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Abstract 

Let ‘G’ be a graph. If u, v ∈ V, then a u-v geodetic of G is the shortest path between u and v.                                                            

The closed interval  I[u, v] consists of all vertices lying in some u-v geodetic of G . For S ⊆ V(G) the set 

I[S] is the union of all sets I [u, v] for u, v ∈ S. A set S is a geodetic set of G if   I[S]=V(G). The cardinality 

of minimum geodetic set of G is the geodetic number of G, denoted by g(G). A set S of vertices of a graph 

G is a split geodetic set if S is a geodetic set and 〈V − S〉 is disconnected, split geodetic number gs(G) of 

G is the minimum cardinality of a split geodetic set of G. In this paper I study split restrained geodetic 

number of strong product and lexicographic product of graphs. A set S of vertices of a graph G is a split 

restrained geodetic set if S is a geodetic set and the subgraph 〈V − S〉 is disconnected with no isolated 

vertices. The minimum cardinality of a split restrained geodetic set of G is the split restrained geodetic 

number of G and is denoted by  gsr(G). The split restrained geodetic numbers of some standard strong 

product and the lexicographic product of graphs are determined.  

 

Keywords: Geodetic set, Geodetic number, Split geodetic set, Split geodetic number, Split Restrained 
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1. Introduction 

In this paper, we follow the notations of [4]. The graphs considered here have at least one component 

which is not complete or at least two nontrivial components. 

The distance d (u, v) between two vertices u and v in a connected graph G is the length of a shortest   u-v 

path in G. It is well known that this distance is a metric on the vertex set V(G). For a vertex v of G, the 

eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among 

the vertices of G is radius, rad G, and the maximum eccentricity is the diameter, diam G. A u-v path of 

length d (u, v) is called a u-v geodesic. We define I[u, v] to the set of all vertices lying on some   u-v 

geodesic of G and for a nonempty subset S of V(G), I[S] =∪u,v∈S I[u, v]. A set S of vertices of G is called 

a geodetic set in G if I[S]=V(G), and a geodetic set of minimum cardinality is a minimum geodetic set. 

The cardinality of a minimum geodetic set in G is called the geodetic number of G, and we denote it by 

g(G). The geodetic number of a graph was introduced in [6,7] and further studied in [2,8,4]. 

A geodetic set S of a graph G=(V, E) is a split geodetic set if the induced subgraph 〈V − S〉 is disconnected. 

.The split geodetic number gs(G) of G is the minimum cardinality of a split geodetic set. The split geodetic 

number was introduced and studied in [9]. A set S of vertices of a graph G is a split restrained geodetic 

set if S is a geodetic set and the subgraph 〈V − S〉 is disconnected with no isolated vertices. The minimum 
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cardinality of a split restrained geodetic set of G is the split restrained geodetic number of G and is denoted 

by  gsr(G). The split geodetic number was introduced and studied in [10]. 

The strong product of graphs G1 and G2, denoted by G1 ⊠ G2, has vertex set V(G1) × V(G2), where two 

distinct vertices x1, y1 and x2, y2 are adjacent with respect to the strong product if (a) x1 = x2 and        

y1y2 ∈ E(G2) or (b) y1 = y2 and x1x2 ∈ E(G1) or (c) x1x2 ∈ E(G1) and y1y2 ∈ E(G2). 

The lexicographic product of G = G1[G2] has V = V1 × V2 as its vertex set, and u = (u1, u2) is adjacent 

with  v = (v1, v2) whenever [u1 adjacent to v1] or [u1 = v1 and u2 adjacent to v2]. 

For any undefined term in this paper, see [3] and [4]. 

 

2. Preliminary Notes 

We need the following results to prove further results. 

Theorem 2.1 [2] Every geodetic set of a graph contains its extreme vertices. 

Theorem 2.2 [2] For any path 𝑃𝑛 with n vertices, g(Pn) = 2. 

Theorem 2.3 [2] For cycle 𝐶𝑛 of order n ≥ 3, g(Cn) = {
2, if n is even  
3, if n is odd   

  

 

3. Main Results 

3.1 For cycle Cn of order n ≥ 4, gsr(K2 ⊠ Cn) = {
4    if n is even
6    if n is odd

 

Proof: Let G = K2 ⊠ Cn be the graph formed from two copies G1 and G2 of Cn. Let U = {u1, u2, … , un} ∈

V(G1), W = {w1, w2, … , wn} ∈ V(G2) and V(G) = U ∪ W. We have the following cases. 

Case 1. Let n be even. Consider S = {ui, uj, wi, wj} be the split restrained geodetic set, where                                                           

 d(ui, uj) = diam(K2 ⊠ Cn) = d(wi, wj)  and {(ui, wi), (uj, wj)} ∈ E(K2 ⊠ Cn), such that    I[S] =

V(K2 ⊠ Cn) and 〈V(K2 ⊠ Cn) − S〉 is disconnected with no isolated vertices. If possible suppose S′ =

{ui, uj, wi} ⊆ S be such that every two vertices u, v ∈ S′ there exist a vertex wk ≠ u, v of G that lies in u −

v geodesic. Thus S is the minimum split restrained geodetic set of K2 ⊠ Cn, therefore gsr(K2 ⊠ Cn) = 4. 

 

Case 2:  Let n be odd. Consider S = {ui, uj, uk, wi, wj, wk} be the split restrained geodetic set , where 

d(ui, uj) = d(uj, uk) = diam(K2 ⊠ Cn) = d(wi, wj) = d(wj, wk)    and {(ui, wi), (uj, wj), (uk, wk)} ∈

E(K2 ⊠ Cn), such that I[S] = V(K2 ⊠ Cn) and 〈V(K2 ⊠ Cn) − S〉 is disconnected. If possible suppose 

S′ = {ui, uj, uk, wi, wk} ⊆ S be such that every two vertices u, v ∈ S′ there exist a vertex wl ≠ u, v of G 

that lies in u − v geodesic. Thus S is the minimum split restrained geodetic set of K2 ⊠ Cn, there fore 

gsr(K2 ⊠ Cn) = 6. 

 

Theorem 3.2 For any path Pn, n ≥ 5, gsr(K2 ⊠ Pn) = 6.  

Proof: Let K2 ⊠ Pn be the graph formed from two copies G1 and G2 of Pn. Let U = {u1, u2, … , un} ∈

V(G1), W = {w1, w2, … , wn} ∈ V(G2) and V = U ∪ W. Let S = {H1 ∪ H2},where H1 =

{u1, un, w1, wn} ⊆ V(K2 ⊠ Pn) and H2 = {ui, wi} ∈ E(K2 ⊠ Pn) ⊆ V(K2 ⊠ Pn) − H1, ui and wi are the 

vertices having maximum degree that is deg(ui) = deg(wi) = 5. Now S be the set of vertices, such that 

I[S] = V(K2 ⊠ Pn)and 〈V(K2 ⊠ Pn) − S〉 has more than one component, which does not contain any 

isolated vertices. Then by the above argument, S is the minimum split restrained geodetic set of K2 ⊠ Pn. 

Clearly it follows that |S| =  |H1 ∪ H2| = 4 + 2 = 6. Therefore gsr(K2 ⊠ Pn) = 6. 
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Theorem 3.3 For any integers r, s ≥ 2, gsr(K2 ⊠ Kr,s) = 2min (r, s). 

Proof : Let G = Kr,s, such that U = {u1, u2, … , ur}, W = {w1, w2, … , ws} are the partite sets of G, where 

r ≤ s and also V(Kr,s) = U ∪ W. K2 ⊠ Kr,s be the graph formed from two copies G1 and G2 of Kr,s. Let 

U1 = {(a1, u1), (a1, u2), … , (a1, ur), (a1, w1), (a1, w2), … , (a1, ws)} ∈ V(G1),     

W1 = {(b1, u1), (b1, u2), … , (b1, ur), (b1, w1), (b1, w2), … , (b1, ws)} ∈ V(G2), where a1, b1  ∈

K2 and V(K2 ⊠ Kr,s) = U1 ∪ W1.                           

Consider S = {(a1, u1), (a1, u2), … , (a1, ur), (b1, u1), (b1, u2), … , (b1, ur)} , for every (a1, wk), (b1, wk), 

 1 ≤ k ≤ s lies on the (a1, ui) − (b1, uj) geodesic for 1 ≤ i ≠ j ≤ r. Since 〈V(K2 ⊠ Kr,s) − S〉 is 

disconnected with no isolated vertices, we have S is a split restrained geodetic set of K2 ⊠ Kr,s 

Let X = {(a1, u1), (a1, u2), … , (a1, ur−1), (b1, u1), (b1, u2), … , (b1, ur)}  be any set of vertices such that 

|X|  <  |S|, then X is not a geodetic set of  K2 ⊠ Kr,s, since (a1, ur)  ∉ I[X]. Also let Y =

{(a1, u1), (a1, u2), … , (a1, ur), (b1, u1), (b1, u2), … , (b1, ur−1)} be any set of vertices such that |Y|  <  |S|, 

then Y is not a geodetic set of  K2 ⊠ Kr,s, since (b1, ur)  ∉ I[Y]. It is clear that S is a minimum split 

restrained geodetic set of K2 ⊠ Kr,s. Hence gsr(K2 ⊠ Kr,s) = 2min (r, s)=2r. 

 

Theorem 3.4 For any Tadpole graph for n > 2 and m > 3 , gsr(K2 ⊠ Tm,n) = {
6         for even cycle
8         for odd cycle.

 

Proof: Tadpole graph is a special type of graph consisting of cycle graph of m vertices and a path graph 

of n vertices connected with a bridge. 

V = {c1, c2, … , cm} are the vertices of Cm and U = {p1, p2, … , pn} are the vertices of  Pn. W = V ∪ U are 

the vertices of tadpole graph. 

K2 ⊠ Tm,nbe the graph formed from two copies G1 and G2 of Tm,n. Let U1 =

{(a1, c1), (a1, c2), … , (a1, cm), (a1, p1), (a1, p2), … , (a1, pn)} ∈ V(G1), W1 =

{(b1, c1), (b1, c2), … , (b1, cm), (b1, p1), (b1, p2), … , (b1, pn)} ∈ V(G2)  where a1, b1  ∈ K2 and V(K2 ⊠

Tm,n) = U1 ∪ W1.  

We have the following cases. 

Case 1: For even cycle 

Let S = {(a1, c1), (a1, pn), (b1, c1), (b1, pn), (a1, cn), (b1, cn)} be a split restrained geodetic set of K2 ⊠

Tm,n, where d{(a1, c1), (a1, pn)} = d{(b1, c1), (b1, pn)} = diam(K2 ⊠ Tm,n). Suppose S′ =

{(a1, c1), (a1, pn), (b1, c1), (b1, pn)}, |S′| < |S|, which is a geodetic set and V − S′ is connected. Hence S 

is a minimum split restrained geodetic set. Also for all x, y ∈ 〈V(K2 ⊠ Tm,n) − S〉, it follows that 

〈V(K2 ⊠ Tm,n) − S〉 is disconnected with no isolated vertices. Thus gsr(K2 ⊠ Tm,n) = 6. 

Case 2: For odd cycle. 

Let S = {(a1, c1), (a1, pn), (b1, c1), (b1, pn), (a1, c2), (b1, c2), (a1, cn), (b1, cn)} be a split restrained 

geodetic set of K2 ⊠ Tm,n. Suppose S′ = {(a1, c1), (a1, pn), (b1, c1), (b1, pn), (a1, c2), (b1, c2)}, |S′| <

|S|, which is a geodetic set and V − S′ is connected. Hence S is a minimum split restrained geodetic set. 

Also for all x, y ∈ 〈V(K2 ⊠ Tm,n) − S〉, it follows that 〈V(K2 ⊠ Tm,n) − S〉 is disconnected with no 

isolated vertices. Thus gsr(K2 ⊠ Tm,n) = 8. 
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4. Adding an End-Edge 

For an edge e = (u, v) of a graph G with deg(u) = 1 and deg (v) > 1, we call e an end-edge and u an end 

–vertex. 

 

Theorem 4.1 Let G′ be the graph obtained by adding an end-edge (x, y) to a cycle each Cn = G  of order n 

>3, with x ∈ G and y ∉ G  then gsr(K2 ⊠ G′) = 6. 

Proof: Let K2 ⊠ G′ be the graph formed from two copies G1
′  and G2

′  of G′.Let U =

{(a1, u1), (a1, u2), … , (a1, un−1), (a1, x), (a1, y)} ∈ V(G1
′ ), 

W{(b1, w1), (b1, w2), … , (b1, wn−1), (b1, x), (b1, y)} ∈ V(G2
′ ) and V(K2 ⊠ G′) = U ∪ W. 

We have the following cases. 

Case 1. For even cycle 

Let S = {(a1, ui), (a1, y), (b1, wi), (b1, y), (a1, x), (b1, x)} be the split restrained geodetic set ,where 

d{(a1, ui), (a1, y)} = d{(b1, wi), (b1, y)} = diam(K2 ⊠ G′), such that I[S] = V(K2 ⊠ G′), 〈V(K2 ⊠

G′) − S〉 has more than one component with no isolated vertices. Suppose S′ =

{(a1, ui), (a1, y), (b1, wi), (b1, y)} ,|S′|  <  |S| is a geodetic set where 〈V(K2 ⊠ G′) − S′〉 is connected. 

Hence clearly S is the minimum split restrained geodetic set. There fore gsr(K2 ⊠ G′) = 6. 

Case 2. For odd cycle 

Let S = {(a1, y), (b1, y), (a1, ui), (a1, uj), (b1, wi), (b1, wj)},where d{(a1, y), (a1, ui)} = 2, 

d{(a1, ui), (a1, uj)} = ⌊
n

2
⌋ similarly d{(b1, y), (b1, wi)} = 2, d{(b1, wi), (b1, wj)} = ⌊

n

2
⌋. Clearly I[S] =

V(K2 ⊠ G′), since 〈V(K2 ⊠ G′) − S〉 has more than one component with no isolated vertices, S is the 

minimum split restrained geodetic set of K2 ⊠ G′. Thus gsr(K2 ⊠ G′) = 6. 

 

5. Lexicographic Product 

The composition G = G1[G2] has V = V1 × V2 as its vertex set, and u = (u1, u2) is adjacent with  v =

(v1, v2) whenever [u1 adjacent to v1] or [u1 = v1 and u2 adjacent to v2]. 

 

Theorem 5.1 For any cycle Cn of order n >6, gsr(K2[Cn]) = n + 2. 

Proof: Let G = K2[Cn] be the graph formed from two copies of G1 and G2 of Cn. Let U = {u1, u2, … , un} ∈

V(G1), W = {w1, w2, … , wn} ∈ V(G2) and V = U ∪ W. 

Consider S = H1 ∪ H2 be the minimum split restrained geodetic set of G, such that H1 = {ui, uj, wi, wj} 

be the set of vertices where {(ui, uj), (wi, wj)} ∉ E(K2[Cn]) and d(ui, uj) = d(wi, wj) = diam(K2[Cn]), 

I[H1] = V(K2[Cn]) and H2 = {u2, u4, … , un−1, un, w2, w4, … , wn−2, wn−1, wn ⊆ V(G) − H1, |H2 = n −

2|. Hence |S| = |H1 ∪ H2| = 4 + n − 2 = n + 2. There fore gsr(K2[Cn]) = n + 2.  

 

Theorem 5.2 G′ be the graph obtained by adding an end edge (x, y) to cycle Cn = G of order n > 5, with 

x ∈ G and y ∉ G. Then gsr(K2[G′]) = n + 3. 

Proof: Let K2[G′] be the graph formed fromtwo copies G1
′  and G2

′  of G′. Let U = {u1, u2, … , un+1} ∈

V(G1
′ ), W = {w1, w2, … , wn+1} ∈ V(G2

′ ) such that V(K2[G′]) = U ∪ W. Consider S = H1 ∪ H2, where 

H1 = {ui, uj, wi, wj} such that (ui, uj), (wi, wj) ∉ E(K2[G′]) and these vertices are not formed by the end-

vertex of G′, I[H1] = V(K2[G′]) and H2 = {u1, u2, … , un+1} ⊆ V(K2[G′]) − H1, |H2| = n − 1. Such that 

the induced sub graph 〈V(K2[G′]) − S〉 is disconnected with no isolated vertices. Thus S is the   minimum 
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split restrained geodetic set of K2[G′]. Hence |S| = |H1 ∪ H2| = 4 + n − 1 = n + 3. Therefore 

gsr(K2[G′]) = n + 3. 
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