International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Split Restrained Geodetic Number of Strong Product and Lexicographic Product of Graphs

Ashalatha K S
Assistant Professor, Department of Mathematics, Vedavathi Government First Grade College, Hiriyur, Chitradurga District-577598.

Abstract

Let ' G ' be a graph. If $u, v \in V$, then a u-v geodetic of G is the shortest path between u and v. The closed interval $I[\mathrm{u}, \mathrm{v}]$ consists of all vertices lying in some $u-v$ geodetic of G. For $\mathrm{S} \subseteq \mathrm{V}(\mathrm{G})$ the set $I[S]$ is the union of all sets $I[u, v]$ for $u, v \in S$. A set S is a geodetic set of G if $I[S]=V(G)$. The cardinality of minimum geodetic set of G is the geodetic number of G, denoted by $g(G)$. A set S of vertices of a graph G is a split geodetic set if S is a geodetic set and $\langle V-S\rangle$ is disconnected, split geodetic number $g_{s}(G)$ of G is the minimum cardinality of a split geodetic set of G . In this paper I study split restrained geodetic number of strong product and lexicographic product of graphs. A set S of vertices of a graph G is a split restrained geodetic set if S is a geodetic set and the subgraph $\langle V-S\rangle$ is disconnected with no isolated vertices. The minimum cardinality of a split restrained geodetic set of G is the split restrained geodetic number of G and is denoted by $\mathrm{g}_{\mathrm{sr}}(\mathrm{G})$. The split restrained geodetic numbers of some standard strong product and the lexicographic product of graphs are determined.

Keywords: Geodetic set, Geodetic number, Split geodetic set, Split geodetic number, Split Restrained Geodetic set, Split Restrained Geodetic number, Strong product, Lexicographic product of graphs.

1. Introduction

In this paper, we follow the notations of [4]. The graphs considered here have at least one component which is not complete or at least two nontrivial components.
The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. It is well known that this distance is a metric on the vertex set $V(G)$. For a vertex v of G, the eccentricity $\mathrm{e}(\mathrm{v})$ is the distance between v and a vertex farthest from v . The minimum eccentricity among the vertices of G is radius, $\operatorname{rad} \mathrm{G}$, and the maximum eccentricity is the diameter, diam G. A u-v path of length $d(u, v)$ is called a $u-v$ geodesic. We define $I[u, v]$ to the set of all vertices lying on some $u-v$ geodesic of G and for a nonempty subset S of $V(G), I[S]=U_{u, v \in S} I[u, v]$. A set S of vertices of G is called a geodetic set in G if $\mathrm{I}[\mathrm{S}]=\mathrm{V}(\mathrm{G})$, and a geodetic set of minimum cardinality is a minimum geodetic set. The cardinality of a minimum geodetic set in G is called the geodetic number of G , and we denote it by $g(G)$. The geodetic number of a graph was introduced in [6,7] and further studied in [2,8,4].
A geodetic set S of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a split geodetic set if the induced subgraph $\langle\mathrm{V}-\mathrm{S}\rangle$ is disconnected. .The split geodetic number $\mathrm{g}_{\mathrm{s}}(\mathrm{G})$ of G is the minimum cardinality of a split geodetic set. The split geodetic number was introduced and studied in [9]. A set S of vertices of a graph G is a split restrained geodetic set if S is a geodetic set and the subgraph $\langle V-S\rangle$ is disconnected with no isolated vertices. The minimum

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.iffmr.com • Email: editor@ijfmr.com
cardinality of a split restrained geodetic set of G is the split restrained geodetic number of G and is denoted by $\mathrm{g}_{\text {sr }}(\mathrm{G})$. The split geodetic number was introduced and studied in [10].
The strong product of graphs G_{1} and G_{2}, denoted by $G_{1} \boxtimes G_{2}$, has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, where two distinct vertices $\mathrm{x}_{1}, \mathrm{y}_{1}$ and $\mathrm{x}_{2}, \mathrm{y}_{2}$ are adjacent with respect to the strong product if (a) $\mathrm{x}_{1}=\mathrm{x}_{2}$ and $y_{1} y_{2} \in E\left(G_{2}\right)$ or (b) $y 1=y 2$ and $x_{1} x_{2} \in E\left(G_{1}\right)$ or (c) $x_{1} x_{2} \in E\left(G_{1}\right)$ and $y_{1} y_{2} \in E\left(G_{2}\right)$.
The lexicographic product of $G=G_{1}\left[G_{2}\right]$ has $V=V_{1} \times V_{2}$ as its vertex set, and $u=\left(u_{1}, u_{2}\right)$ is adjacent with $\mathrm{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ whenever [u_{1} adjacent to v_{1}] or $\left[\mathrm{u}_{1}=\mathrm{v}_{1}\right.$ and u_{2} adjacent to $\left.\mathrm{v}_{2}\right]$.
For any undefined term in this paper, see [3] and [4].

2. Preliminary Notes

We need the following results to prove further results.
Theorem 2.1 [2] Every geodetic set of a graph contains its extreme vertices.
Theorem 2.2 [2] For any path P_{n} with n vertices, $\mathrm{g}\left(\mathrm{P}_{\mathrm{n}}\right)=2$.
Theorem 2.3 [2] For cycle C_{n} of order $\mathrm{n} \geq 3, g\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\begin{array}{l}2, \text { if } \mathrm{n} \text { is even } \\ 3, \text { if } \mathrm{n} \text { is odd }\end{array}\right.$

3. Main Results

3.1 For cycle C_{n} of order $n \geq 4, g_{s r}\left(K_{2} \boxtimes C_{n}\right)=\left\{\begin{array}{cc}4 & \text { if } n \text { is even } \\ 6 & \text { if } n \text { is odd }\end{array}\right.$

Proof: Let $G=K_{2} \boxtimes C_{n}$ be the graph formed from two copies G_{1} and G_{2} of C_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in$ $\mathrm{V}\left(\mathrm{G}_{1}\right), \mathrm{W}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\right\} \in \mathrm{V}\left(\mathrm{G}_{2}\right)$ and $\mathrm{V}(\mathrm{G})=\mathrm{U} \cup W$. We have the following cases.
Case 1. Let n be even. Consider $S=\left\{u_{i}, u_{j}, w_{i}, w_{j}\right\}$ be the split restrained geodetic set, where $\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)=\operatorname{diam}\left(\mathrm{K}_{2} \boxtimes \mathrm{C}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}\right)$ and $\left\{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right),\left(\mathrm{u}_{\mathrm{j}}, \mathrm{w}_{\mathrm{j}}\right)\right\} \in \mathrm{E}\left(\mathrm{K}_{2} \boxtimes \mathrm{C}_{\mathrm{n}}\right)$, such that $\mathrm{I}[\mathrm{S}]=$ $V\left(K_{2} \boxtimes C_{n}\right)$ and $\left\langle V\left(K_{2} \boxtimes C_{n}\right)-S\right\rangle$ is disconnected with no isolated vertices. If possible suppose $S^{\prime}=$ $\left\{u_{i}, u_{j}, w_{i}\right\} \subseteq S$ be such that every two vertices $u, v \in S^{\prime}$ there exist a vertex $w_{k} \neq u, v$ of G that lies in $u-$ v geodesic. Thus S is the minimum split restrained geodetic set of $K_{2} \boxtimes C_{n}$, therefore $g_{s r}\left(K_{2} \boxtimes C_{n}\right)=4$.

Case 2: Let n be odd. Consider $\mathrm{S}=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}, \mathrm{u}_{\mathrm{k}}, \mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}, \mathrm{w}_{\mathrm{k}}\right\}$ be the split restrained geodetic set, where $\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)=\mathrm{d}\left(\mathrm{u}_{\mathrm{j}}, \mathrm{u}_{\mathrm{k}}\right)=\operatorname{diam}\left(\mathrm{K}_{2} \boxtimes \mathrm{C}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}\right)=\mathrm{d}\left(\mathrm{w}_{\mathrm{j}}, \mathrm{w}_{\mathrm{k}}\right) \quad$ and $\left\{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right),\left(\mathrm{u}_{\mathrm{j}}, \mathrm{w}_{\mathrm{j}}\right),\left(\mathrm{u}_{\mathrm{k}}, \mathrm{w}_{\mathrm{k}}\right)\right\} \in$ $E\left(K_{2} \boxtimes C_{n}\right)$, such that $I[S]=V\left(K_{2} \boxtimes C_{n}\right)$ and $\left\langle V\left(K_{2} \boxtimes C_{n}\right)-S\right\rangle$ is disconnected. If possible suppose $S^{\prime}=\left\{u_{i}, u_{j}, u_{k}, w_{i}, w_{k}\right\} \subseteq S$ be such that every two vertices $u, v \in S^{\prime}$ there exist a vertex $w_{l} \neq u, v$ of G that lies in $u-v$ geodesic. Thus S is the minimum split restrained geodetic set of $K_{2} \boxtimes C_{n}$, there fore $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{K}_{2} \boxtimes \mathrm{C}_{\mathrm{n}}\right)=6$.

Theorem 3.2 For any path $\mathrm{P}_{\mathrm{n}}, \mathrm{n} \geq 5, \mathrm{~g}_{\mathrm{sr}}\left(\mathrm{K}_{2} \boxtimes \mathrm{P}_{\mathrm{n}}\right)=6$.
Proof: Let $K_{2} \boxtimes P_{n}$ be the graph formed from two copies G_{1} and G_{2} of P_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in$ $\mathrm{V}\left(\mathrm{G}_{1}\right), \mathrm{W}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\right\} \in \mathrm{V}\left(\mathrm{G}_{2}\right)$ and $\mathrm{V}=\mathrm{U} \cup \mathrm{W}$. Let $\mathrm{S}=\left\{\mathrm{H}_{1} \cup \mathrm{H}_{2}\right\}$, where $\mathrm{H}_{1}=$ $\left\{\mathrm{u}_{1}, \mathrm{u}_{\mathrm{n}}, \mathrm{w}_{1}, \mathrm{w}_{\mathrm{n}}\right\} \subseteq V\left(\mathrm{~K}_{2} \boxtimes \mathrm{P}_{\mathrm{n}}\right)$ and $\mathrm{H}_{2}=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right\} \in E\left(\mathrm{~K}_{2} \boxtimes \mathrm{P}_{\mathrm{n}}\right) \subseteq \mathrm{V}\left(\mathrm{K}_{2} \boxtimes \mathrm{P}_{\mathrm{n}}\right)-\mathrm{H}_{1}, \mathrm{u}_{\mathrm{i}}$ and w_{i} are the vertices having maximum degree that is $\operatorname{deg}\left(u_{i}\right)=\operatorname{deg}\left(w_{i}\right)=5$. Now S be the set of vertices, such that $\mathrm{I}[\mathrm{S}]=\mathrm{V}\left(\mathrm{K}_{2} \boxtimes \mathrm{P}_{\mathrm{n}}\right)$ and $\left\langle\mathrm{V}\left(\mathrm{K}_{2} \boxtimes \mathrm{P}_{\mathrm{n}}\right)-\mathrm{S}\right\rangle$ has more than one component, which does not contain any isolated vertices. Then by the above argument, S is the minimum split restrained geodetic set of $K_{2} \boxtimes P_{n}$. Clearly it follows that $|S|=\left|H_{1} \cup H_{2}\right|=4+2=6$. Therefore $g_{s r}\left(K_{2} \boxtimes P_{n}\right)=6$.

Theorem 3.3 For any integers $r, s \geq 2, g_{s r}\left(K_{2} \boxtimes K_{r, s}\right)=2 \min (r, s)$.
Proof : Let $G=K_{r, s}$, such that $U=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}, W=\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$ are the partite sets of G, where $r \leq s$ and also $V\left(K_{r, s}\right)=U \cup W . K_{2} \boxtimes K_{r, s}$ be the graph formed from two copies G_{1} and G_{2} of $K_{r, s}$. Let $\mathrm{U}_{1}=\left\{\left(\mathrm{a}_{1}, \mathrm{u}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{u}_{2}\right), \ldots,\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{r}}\right),\left(\mathrm{a}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{w}_{2}\right), \ldots,\left(\mathrm{a}_{1}, \mathrm{w}_{\mathrm{s}}\right)\right\} \in \mathrm{V}\left(\mathrm{G}_{1}\right)$, $\mathrm{W}_{1}=\left\{\left(\mathrm{b}_{1}, \mathrm{u}_{1}\right),\left(\mathrm{b}_{1}, \mathrm{u}_{2}\right), \ldots,\left(\mathrm{b}_{1}, \mathrm{u}_{\mathrm{r}}\right),\left(\mathrm{b}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{b}_{1}, \mathrm{w}_{2}\right), \ldots,\left(\mathrm{b}_{1}, \mathrm{w}_{\mathrm{s}}\right)\right\} \in \mathrm{V}\left(\mathrm{G}_{2}\right)$, where $\mathrm{a}_{1}, \mathrm{~b}_{1} \in$ K_{2} and $V\left(K_{2} \boxtimes K_{r, s}\right)=U_{1} \cup W_{1}$.
Consider $\mathrm{S}=\left\{\left(\mathrm{a}_{1}, \mathrm{u}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{u}_{2}\right), \ldots,\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{r}}\right),\left(\mathrm{b}_{1}, \mathrm{u}_{1}\right),\left(\mathrm{b}_{1}, \mathrm{u}_{2}\right), \ldots,\left(\mathrm{b}_{1}, \mathrm{u}_{\mathrm{r}}\right)\right\}$, for every $\left(\mathrm{a}_{1}, \mathrm{w}_{\mathrm{k}}\right),\left(\mathrm{b}_{1}, \mathrm{w}_{\mathrm{k}}\right)$, $1 \leq \mathrm{k} \leq \mathrm{s}$ lies on the $\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{i}}\right)-\left(\mathrm{b}_{1}, \mathrm{u}_{\mathrm{j}}\right)$ geodesic for $1 \leq \mathrm{i} \neq \mathrm{j} \leq \mathrm{r}$. Since $\left\langle\mathrm{V}\left(\mathrm{K}_{2} \boxtimes \mathrm{~K}_{\mathrm{r}, \mathrm{S}}\right)-\mathrm{S}\right\rangle$ is disconnected with no isolated vertices, we have S is a split restrained geodetic set of $K_{2} \boxtimes K_{r, S}$
Let $\mathrm{X}=\left\{\left(\mathrm{a}_{1}, \mathrm{u}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{u}_{2}, \ldots,\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{r}-1}\right),\left(\mathrm{b}_{1}, \mathrm{u}_{1}\right),\left(\mathrm{b}_{1}, \mathrm{u}_{2}\right), \ldots,\left(\mathrm{b}_{1}, \mathrm{u}_{\mathrm{r}}\right)\right\}\right.$ be any set of vertices such that $|X|<|S|$, then X is not a geodetic set of $K_{2} \boxtimes K_{r, s}$, since $\left(a_{1}, u_{r}\right) \notin I[X]$. Also let $Y=$ $\left\{\left(\mathrm{a}_{1}, \mathrm{u}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{u}_{2}\right), \ldots,\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{r}}\right),\left(\mathrm{b}_{1}, \mathrm{u}_{1}\right),\left(\mathrm{b}_{1}, \mathrm{u}_{2}\right), \ldots,\left(\mathrm{b}_{1}, \mathrm{u}_{\mathrm{r}-1}\right)\right\}$ be any set of vertices such that $|\mathrm{Y}|<|\mathrm{S}|$, then Y is not a geodetic set of $K_{2} \boxtimes K_{r, S}$, since $\left(b_{1}, u_{r}\right) \notin I[Y]$. It is clear that S is a minimum split restrained geodetic set of $K_{2} \boxtimes K_{r, s}$. Hence $g_{s r}\left(K_{2} \boxtimes K_{r, s}\right)=2 \min (r, s)=2 r$.

Theorem 3.4 For any Tadpole graph for $n>2$ and $m>3, g_{s r}\left(K_{2} \boxtimes T_{m, n}\right)= \begin{cases}6 & \text { for even cycle } \\ 8 & \text { for odd cycle. }\end{cases}$
Proof: Tadpole graph is a special type of graph consisting of cycle graph of m vertices and a path graph of n vertices connected with a bridge.
$V=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ are the vertices of C_{m} and $U=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ are the vertices of $P_{n} . W=V U U$ are the vertices of tadpole graph.
$K_{2} \boxtimes T_{m, n}$ be the graph formed from two copies G_{1} and G_{2} of $T_{m, n}$. Let $U_{1}=$ $\left\{\left(\mathrm{a}_{1}, \mathrm{c}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{c}_{2}\right), \ldots,\left(\mathrm{a}_{1}, \mathrm{c}_{\mathrm{m}}\right),\left(\mathrm{a}_{1}, \mathrm{p}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{p}_{2}\right), \ldots,\left(\mathrm{a}_{1}, \mathrm{p}_{\mathrm{n}}\right)\right\} \in \mathrm{V}\left(\mathrm{G}_{1}\right), \mathrm{W}_{1}=$ $\left\{\left(\mathrm{b}_{1}, \mathrm{c}_{1}\right),\left(\mathrm{b}_{1}, \mathrm{c}_{2}\right), \ldots,\left(\mathrm{b}_{1}, \mathrm{c}_{\mathrm{m}}\right),\left(\mathrm{b}_{1}, \mathrm{p}_{1}\right),\left(\mathrm{b}_{1}, \mathrm{p}_{2}\right), \ldots,\left(\mathrm{b}_{1}, \mathrm{p}_{\mathrm{n}}\right)\right\} \in \mathrm{V}\left(\mathrm{G}_{2}\right)$ where $\mathrm{a}_{1}, \mathrm{~b}_{1} \in \mathrm{~K}_{2}$ and $\mathrm{V}\left(\mathrm{K}_{2} \boxtimes\right.$ $\left.\mathrm{T}_{\mathrm{m}, \mathrm{n}}\right)=\mathrm{U}_{1} \cup \mathrm{~W}_{1}$.
We have the following cases.
Case 1: For even cycle
Let $S=\left\{\left(\mathrm{a}_{1}, \mathrm{c}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{p}_{\mathrm{n}}\right),\left(\mathrm{b}_{1}, \mathrm{c}_{1}\right),\left(\mathrm{b}_{1}, \mathrm{p}_{\mathrm{n}}\right),\left(\mathrm{a}_{1}, \mathrm{c}_{\mathrm{n}}\right),\left(\mathrm{b}_{1}, \mathrm{c}_{\mathrm{n}}\right)\right\}$ be a split restrained geodetic set of $\mathrm{K}_{2} \boxtimes$ $\mathrm{T}_{\mathrm{m}, \mathrm{n}}$, where $\mathrm{d}\left\{\left(\mathrm{a}_{1}, \mathrm{c}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{p}_{\mathrm{n}}\right)\right\}=\mathrm{d}\left\{\left(\mathrm{b}_{1}, \mathrm{c}_{1}\right),\left(\mathrm{b}_{1}, \mathrm{p}_{\mathrm{n}}\right)\right\}=\operatorname{diam}\left(\mathrm{K}_{2} \boxtimes \mathrm{~T}_{\mathrm{m}, \mathrm{n}}\right)$. Suppose $\quad \mathrm{S}^{\prime}=$ $\left\{\left(a_{1}, c_{1}\right),\left(a_{1}, p_{n}\right),\left(b_{1}, c_{1}\right),\left(b_{1}, p_{n}\right)\right\},\left|S^{\prime}\right|<|S|$, which is a geodetic set and $V-S^{\prime}$ is connected. Hence S is a minimum split restrained geodetic set. Also for all $x, y \in\left\langle V\left(K_{2} \boxtimes T_{m, n}\right)-S\right\rangle$, it follows that $\left\langle V\left(K_{2} \boxtimes T_{m, n}\right)-S\right\rangle$ is disconnected with no isolated vertices. Thus $g_{s r}\left(K_{2} \boxtimes T_{m, n}\right)=6$.
Case 2: For odd cycle.
Let $S=\left\{\left(a_{1}, c_{1}\right),\left(a_{1}, p_{n}\right),\left(b_{1}, c_{1}\right),\left(b_{1}, p_{n}\right),\left(a_{1}, c_{2}\right),\left(b_{1}, c_{2}\right),\left(a_{1}, c_{n}\right),\left(b_{1}, c_{n}\right)\right\}$ be a split restrained geodetic set of $\mathrm{K}_{2} \boxtimes \mathrm{~T}_{\mathrm{m}, \mathrm{n}}$. Suppose $\mathrm{S}^{\prime}=\left\{\left(\mathrm{a}_{1}, \mathrm{c}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{p}_{\mathrm{n}}\right),\left(\mathrm{b}_{1}, \mathrm{c}_{1}\right),\left(\mathrm{b}_{1}, \mathrm{p}_{\mathrm{n}}\right),\left(\mathrm{a}_{1}, \mathrm{c}_{2}\right),\left(\mathrm{b}_{1}, \mathrm{c}_{2}\right)\right\},\left|\mathrm{S}^{\prime}\right|<$ $|S|$, which is a geodetic set and $V-S^{\prime}$ is connected. Hence S is a minimum split restrained geodetic set. Also for all $x, y \in\left\langle V\left(K_{2} \boxtimes T_{m, n}\right)-S\right\rangle$, it follows that $\left\langle V\left(K_{2} \boxtimes T_{m, n}\right)-S\right\rangle$ is disconnected with no isolated vertices. Thus $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{K}_{2} \boxtimes \mathrm{~T}_{\mathrm{m}, \mathrm{n}}\right)=8$.

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com
IJFMR

4. Adding an End-Edge

For an edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ of a graph G with $\operatorname{deg}(\mathrm{u})=1$ and $\operatorname{deg}(\mathrm{v})>1$, we call e an end-edge and u an end -vertex.

Theorem 4.1 Let G^{\prime} be the graph obtained by adding an end-edge (x, y) to a cycle each $\mathrm{C}_{\mathrm{n}}=\mathrm{G}$ of order n >3, with $x \in G$ and $y \notin G$ then $g_{s r}\left(K_{2} \boxtimes G^{\prime}\right)=6$.
Proof: Let $K_{2} \boxtimes G^{\prime}$ be the graph formed from two copies G_{1}^{\prime} and G_{2}^{\prime} of G^{\prime}. Let $U=$ $\left\{\left(\mathrm{a}_{1}, \mathrm{u}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{u}_{2}\right), \ldots,\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{n}-1}\right),\left(\mathrm{a}_{1}, \mathrm{x}\right),\left(\mathrm{a}_{1}, \mathrm{y}\right)\right\} \in \mathrm{V}\left(\mathrm{G}_{1}^{\prime}\right)$,
$\mathrm{W}\left\{\left(\mathrm{b}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{b}_{1}, \mathrm{w}_{2}\right), \ldots,\left(\mathrm{b}_{1}, \mathrm{w}_{\mathrm{n}-1}\right),\left(\mathrm{b}_{1}, \mathrm{x}\right),\left(\mathrm{b}_{1}, \mathrm{y}\right)\right\} \in \mathrm{V}\left(\mathrm{G}_{2}^{\prime}\right)$ and $\mathrm{V}\left(\mathrm{K}_{2} \boxtimes \mathrm{G}^{\prime}\right)=\mathrm{U} \cup \mathrm{W}$.
We have the following cases.
Case 1 . For even cycle
Let $S=\left\{\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{i}}\right),\left(\mathrm{a}_{1}, \mathrm{y}\right),\left(\mathrm{b}_{1}, \mathrm{w}_{\mathrm{i}}\right),\left(\mathrm{b}_{1}, \mathrm{y}\right),\left(\mathrm{a}_{1}, \mathrm{x}\right),\left(\mathrm{b}_{1}, \mathrm{x}\right)\right\}$ be the split restrained geodetic set ,where $\mathrm{d}\left\{\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{i}}\right),\left(\mathrm{a}_{1}, \mathrm{y}\right)\right\}=\mathrm{d}\left\{\left(\mathrm{b}_{1}, \mathrm{w}_{\mathrm{i}}\right),\left(\mathrm{b}_{1}, \mathrm{y}\right)\right\}=\operatorname{diam}\left(\mathrm{K}_{2} \boxtimes \mathrm{G}^{\prime}\right)$, such that $\mathrm{I}[\mathrm{S}]=\mathrm{V}\left(\mathrm{K}_{2} \boxtimes \mathrm{G}^{\prime}\right),\left\langle\mathrm{V}\left(\mathrm{K}_{2} \boxtimes\right.\right.$ $\left.\left.\mathrm{G}^{\prime}\right)-\mathrm{S}\right\rangle$ has more than one component with no isolated vertices. Suppose $\mathrm{S}^{\prime}=$ $\left\{\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{i}}\right),\left(\mathrm{a}_{1}, \mathrm{y}\right),\left(\mathrm{b}_{1}, \mathrm{w}_{\mathrm{i}}\right),\left(\mathrm{b}_{1}, \mathrm{y}\right)\right\},\left|\mathrm{S}^{\prime}\right|<|\mathrm{S}|$ is a geodetic set where $\left\langle\mathrm{V}\left(\mathrm{K}_{2} \boxtimes \mathrm{G}^{\prime}\right)-\mathrm{S}^{\prime}\right\rangle$ is connected. Hence clearly S is the minimum split restrained geodetic set. There fore $g_{s r}\left(K_{2} \boxtimes G^{\prime}\right)=6$.
Case 2. For odd cycle
Let $\mathrm{S}=\left\{\left(\mathrm{a}_{1}, \mathrm{y}\right),\left(\mathrm{b}_{1}, \mathrm{y}\right),\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{i}}\right),\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{j}}\right),\left(\mathrm{b}_{1}, \mathrm{w}_{\mathrm{i}}\right),\left(\mathrm{b}_{1}, \mathrm{w}_{\mathrm{j}}\right)\right\}$, where $\mathrm{d}\left\{\left(\mathrm{a}_{1}, \mathrm{y}\right),\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{i}}\right)\right\}=2$,
$\mathrm{d}\left\{\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{i}}\right),\left(\mathrm{a}_{1}, \mathrm{u}_{\mathrm{j}}\right)\right\}=\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor$ similarly $\mathrm{d}\left\{\left(\mathrm{b}_{1}, \mathrm{y}\right),\left(\mathrm{b}_{1}, \mathrm{w}_{\mathrm{i}}\right)\right\}=2, \mathrm{~d}\left\{\left(\mathrm{~b}_{1}, \mathrm{w}_{\mathrm{i}}\right),\left(\mathrm{b}_{1}, \mathrm{w}_{\mathrm{j}}\right)\right\}=\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor$. Clearly $\mathrm{I}[\mathrm{S}]=$ $\mathrm{V}\left(\mathrm{K}_{2} \boxtimes \mathrm{G}^{\prime}\right)$, since $\left\langle\mathrm{V}\left(\mathrm{K}_{2} \boxtimes \mathrm{G}^{\prime}\right)-\mathrm{S}\right\rangle$ has more than one component with no isolated vertices, S is the minimum split restrained geodetic set of $K_{2} \boxtimes G^{\prime}$. Thus $g_{s r}\left(K_{2} \boxtimes G^{\prime}\right)=6$.

5. Lexicographic Product

The composition $G=G_{1}\left[G_{2}\right]$ has $V=V_{1} \times V_{2}$ as its vertex set, and $u=\left(u_{1}, u_{2}\right)$ is adjacent with $v=$ ($\mathrm{v}_{1}, \mathrm{v}_{2}$) whenever [u_{1} adjacent to v_{1}] or [$\mathrm{u}_{1}=\mathrm{v}_{1}$ and u_{2} adjacent to v_{2}].

Theorem 5.1 For any cycle C_{n} of order $n>6, g_{s r}\left(K_{2}\left[C_{n}\right]\right)=n+2$.
Proof: Let $G=K_{2}\left[C_{n}\right]$ be the graph formed from two copies of G_{1} and G_{2} of C_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in$ $\mathrm{V}\left(\mathrm{G}_{1}\right), \mathrm{W}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\right\} \in \mathrm{V}\left(\mathrm{G}_{2}\right)$ and $\mathrm{V}=\mathrm{U} \cup \mathrm{W}$.
Consider $S=H_{1} \cup H_{2}$ be the minimum split restrained geodetic set of G, such that $H_{1}=\left\{u_{i}, u_{j}, w_{i}, w_{j}\right\}$ be the set of vertices where $\left\{\left(u_{i}, u_{j}\right),\left(w_{i}, w_{j}\right)\right\} \notin E\left(K_{2}\left[C_{n}\right]\right)$ and $d\left(u_{i}, u_{j}\right)=d\left(w_{i}, w_{j}\right)=\operatorname{diam}\left(K_{2}\left[C_{n}\right]\right)$, $\mathrm{I}\left[\mathrm{H}_{1}\right]=\mathrm{V}\left(\mathrm{K}_{2}\left[\mathrm{C}_{\mathrm{n}}\right]\right)$ and $\mathrm{H}_{2}=\left\{\mathrm{u}_{2}, \mathrm{u}_{4}, \ldots, \mathrm{u}_{\mathrm{n}-1}, \mathrm{u}_{\mathrm{n}}, \mathrm{w}_{2}, \mathrm{w}_{4}, \ldots, \mathrm{w}_{\mathrm{n}-2}, \mathrm{w}_{\mathrm{n}-1}, \mathrm{w}_{\mathrm{n}} \subseteq \mathrm{V}(\mathrm{G})-\mathrm{H}_{1}, \mid \mathrm{H}_{2}=\mathrm{n}-\right.$ 2|. Hence $|S|=\left|H_{1} \cup H_{2}\right|=4+n-2=n+2$. There fore $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{K}_{2}\left[\mathrm{C}_{\mathrm{n}}\right]\right)=\mathrm{n}+2$.

Theorem $5.2 \mathrm{G}^{\prime}$ be the graph obtained by adding an end edge (x, y) to cycle $\mathrm{C}_{\mathrm{n}}=\mathrm{G}$ of order $\mathrm{n}>5$, with $\mathrm{x} \in \mathrm{G}$ and $\mathrm{y} \notin \mathrm{G}$. Then $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{K}_{2}\left[\mathrm{G}^{\prime}\right]\right)=\mathrm{n}+3$.
Proof: Let $K_{2}\left[\mathrm{G}^{\prime}\right]$ be the graph formed fromtwo copies G_{1}^{\prime} and G_{2}^{\prime} of G^{\prime}. Let $\mathrm{U}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}+1}\right\} \in$ $\mathrm{V}\left(\mathrm{G}_{1}^{\prime}\right), \mathrm{W}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}+1}\right\} \in \mathrm{V}\left(\mathrm{G}_{2}^{\prime}\right)$ such that $\mathrm{V}\left(\mathrm{K}_{2}\left[\mathrm{G}^{\prime}\right]\right)=\mathrm{U} \cup \mathrm{W}$. Consider $\mathrm{S}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$, where $H_{1}=\left\{u_{i}, u_{j}, w_{i}, w_{j}\right\}$ such that $\left(u_{i}, u_{j}\right),\left(w_{i}, w_{j}\right) \notin E\left(K_{2}\left[G^{\prime}\right]\right)$ and these vertices are not formed by the endvertex of $\mathrm{G}^{\prime}, \mathrm{I}\left[\mathrm{H}_{1}\right]=\mathrm{V}\left(\mathrm{K}_{2}\left[\mathrm{G}^{\prime}\right]\right)$ and $\mathrm{H}_{2}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}+1}\right\} \subseteq \mathrm{V}\left(\mathrm{K}_{2}\left[\mathrm{G}^{\prime}\right]\right)-\mathrm{H}_{1},\left|\mathrm{H}_{2}\right|=\mathrm{n}-1$. Such that the induced sub graph $\left\langle\mathrm{V}\left(\mathrm{K}_{2}\left[\mathrm{G}^{\prime}\right]\right)-\mathrm{S}\right\rangle$ is disconnected with no isolated vertices. Thus S is the minimum

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com
split restrained geodetic set of $\mathrm{K}_{2}\left[\mathrm{G}^{\prime}\right]$. Hence $|\mathrm{S}|=\left|\mathrm{H}_{1} \cup \mathrm{H}_{2}\right|=4+\mathrm{n}-1=\mathrm{n}+3$. Therefore $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{K}_{2}\left[\mathrm{G}^{\prime}\right]\right)=\mathrm{n}+3$.

6. References

1. B. Bresar, S Klavzar, A.T. Horvat, "On the Geodetic Number and Related metric sets in Cartesian product graphs", Discrete Mathematics, 2008, 308, 5555-5561.
2. G. Chartrand, F.Harary, P.Zhang, "On the Geodetic Number of a Graph", Networks 2002, 39, 1-6.
3. G.Chartrand, P.Zhang, "Introduction to Graph Theory", Tata McGraw Hill Publication Co Limited, 2006.
4. F.Harary, "Graph Theory", Addison-Wesley, Reading, MA, 1969
5. T. Jiang, I. Pelayo, D. Pritikin,. "Geodesic Convexity and Cartesian products", Manuscript, 2004.
6. F.Buckley, F.Haray, "Distance in Graphs", Addison-Welsey, Redwood city, CA, 1990.
7. F.Harary, E.Loukakis, C.Tsouros, "The Geodetic Number of a Graph", Math.Comput.Modeling, 1993, 17(11), 87-95.
8. F.Buckley, F.Harary, L.V.Quintas, "Extremal results on the Geodetic Number of a Graph", Scientia, 1988, 17-26.
9. Venkanagouda M.Goudar, Ashalatha K S, Venkatesha, "Split Geodetic Number of a Graph", Advances and Applications in Discrete Mathematics, 2014, 13, 9-22.
10. Ashalatha K.S, "Split Restrained Geodetic Number of a Graph", International Journal For Multidisciplinary Research, 2023, 5,1-5.

Licensed under Creative Commons Attribution-ShareAlike 4.0 International License

