

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230440661 Volume 5, Issue 4, July-August 2023 1

Stateful Conversational Systems: Managing

Dialog Persistence with Blazor and RESTful API

Synchronization

Mr. Sri Rama Chandra Charan Teja Tadi

Lead Software Developer

Abstract

Stateful dialog systems are resilient to dialog context preservation across sessions. Building on this

capability, the use of component-based Blazor and synchronized RESTful APIs enables real-time

state preservation and harmonious client-server interactions. Dialog states are preserved through

efficient state transitions, ensuring consistent and seamless user experiences throughout

conversational interactions. RESTful APIs support the synchronization of data, and thus, the

conversational flow is not interrupted in dynamic, multi-session scenarios. This design ensures

responsiveness and scalability, making it well-suited for modern conversational AI applications

that demand reliable context retention and persistent user interactions.

Keywords: Stateful Dialog Systems, Blazor, RESTful APIs, Context Preservation, Client-Server

Synchronization, Conversational AI, Session Management

1. Overview of Stateful Conversational Systems

Stateful chat systems are programmed to ensure continuity of user interaction in the form of dialog

context-maintenance across several sessions. This is a prerequisite for the creation of a smooth

experience because it enables user interaction and minimizes frustration. As opposed to stateless

systems, where every user action is an independent event, stateful systems employ dialog state

management, enabling coherent and natural conversation flow. Stateful systems have also been shown to

utilize crafty means of dealing with intricate dialogue interactions, keeping context recollection as well

as user inputs in good order [14]. This function becomes quite vital as users prefer citing previous

discussion lines or asking for further explanation where misinterpreted; an aptly structured stateful

system is good at handling this effectively.

Apart from that, the use of technologies like Blazor and RESTful APIs makes it easy to synchronize

operations in real time and maintain the state. Blazor makes it easier to develop responsive web

applications with WebAssembly or server-side, making conversational agents much more responsive

[8]. The tech infrastructure provided by this enables dynamic requirements of conversational systems to

be met such that they may cache user session data without disruption, thus making users more satisfied

and engaged. In addition, stateful systems can manage multi-task dialogs efficiently, which are of

growing significance in user environments where users want their conversational agents to execute more

than one task at a time. In such an environment, methods for handling multi-task dialogs have been well

described [5].

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230440661 Volume 5, Issue 4, July-August 2023 2

2. The Role of Dialog Persistence in User Engagement

The persistence of dialogue is also key in promoting user engagement since it enables customized

interaction that evolves according to the needs of the users over time. When users have the perception of

continuity in dialogues, they tend to have the impression that the system recognizes their needs and

preferences, an impression that can help increase their overall satisfaction. A constant dialog state has

been found to provide users with a more customized experience, helping build trust and perception of

dependability between the user and conversational agent [15]. It may contribute to enhanced user

retention and richer involvement on the platform.

Having proper dialog persistence facilities also allows systems to pick up from various dialog contexts,

facilitating transitions between conversations [13]. For instance, when users return to discuss a

previously introduced subject, having access to the dialog history facilitates the system to respond

accordingly. This method not only replicates human natural conversational patterns but also minimizes

the cognitive burden on users to a large degree, making interactions less of an effort and more of a

conversation. Using methods that improve multi-task dialog management enables conversational agents

to remember past interactions and tailor their responses in accordance, which is essential in sustaining

user engagement.

In addition, the use of dialog state tracking measures has also proven valuable in quantifying and

improving user engagement strategies. From the analysis of user dialog flows, conversational systems

are able to identify areas for improvement, thereby creating a feedback loop that enhances the user

experience [16]. Data-driven methodology improves dialog performance and ensures that conversational

agents are built in accordance with user expectations. Thus, the effective use of dialog persistence

methods is not a technical necessity but a basis for user interaction in conversational AI interfaces.

3. Exploring Blazor in Interactive Application Design

The Blazor platform has become a key technology for interactive web app development because of its

distinctive features, notably its component model supporting modular development approaches. One of

the key advantages of Blazor is that it can take advantage of WebAssembly for client-side running of C#

code, making it possible for developers to build high-performance apps in C# from start to finish instead

of JavaScript. This shift to a strongly typed language removes many of the runtime errors and makes the

application more maintainable. It has been said that component-based application development as

collections of small subcomponents not only improves reusability but also offers a more organized way

of managing the application state in an efficient manner.

In a stateful conversation system, Blazor app rendering performance is critical to user experience,

particularly in dialog systems where responsiveness is an issue. Reactive programming models and

compile-time optimizations can significantly minimize initial client-side input sizes handled, which is

critical in ensuring smooth dialog interactions [4]. The reactive paradigm enables immediate UI updates

whenever the state is changed, increasing conversational systems' interactivity by ensuring that users are

provided with immediate feedback for their actions.

In addition, Blazor's event-driven architecture facilitates the seamless execution of asynchronous

operations, which is essential in processing transitions in dialog states without disrupting the user

experience [3]. A properly designed event model for handling allows developers to retain the

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230440661 Volume 5, Issue 4, July-August 2023 3

conversational context over a large number of sessions. In properly managed dialog history

environments, this enables components to cache the state information and have acceptable performance

overheads. Moreover, the dependency injection support offered by Blazor promotes unit tests and allows

for scalability in applications such that even sophisticated conversational systems are able to handle

long-lived stateful interactions effectively.

Figure 1: Overview of Blazor WebAssembly and Blazor Server Hosting Models

Source: Adapted from [17]

4. Integration of Data Storage Solutions for Dialog Management

The integration of robust data storage solutions is essential for managing dialog states effectively within

stateful conversational systems. Utilizing a combination of SQL and NoSQL databases can provide

flexibility in handling persistent dialog states while ensuring quick data accessibility. SQL databases,

known for their relational structure, enable the use of complex queries that are beneficial for slicing

through structured data associated with user interactions [2]. Conversely, NoSQL databases offer

scalability and performance advantages for applications requiring high availability and horizontal

scaling, which can be pivotal in managing extensive user interaction histories.

Employing RESTful APIs for data retrieval and storage operations is critical in ensuring that data

transactions are efficient and responsive. These APIs facilitate a stateless communication protocol where

each request from the client includes all the necessary data, significantly improving the decoupling of

client-side operations from server-side data management [11]. The use of these APIs also allows

developers to abstract low-level HTTP details, thereby enhancing focus on higher-level logic while

designing APIs that cater to the application's needs.

For dialog management, it is essential to implement caching strategies alongside the primary data stores.

By storing frequent queries and user interaction histories in a cache, the latency associated with database

calls can be significantly reduced, leading to a more responsive system [9]. The implementation of

techniques like sharding can also help distribute data across different databases or servers, thus

improving read-and-write operations' scalability and performance.

Moreover, adopting advanced architectural patterns such as the Model-View-Controller (MVC) can

significantly streamline the interaction between storage solutions and the application logic. This pattern

supports the separation of concerns, facilitating easier management of dialog actions as they relate to

user experience [9]. Additionally, integrating machine learning models into dialog state management can

allow for predictive analytics, enabling systems to anticipate user needs based on historical data and

improve utterance comprehension over time.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230440661 Volume 5, Issue 4, July-August 2023 4

5. Architecting a Stateful Conversational System

Creating a stateful conversational app requires a coherent architectural design that unifies the user

interface, dialog management, data storage, and communication methods in a smooth manner. At the

forefront of championing this cause is Blazor, a benchmark for creating rich web applications with C#

and .NET. Blazor's component model is a new approach to many of the traditional problems of

development with the assistance of modular development such that components are unit-testable,

reusable, and dynamically updated. Modularity is quite crucial as it offers a means of simplifying

development and maintenance and acquiring dialog states properly through encapsulated logic.

Figure 2: End-to-End Architecture of a Conversational System

Source: Adapted from [18]

a. Component-Based Architecture

In Blazor, every component is a standalone unit that is coded in a combination of HTML and C#. These

components can be used to represent different states of the user interface, thereby enabling developers to

easily handle the dialog flow with a solid abstraction layer [3]. Using interactive components that are

grounded on certain designs for dialog management, developers can make sure that every component of

the conversation can be solved individually. This feature proves useful in scaling the application as all

the components scale independently without affecting the application logic in general.

The component model also allows for the implementation of stateful sessions, where components

maintain the contextual state from one user interaction to another. There are several layers in the

framework that enable a consistent delegation of responsibilities. For instance, one layer may handle UI

presentation, and another one can handle dialog state transition logic. State management libraries Blazor

natively provide popular patterns such as Flux or Redux that can be utilized to communicate between

layers so that updates in the conversation state will automatically translate into UI changes [7].

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230440661 Volume 5, Issue 4, July-August 2023 5

Figure 3: Flux Application Flow: Managing State in Blazor with Fluxor

Source: Adapted from [19]

b. Dialog Management

Dialog management is central to this architecture. It consists of a continuous interpretation of user intent

and transition management between various states based on user input and context relevance. Finite state

automata were traditionally used for this purpose in dialog systems, but increasingly sophisticated

models now use machine learning algorithms to enhance intent detection and context tracking [5]. This

method can dynamically tailor the conversation to user behavioral patterns and past conversations

logged, thus providing a more enhanced user experience.

The use of RESTful APIs makes it easier to maintain a stateless style of communication between the

backend and the user interface. Since there is no session-based state for APIs, when a user asks for

something, all the context data required should be part of every API request. It is a method that involves

structuring the API endpoints in a way that they are able to reconstruct the dialog state from sparse input

[2].

c. Data Persistence and Synchronization

Data persistence is the second most important component of a stateful conversational system. Data

persistence is the storage and retrieval of dialogue-related data required to ensure dialog continuity.

Proper utilization of the appropriate data storage choice, whether SQL or NoSQL, is critical here. SQL

databases can manage structured data efficiently, enabling complex queries to access user data, while

NoSQL databases can provide more flexibility and performance for dynamically changing data like user

input and conversation histories [4].

In addition, with a distributed architecture where data is replicated across multiple instances of the

dialog system, responsiveness and fault tolerance can be enhanced. It guarantees that even in the

presence of latency on the network or other bottlenecks, the consistency of the user experience is not

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230440661 Volume 5, Issue 4, July-August 2023 6

affected, as in [1]. Data caching methods can also enhance performance by storing frequently used

dialogs and states in memory for a short period to avoid repeated database lookups.

d. Multi-tasking and Context Management

A good dialog management system should also meet the greater complexity of multi-tasking abilities

that users ought to provide. With more advanced conversational systems, users desire not just the

accomplishment of tasks but also the fluency to move between contexts. With domain-specific dialog

models for each subtask, interaction quality can be greatly enhanced to enable users to switch between

tasks with no awkward prompting or faulty results.

Additionally, persistent context tracking must be employed to retain user preferences or content that has

been discussed earlier. Technical solutions include context propagation, in which the system is designed

to retain the whole conversation history or selectively recall significant features at user request.

Conversation summarization and routing based on intent are some of the approaches that can further

optimize conversational relevance, hence making the system more intuitive and user-friendly.

6. Challenges in Managing Dialog State and Context

Management of context and dialog state in conversational systems is multi-faceted and has a strong

influence on the user experience. Underlying all these challenges is the inherent complexity of human

communication, which is subtle, context-dependent, and frequently ambiguous. The complexities need

to be handled by conversational agents in order to generate coherent and contextually relevant responses,

which requires a strong dialog management strategy.

a. Context Preservation

One of the main issues is state persistence over a series of user interactions. In stateful dialogue systems,

context preservation is critical during sessions so that users can have multi-turn conversations without

having to repeat themselves or forget what they were discussing. Such context preservation is especially

difficult since users may shift topics, pursue follow-up questions, or return to earlier topics after some

time. It is pointed out that modeling the conversation history and determining the appropriate context for

any user query is a problem that necessitates advanced dialog state tracking systems, typically through

the integration of different tracking models and error correction mechanisms.

One of the solutions to this issue is through the use of advanced context management frameworks

capable of handling multiple threads of dialog in parallel. This involves the use of formal representations

to encode context so that the system may infer when and where to transition between topics naturally.

Even with adequate data representations, it remains challenging to accurately predict user intent due to

the varying levels of nuance by which users present themselves. Natural language input must be

correctly understood by dialog agents, a function that involves sophisticated natural language processing

methods to transform user statements into actionable knowledge [7].

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230440661 Volume 5, Issue 4, July-August 2023 7

Figure 4: Speech-to-Response Flow in Conversational Systems

Source: Adapted from [20]

b. Technical Limitations

Besides contextual issues, technical issues also arise in dialog state management. Most systems stick to

old paradigms that demand high computational costs to scan and manage dialog context in the correct

way. Unresponsive delay times can be an issue if dialog state transitions involve complex operations and

need to load too much data from a database. One is left with having to create data storage systems that

can support rapid access and efficient recovery of dialog states in order to counteract probable delays

before generating responses back to the user.

Further, dialog systems also often suffer from concurrency issues in the presence of multi-users, and

concurrent requests become the norm. With multiple active sessions handled by dialog agents and each

session containing varying states stored by the system, maintaining individualized user experiences

without contaminating data becomes all the more imperative. Having finer-grained lock schemes in

place or isolating dialog states via temporal data structures is viable in helping counteract such

phenomena but often comes with the drawback of increased complexity of implementation [5].

c. Multi-tasking and Intent Identification

Multi-tasking ability is a requirement of conversation systems, but it only creates more complications in

dialog management. Users anticipate ease of moving from one subject to another, and thus, dialog

systems need to address this habit of context switching when planning their strategies for context

management. The dynamically changing nature of queries from the user often means implicit requests or

context-based cues need to be sensed and returned accordingly. This may require the use of machine

learning algorithms to enhance intent detection and support adaptive dialog management that responds

dynamically to changing user requirements.

On the other hand, multi-turn conversational intent detection entails the creation of advanced models

with the ability to differentiate between user intent, detect intent change, and resolve potential language

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230440661 Volume 5, Issue 4, July-August 2023 8

ambiguities. For instance, one query can have various implications depending on the context. There has

been an argument presented that dialog management systems must be able to achieve the task of finding

a balance between the potency of intent recognition algorithms and the computational adequacy

demanded for real-time conversation.

d. Enhanced Learning and Adaptability

Another inherent challenge is the requirement for ongoing learning and adaptation to enhance dialog

systems in the long run. Conversational agents need to utilize machine learning algorithms to adapt from

previous conversations and user feedback in order to provide personalized experiences or modify dialog

strategies [1]. However, adaptive learning necessitates robust mechanisms to measure user satisfaction

and get adequate feedback in a literature-based manner without overloading the user.

Crowd-sourced knowledge has been suggested as an active way of improving the performance of dialog

systems by integrating crowd-sourced knowledge into automated systems. By drawing on collective

knowledge, such systems would be able to refine dialog models based on a larger set of interactions than

could be gleaned from individual user streams.

7. Evaluation Metrics for User Experience and Engagement

User experience and interaction evaluation in dialog systems are essential to maintain user satisfaction

and foster long-term interaction. It depends on a cohesive view of the way users interact and experience

with a dialog agent. Effective measurement strategies can be categorized into three broad groups: task-

oriented measures, user-oriented measures, and system performance measures.

a. Task-oriented measures are aimed at the potential of the dialog agent to achieve given tasks in a

successful and accurate manner. These performance metrics (PIs), such as task success rate,

completion rate, and average handling time, are used to assess the agent’s effectiveness in

supporting user tasks. Higher task success rates typically accompany higher levels of user

engagement. It is demonstrated that the measurement of task accomplishment on a fine-grained

scale has been successful in triggering an improvement in dialog management tasks through the

identification of points of constriction and reoccurrence points of failures in user-agent

interaction [15]. In addition, one can also measure the number of turns spent on doing an activity

to get feedback on conversational efficiency; more efficient interactions with high success rates

typically suggest that a user will end up having a more engaging interaction.

b. User-centric metrics track the user experience and satisfaction evoked by the conversational

interface. Some typical measures are usage statistics, user satisfaction surveys, and Net Promoter

Score (NPS). Collecting qualitative user feedback from the users themselves regarding their

experience yields actionable information regarding perceived gaps and areas of improvement in

dialog systems. Actionable conversational quality indicators (ACQIs) have been shown to be

instrumental in determining how users judge the effectiveness and relevance of agent responses

[12]. Such information can trigger changes that align agent behavior more closely with user

expectations and enhance overall satisfaction.

c. System performance measures provide another picture by emphasizing backend system

efficiency for the dialog system. Response time, system availability, and rate of throughput

belong to this type. Long response times can mean hidden performance deficiencies in the

system design or in network latency that influence user interaction. Thus, performance

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230440661 Volume 5, Issue 4, July-August 2023 9

monitoring system mechanisms like tracing and logging user interaction can guide developers to

trace system bottlenecks. Also important is system availability; incessant downtime creates user

attrition. Regular A/B testing may be used to measure the impact of modifications in system

behavior on user interaction and overall performance goals.

Conversational systems can leverage automated analytics platforms to merge user interaction

information into real-time insights in a bid to successfully leverage these measures. This was suggested

as logging interaction sessions that are automatable for performance measurements, which allows

developers to optimize dialog flows based on facts rather than imagination [16]. With the continued rise

of conversational systems, adopting a mix of these steps will provide a holistic picture of what users do

when they interact with dialog agents and yield continuous improvements to design and operations.

8. Implications for Application Development and Deployment

Stateful conversational system development has significant implications for application development

and deployment. With the growing complexity of the systems, organizations need to implement agile

methods focused on iterative development. This facilitates the quick deployment of conversational

agents while allowing ongoing improvements based on user feedback and evaluation metrics. The

organized rollout of a CI/CD pipeline becomes essential to handle updates, as this allows teams to react

quickly to user requirements and system performance metrics.

To begin with, the use of Blazor and RESTful APIs in today's architectures requires developers to be

familiar with contemporary web technologies. The utilization of Blazor makes client-side programming

easier by taking advantage of C#, which is different from conventional JavaScript frameworks. Shifting

to a Blazor-focused approach enables teams to group skill sets and simplify development, ultimately

decreasing time-to-market for conversational functionality [6]. However, development teams must

exercise care regarding the particular rendering performance requirements of Blazor, optimizing client-

server communication to offer responsiveness no matter the network state [4].

Further, the shift to employing machine learning algorithms in state tracking and dialog management

implies that there will be a need for greater levels of expertise on the development teams.

Implementation depends on getting experts knowledgeable about natural language processing (NLP) and

machine learning. Since algorithms are constantly learning from users, a structured training program

must be in place to maintain the model current and accurate in the long term. As a result of the

complexities in training data quality and the requirement for large corpora of conversations, dialog

systems need to be personalized to individual user contexts [10].

Increased emphasis on user experience (UX) design is yet another imperative implication of building

stateful conversational systems. By leveraging user behavior measurements and feedback cycles in

iterative development, designers will need to collaborate with developers in an effort to deliver easy-to-

use interfaces that lead users through interactions in a seamless way. Developing test cases for dialog

flows and user paths can give rise to solid interaction designs that engage effectively with target

audiences [12].

Lastly, when conversational systems are embedded in business processes, groups must also handle

security and privacy issues related to processing user information. As data protection laws change,

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230440661 Volume 5, Issue 4, July-August 2023 10

keeping conversation data secure and adhering to legal guidelines is of utmost importance. It entails

applying security best practices and regularly checking system vulnerabilities [2].

9. Conclusion

In conclusion, the effect of application development and deployment on stateful conversational systems

includes methodologies, skillset adjustments, UX improvements, and compliance focus. Successful

application development and deployment of these systems is a function of an interdisciplinary solution

that includes technical acumen, user-centric designs, and a maximal security regime.

By comprehending the issues pertaining to dialog state and context management, using the right

evaluation metrics, and feeding such understanding into best application development and deployment

practices, organizations can create more engaging and interactive conversational systems. This

knowledge will ultimately lead to user satisfaction and improve the efficacy of conversational agents in

satisfying user needs.

10. References

[1] T. Huang, W. Lasecki, and J. Bigham, "Guardian: A crowd-powered spoken dialog system for web

APIs," in Proc. AAAI Conf. Human Comput. Crowdsourcing, vol. 3, pp. 62–71, 2015. doi:

10.1609/hcomp.v3i1.13237

[2] F. Haupt, F. Leymann, and C. Pautasso, "A conversation-based approach for modeling REST APIs,"

in Proc. IEEE WICSA, 2015. doi: 10.1109/wicsa.2015.20

[3] P. Himschoot, "Components and structure for Blazor applications," in Blazor Revealed, pp. 65–119,

2020. doi: 10.1007/978-1-4842-5928-3_3

[4] R. Ollila, N. Mäkitalo, and T. Mikkonen, "Modern web frameworks: A comparison of rendering

performance," J. Web Eng., 2022. doi: 10.13052/jwe1540-9589.21311

[5] D. Griol and J. Molina, "A proposal to manage multi-task dialogs in conversational interfaces,"

ADCAIJ Adv. Distrib. Comput. Artif. Intell. J., vol. 5, no. 2, pp. 53–65, 2016. doi:

10.14201/adcaij2016525365

[6] T. Litvinavicius, "Introduction to Blazor," in Blazor Quick Start Guide, pp. 1–5, 2022. doi:

10.1007/978-1-4842-8768-2_1

[7] J. Harms, P. Kucherbaev, A. Bozzon, and G. Houben, "Approaches for dialog management in

conversational agents," IEEE Internet Comput., vol. 23, no. 2, pp. 13–22, 2019. doi:

10.1109/mic.2018.2881519

[8] M. Aponte, "Blazor Server vs. Blazor WebAssembly," in Blazor Revealed, pp. 19–31, 2020. doi:

10.1007/978-1-4842-5747-0_2

[9] K. Mugoye, H. Okoyo, and S. Mcoyowo, "MAS architectural model for dialog systems with

advancing conversations," Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., pp. 247–252, 2018. doi:

10.32628/cseit183854

[10] T. Zhao, K. Lee, and M. Eskénazi, "DialPort: A general framework for aggregating dialog

systems," in Proc. SIGDIAL Workshop Discourse Dialogue, 2016. doi: 10.18653/v1/w16-6007

[11] A. Ivanchikj, C. Pautasso, and S. Schreier, "Visual modeling of RESTful conversations with

RESTalk," Softw. Syst. Model., vol. 17, no. 3, pp. 1031–1051, 2016. doi: 10.1007/s10270-016-0532-2

https://www.ijfmr.com/
https://doi.org/10.1609/hcomp.v3i1.13237
https://doi.org/10.1609/hcomp.v3i1.13237
https://doi.org/10.1609/hcomp.v3i1.13237
https://doi.org/10.1109/wicsa.2015.20
https://doi.org/10.1109/wicsa.2015.20
https://doi.org/10.1007/978-1-4842-5928-3_3
https://doi.org/10.1007/978-1-4842-5928-3_3
https://doi.org/10.13052/jwe1540-9589.21311
https://doi.org/10.13052/jwe1540-9589.21311
https://doi.org/10.14201/adcaij2016525365
https://doi.org/10.14201/adcaij2016525365
https://doi.org/10.14201/adcaij2016525365
https://doi.org/10.1007/978-1-4842-8768-2_1
https://doi.org/10.1007/978-1-4842-8768-2_1
https://doi.org/10.1007/978-1-4842-8768-2_1
https://doi.org/10.1109/mic.2018.2881519
https://doi.org/10.1109/mic.2018.2881519
https://doi.org/10.1109/mic.2018.2881519
https://doi.org/10.1007/978-1-4842-5747-0_2
https://doi.org/10.1007/978-1-4842-5747-0_2
https://doi.org/10.1007/978-1-4842-5747-0_2
https://doi.org/10.32628/cseit183854
https://doi.org/10.32628/cseit183854
https://doi.org/10.32628/cseit183854
https://doi.org/10.18653/v1/w16-6007
https://doi.org/10.18653/v1/w16-6007
https://doi.org/10.1007/s10270-016-0532-2
https://doi.org/10.1007/s10270-016-0532-2

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230440661 Volume 5, Issue 4, July-August 2023 11

[12] M. Higgins, D. Widdows, C. Brew, G. Christian, A. Maurer, M. Dunn, J. Bradley, J. Harwell, and

R. Chittim, "Actionable conversational quality indicators for improving task-oriented dialog systems,"

2021. doi: 10.48550/arxiv.2109.11064

[13] S. Shukla, L. Lidén, S. Shayandeh, E. Kamal, J. Li, M. Mazzola, B. Selman, D. Bohus, and J. Gao,

"Conversation Learner – A machine teaching tool for building dialog managers for task-oriented dialog

systems," in Proc. ACL Demos, 2020. doi: 10.18653/v1/2020.acl-demos.39

[14] S. Zamanirad, B. Benatallah, C. Rodríguez, M. Yaghoub-Zadeh-Fard, S. Bouguelia, and H. Brabra,

"State machine based human-bot conversation model and services," in Service-Oriented Computing –

ICSOC Workshops, pp. 199–214, 2020. doi: 10.1007/978-3-030-49435-3_13

[15] J. Cheng, D. Agrawal, H. Alonso, S. Choubey, J. Driesen, F. Flego, S. Aue, T. Kwiatkowski, A.

Kannan, Y. Wang, and A. Johannsen, "Conversational semantic parsing for dialog state tracking," in

Proc. EMNLP, 2020. doi: 10.18653/v1/2020.emnlp-main.651

[16] J. Williams, A. Raux, and M. Henderson, "The dialog state tracking challenge series: A review,"

Dialogue Discourse, vol. 7, no. 3, pp. 4–33, 2016. doi: 10.5087/dad.2016.301

[17] PragimTech, “What is Blazor WebAssembly?,” PragimTech Blog, 2020. [Online]. Available:

https://www.pragimtech.com/blog/blazor-webAssembly/what-is-blazor-webassembly/

[18] OpenPR, “Latest research in conversational systems market by type, application and growth factor

including key players like TIBCO Software, Oracle Corporation, Nuance Communications Inc., SAP

SE, Saffron Technology and others,” OpenPR, 2018. [Online]. Available:

https://www.openpr.com/news/1328126/latest-research-in-conversational-systems-market-by-type-

application-and-growth-factor-including-key-players-like-tibco-software-oracle-corporation-nuance-

communications-inc-sap-se-saffron-technology-and-others.html.

[19] J. McKenzie, “State management with Blazor using Fluxor (Part 1),” Joey McKenzie Tech Blog,

2020. [Online]. Available: https://joeymckenzietech.fly.dev/blog/state-management-with-fluxor-blazor-

part-1

[20] N. Shah, “Introduction to dialogue systems (Part 1),” Medium, 2018. [Online]. Available:

https://medium.com/@nisar.shah1/introduction-to-dialogue-systems-part-1-475a06ab78ad.

https://www.ijfmr.com/
https://doi.org/10.48550/arxiv.2109.11064
https://doi.org/10.48550/arxiv.2109.11064
https://doi.org/10.18653/v1/2020.acl-demos.39
https://doi.org/10.18653/v1/2020.acl-demos.39
https://doi.org/10.1007/978-3-030-49435-3_13
https://doi.org/10.1007/978-3-030-49435-3_13
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.5087/dad.2016.301
https://doi.org/10.5087/dad.2016.301
https://www.pragimtech.com/blog/blazor-webAssembly/what-is-blazor-webassembly/
https://www.pragimtech.com/blog/blazor-webAssembly/what-is-blazor-webassembly/
https://www.pragimtech.com/blog/blazor-webAssembly/what-is-blazor-webassembly/
https://www.openpr.com/news/1328126/latest-research-in-conversational-systems-market-by-type-application-and-growth-factor-including-key-players-like-tibco-software-oracle-corporation-nuance-communications-inc-sap-se-saffron-technology-and-others.html
https://www.openpr.com/news/1328126/latest-research-in-conversational-systems-market-by-type-application-and-growth-factor-including-key-players-like-tibco-software-oracle-corporation-nuance-communications-inc-sap-se-saffron-technology-and-others.html
https://www.openpr.com/news/1328126/latest-research-in-conversational-systems-market-by-type-application-and-growth-factor-including-key-players-like-tibco-software-oracle-corporation-nuance-communications-inc-sap-se-saffron-technology-and-others.html
https://www.openpr.com/news/1328126/latest-research-in-conversational-systems-market-by-type-application-and-growth-factor-including-key-players-like-tibco-software-oracle-corporation-nuance-communications-inc-sap-se-saffron-technology-and-others.html
https://www.openpr.com/news/1328126/latest-research-in-conversational-systems-market-by-type-application-and-growth-factor-including-key-players-like-tibco-software-oracle-corporation-nuance-communications-inc-sap-se-saffron-technology-and-others.html
https://joeymckenzietech.fly.dev/blog/state-management-with-fluxor-blazor-part-1
https://joeymckenzietech.fly.dev/blog/state-management-with-fluxor-blazor-part-1
https://joeymckenzietech.fly.dev/blog/state-management-with-fluxor-blazor-part-1
https://medium.com/@nisar.shah1/introduction-to-dialogue-systems-part-1-475a06ab78ad
https://medium.com/@nisar.shah1/introduction-to-dialogue-systems-part-1-475a06ab78ad
https://medium.com/@nisar.shah1/introduction-to-dialogue-systems-part-1-475a06ab78ad

