strengths and weaknesses of Pearson’s correlation, the paper sheds light into use 

of Pearson’s correlation in predictive modeling while stressing the need for adhering to complementary 

techniques in advanced machine learning applications. 
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1. Introduction 

Predictive analytics and machine learning, in the contemporary data driven world, have become 

indispensable to gain meaningful insights into diverse fields. The application of these tools can be widely 

seen in the fields like finance, healthcare, marketing, scientific investigations and environmental studies [1-

3]. As concerns measures of linear dependence of variables, Pearson's correlation coefficient still remains 

one of the most widely used tools. Developed by Karl Pearson in the late 19th century, Pearson's correlation 

indicates the strength and direction of a linear association ranging from -1 to +1 [4]. The method is at once 

simple and suggestible, and hence extensively applied by statisticians and data scientists in exploratory data 

analysis to select features and validate models. 

In predictive modeling, unearthing the associations between independent variables i.e. features and 

dependent variable i.e. the target variable is critical. Pearson’s correlation assists data scientists to discern 

the features that are likely to be informative and thus aids in the process of feature selection. High 

correlation among input features may point out towards multicollinearity, an issue that seeks to undermine 
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the statistical significance of an independent variable [5]. Multicollinearity, can lead to distortion of model 

coefficients and reduce interpretability. The coefficient of Pearson’s correlation, by signaling 

multicollinearity, plays a dual role; it highlights both useful predictors and potential issues within the 

dataset. Pearson’s correlation, despite having wide utility, has inherent limitations. It effectively measures 

linear relationships but tend to overlook complex or non-linear interactions that are commonly present in 

real-world data. Moreover, Pearson’s correlation coefficient is quite sensitive to outliers. Extreme values in 

a data set can unduly affect the value of Pearson’s correlation coefficient and can potentially warp the 

strength and direction of the detected linear relationship. Outliers can, thus, can skew results and lead to 

deceptive conclusions. These limitations stipulate the need to take caution at the time of relying wholly on 

Pearson’s correlation for analytical decisions. 

In machine learning, where volume and complexity of data are likely to be high, the limitations set by 

Pearson’s correlation become particularly significant. Models like neural networks, decision trees, support 

vector machines etc have the potential to capture patterns that linear statistics may fail to spot. Nonetheless, 

Pearson’s correlation is a fundamental tool and can provide valuable preliminary insights. However, the 

assumptions and sensitivity of Pearson’s correlation need to be managed carefully and it should be used 

alongside other tools and techniques for a comprehensive analysis. 

 

2. Theoretical Background 

Pearson’s correlation coefficient (r) measures the degree of linear association between two variables, X and 

Y [6]. The formula is given by: 

𝑟 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
                                                        (1) 

where, 

𝐶𝑜𝑣(𝑋, 𝑌) = Covariance between X and Y 

𝜎𝑋𝜎𝑌= Standard deviations of X and Y 

𝐶𝑜𝑣(𝑋, 𝑌) =
1

𝑛
∑(𝑥𝑖

𝑛

𝑖=1
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 here, �̅� 𝑎𝑛𝑑 �̅� are the means of x and y respectively. 
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The range of Pearson’s correlation coefficient (r) lies between -1 to +1, 

where, 

+1 indicates a perfect positive linear relationship, 

0 indicates no linear relationship, 

-1 indicates a perfect negative linear relationship. 

 

Graphically, a positive correlation in general will display a line of best fit that slopes upwards, a negative 

correlation will typically show a line of best fit that slopes downwards and data with no correlation will 

appear scattered with no discernible pattern or trend [7]. 
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Interpretation of Pearson’s r can be illustrated as: 

Value of r Interpretation Example 

+0.9 to +1 Very strong positive Height vs. Weight 

+0.6 to +0.9 Strong positive Study time vs. Exam score 

+0.3 to +0.6 Moderate positive Temperature vs. Ice cream sales 

-0.3 to +0.3 Weak or no correlation Number of Rainy Days vs. Stock Market Returns 

-0.6 to -0.3 Moderate negative Stress Levels vs. Work Productivity 

-0.9 to -0.6 Strong negative Car Speed vs. Fuel Efficiency 

-1 to -0.9 Very strong negative Demand vs. Price 

 

Pearson’s correlation need to meet some assumptions to provide reliable insights, such as: 

● Linearity: The relationship between the variables needs to be linear. Nonlinear associations like 

exponential or quadratic cannot be presented effectively. 

● Normality: Both variables should be roughly normally distributed, especially when dealing with small 

sample sizes. 

● Homoscedasticity: The variability in one variable should remain consistent across all levels of the other 

variable. 

● Continuous Data: The variables need to be measured on an interval or ratio scale. 

● Independence: Observations should be independent and without autocorrelation as in time-series data. 

● Absence of Outliers: Extreme values can warp the correlation coefficient and lead to misleading 

results 
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3. Applications of Pearson's coefficient in Machine learning 

Machine learning, as a subset of artificial intelligence, facilitates computers to learn from experience by 

adjusting their behavior based on the data they are exposed to. It involves developing algorithms so as to 

analyze data, identify patterns, and make predictions or decisions [8]. The use of Pearson's correlation 

coefficient is widely reflected in the following processes of Machine Learning: 

3.1 Feature Selection 

Feature selection is a vital step in building effective machine learning models. In selecting relevant features, 

Pearson’s correlation helps by showcasing how strongly each feature is linearly allied to the target variable 

[9]. Features with high positive or negative correlation (closer to +1 or -1) usually exhibit a stronger linear 

relationship and are more predictive. On the contrary, features with very low correlation (close to 0) are 

likely to have less useful information for certain models, particularly linear ones. 

3.2 Multicollinearity Detection 

Multicollinearity represents a situation in which two or more independent variables are highly correlated. 

High multicollinearity has the potential to distort the training process of linear models, which may lead to 

unstable coefficients and flimsy generalization. Pearson’s correlation can help find out multicollinearity and 

improve model performance by identifying and removing or assimilating the features. 

3.3 Exploratory Data Analysis (EDA) 

Exploratory Data Analysis (EDA) is a crucial step in predictive analytics and machine learning that entails 

summarizing, visualizing, and understanding data before modeling. Correlation coefficient, ‘r’ plays a key 

role in EDA by finding out linear relationships between variables. This, in turn, facilitates feature selection, 

multicollinearity detection, and advancing model performance. 

3.4 Model Interpretability 

Model interpretability in machine learning relates to the understanding of the dynamics of a model's 

predictions or decisions. It involves comprehending the mechanisms by which the model works and 

arrives at a particular output. Interpretability helps in finding out errors or biases in the model's training 

data or logic and thereby allows model improvement and reaching more accurate results.  Pearson’s 

correlation facilitates model interpretability by helping to detect how closely model predictions align with 

actual outcomes, more so in regression tasks. It, thus, assists in building trust, ensuring transparency and 

removing potential biases in the model, be it a Linear Regression Model, Tree-Based Model or Neural 

Network. 

 

4. Limitations of Pearson's correlation 

Pearson's correlation, despite its importance and extensive usage in predictive analytics and machine 

learning, has several constrains. Some of the limitations of Pearson's correlation are as follows: 

4.1 Linearity assumption: 

Pearson’s method assumes a linear relationship between variables [10]. It misses complex nonlinear 

relationships which makes it unsuitable for complex data sets. In cases where the correlation is not well-

represented by a straight line, it should be supplemented with mutual information or maximal information 

coefficient or other alternative correlation measures. 
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4.2 Outlier sensitivity 

Pearson’s correlation coefficient is quite sensitive to outliers. Outliers, or data points significantly 

distant from the main cluster, can disproportionately influence the correlation value  [11]. This may lead 

to a deceptive assessment of the strength and direction of the relationship between variables. Outliers 

can be eliminated with the application of Spearman's rank correlation or robust scaling. 

4.3 Causation ambiguity: 

A correlation between two variables doesn't mean one causes the other [10]. The variables can show a 

strong correlation not because one affects the other, but due to a shared link with a third variable or merely 

by chance. Inability to distinguish between correlation and causation may lead to faulty conclusions and 

ineffective interventions.  Pearson’s correlation, as such, should never be interpreted as substantiation of a 

causal connection. In fact, it's imperative to ascertain causality through controlled experiments or methods 

like Granger causality methods, rather than relying solely on observed correlations 

4.4 Scope limitation: 

The scope of Pearson correlation is confined to bivariate analysis. It can only evaluate the relationship 

between two variables at a time. While this can be useful for understanding simple, direct relationships, it 

offers a limited perspective when dealing with complex systems involving multiple interrelated factors.  In 

circumstances where multiple variables are involved alternative methods like multiple regression 

analysis may provide a more rigorous understanding of the interplay different predictors. 

4.5 Scale dependence: 

Pearson’s coefficient is not robust to changes in scale or measurement units. It is scale-invariant in the 

sense that linear transformations (such as converting from inches to centimeters) do not change its value, it 

is still not robust to outliers or to the ordinal nature of data. It assumes interval or ratio data and becomes 

unreliable with ordinal or skewed data [12]. It is, thus, it is essential to perform thorough data preprocessing 

before calculating the Pearson correlation. To address the limitation of linear dependence and improve 

robustness, monotonic rank-based correlation measures like Kendall’s Tau or Spearman’s Rho can be used 

as alternatives. 

 

5. Alternative approaches to consider 

The Pearson’s correlation coefficient is useful for several things, but it does have shortcomings. The 

limitations set by Pearson’s correlation need to be addressed carefully to arrive at an effective estimation. It 

is thus crucial to recognizing the limitations set by Pearson’s correlation coefficient and 

explore alternative approaches that complement or mitigate the drawbacks. Some alternatives to 

consider while applying Pearson’s correlation are discussed below: 

 

5.1 Spearman’s Rank Correlation 

Spearman’s Rank Correlation assesses monotonic relationships and is less sensitive to outliers. It is 

predominantly useful when variables are not normally distributed or when the relationship is non-linear but 

monotonic [13]. It assesses how well the relationship between two variables can be described using a 

monotonic function. 
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5.1.1 Spearman’s ρ (Without Ties) 

If there are no tied ranks, Spearman’s ρ is calculated as: 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
                                      (3) 

Where, 

ρ= Spearman's rank correlation coefficient 

di = difference between ranks of corresponding values(rank(Xi)−rank(Yi)) 

n = number of observations 

 

5.1.2 Spearman’s ρ (With Ties) 

If tied ranks exist (e.g., same values in X or Y), use Pearson’s correlation on ranks 

𝜌 =
Cov(rank(x), rank(y))

σrank(x)σrank(Y)
                   (4) 

where, Cov(rank(x), rank(y)) = Covariance of the ranks 

σrank(x)σrank(Y) = Standard deviations of the ranks 

 

5.2 Standard Kendall’s Tau (τ) 

Kendall’s Tau (τ) is a nonparametric rank correlation coefficient that measures the ordinal 

association between two variables. Much like Spearman’s rank correlation, Kendall’s Tau evaluates the 

strength and direction of a relationship based on the ranks of the data rather than their actual value. What 

sets Kendall’s Tau apart is its approach to handling the ordering of data pairs. Kendall’s Tau works well 

for monotonic relationships (whether linear or nonlinear) and is particularly useful when dealing 

with small sample sizes.  There are two main versions of Kendall’s Tau measures: 

 

5.2.1 Kendall’s Tau-a (Without Ties) 

If there are no tied ranks, Kendall’s τis calculated as: 

𝜏 =  
(Number of Concordant Pairs) − (Number of Discordant Pairs)     

𝑛(𝑛−1)

2

     (5) 

where, 

Concordant Pair: Pairs (xi,yi) and (xj,yj) where xi>xjandyi>yj; or xi<xj and yi<yj 

Discordant Pair: Pairs where xi>xj and yi<yj; or xi<xj and yi>yj 

Total Pairs: n(n−1)/2 (all possible pairs). 

 

5.2.2 Kendall’s Tau-b (τₑ) (Adjusts for Ties) 

If tied ranks exist (e.g., xi=xj or yi=yj), use Tau-b: 

𝜏𝑏 =
𝑛𝑐 − 𝑛𝑑

√(𝑛𝑐 + 𝑛𝑑 + 𝑡𝑥)(𝑛𝑐 + 𝑛𝑑 + 𝑛𝑦)
                                                      (6) 

where, 

nc = Number of concordant pairs. 
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nd = Number of discordant pairs. 

tx = Number of ties in X 

ty = Number of ties in Y. 

 

5.3 Mutual Information 

Mutual Information (MI) is a measure from information theory that quantifies the amount of information 

obtained about one random variable through observing another random variable. MI can detect any 

statistical dependency, including non-linear and non-monotonic relationships. It is Effective for feature 

selection in high-dimensional data. It is widely used in feature selection for classification problems and is 

not constrained by assumptions of normality or linearity 

5.4 Distance Correlation 

Distance correlation is a newer technique that can detect both linear and non-linear associations. It is 

increasingly used in high-dimensional machine learning settings where traditional correlation measures fail 

to capture complex dependencies. It ranges from 0 (no dependence) to 1 (perfect dependence). It can 

detect complex, non-linear relationships. 

 

6. Conclusion 

Pearson’s correlation coefficient remains a valuable and widely applied statistical tool, particularly for 

linear relationships between variables. It serves as initial feature screening, thereby reducing dimensionality 

and model complexity in predictive analytics and machine learning. It aids in 

detecting multicollinearity among features, which is crucial for model stability and interpretability. 

Variables demonstrating high linear correlation with the target often merit prioritized data cleaning or 

imputation efforts, whereas features exhibiting minimal association can be strong initial candidates for 

exclusion, simplifying subsequent analysis. However, the effective application of Pearson’s correlation 

demands a critical understanding of its inherent limitations. Its primary constraint is its exclusive focus 

on linear associations; it can completely miss strong non-linear relationships, potentially leading to the 

erroneous dismissal of useful predictors. Its sensitivity to outliers is another significant weakness, as a few 

extreme data points can drastically distort the correlation value, providing misleading insights which 

restricts its standalone use in modern data science tasks. While Pearson’s correlation serves as a valuable 

diagnostic and preprocessing tool in predictive modeling, its limitations necessitate the use of 

complementary methods. A robust analytical framework should integrate Pearson’s correlation with other 

statistical measures and machine learning techniques to ensure more accurate and meaningful insights from 

data. By understanding both its capabilities and constraints, data scientists can make more informed choices 

about when and how to apply these metric, ensuring more accurate and interpretable models. 
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