A Combined Experimental and Theoretical Investigation on The Molecular Structure, Ft-Ir Spectra of 4-((1h-Indol-3-Yl) Methylene Amino) Phenol

Arokiyamary.L
Department of Chemistry, Manakula Vinayagar Institute of Technology, Puducherry.

Abstract

: This study involves the synthesis of the title molecule 1H-IMAP, characterized by using FT-IR spectrum and theoretical calculation of the optimized geometrical parameters of the most stable structure of the title molecule $1 \mathrm{H}-\mathrm{IMAP}$ and computation of its vibrational frequencies using Hartree-Fock(HF) method of basis sets $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$, HF/6-311G(d,p) and Density functional theory (DFT) method of basis set B3LYP/6-31G(d,p) has been made by using Gaussion 03 software and compared both theoretical and experimental values. Non-Linear optical (NLO) properties of the 1 H -IMAP was studied by determining the electric dipole moment, polarizability, and hyperpolarizability with the aid of the above mentioned basis sets.

Keywords: DFT, Geometrical Parameters, basis sets, HF

Introduction

Indole derivatives as dual-effective medicines for neurodegenerative disease treatment The hydroxyl derivative of indole is important in the central nervous system, and it has been shown to cause long-term serotonin depletion in brain tissues[1-4]. The synthesis technique, experimental and theoretical FT-IR studies of 4-((1H-indol-3yl) methylene amino) phenol are described in this paper.
To the best of our knowledge, a complete theoretical study of 1H-IMAP have not been reported so for. In this study HF and DFT level of theories were utilized to determine the optimized geometry, vibrational wave numbers, molecular parameters viz., dipole moment, polarizability (α), hyperpolarizability (β), chemical potential, hardness (η), and electrophilicity index (ω).

Experimental Section

A mixture of Indole-3-Carboldehyde $(72 \mathrm{~g}, 1.0 \mathrm{~mol})$ is added dropwise and with stirring during 2 hrs to p-hydroxy aniline ($73 \mathrm{~g}, 1.0 \mathrm{~mol}$). During this addition the temperature rises from 25 to $40^{\circ} \mathrm{C}$ and an aqueous layer separates nearer at the end of the addition. The organic layer is treated with anhydrous potassium carbonate $(15 \mathrm{~g})$, stirred at $25^{\circ} \mathrm{C}$ for 17 hrs , and then decanted onto barium oxide $(12 \mathrm{~g})$. After the mixture has been stirred for 10 hrs , it is filtered and the organic filterate is distilled to separate the imine as a colourless liquid. The compound $4-((1 \mathrm{H}$-indol-3yl) methylene amino) phenol in the solid form was synthesized. The FT-IR spectrum of this compound was recorded in the range of $400-4000 \mathrm{~cm}^{-}$ ${ }^{1}$ on PERKIN-ELMER 360 model IR double beam spectrophotometer using KBr pellet technique with 4

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@iffmr.com
cm-1 resolution over 40 scans. The spectral measurement carried out at Central Instrumentation Faculty (CIF), Pondicherry University, Puducherry (India).

Computational Details

Geometry optimization and vibrational spectra calculations were carried out on a PC using the Gaussian03 software package at the Hatree-Fock level of theory with the 6-31 G (d, p) and 6-311G(d,p) basis sets, and DFT computations were carried out at the B3LYP/6-31 G (d, p) level of theory. Hatree-Fock does not include electron correlation; however it considers average affect of electron repulsion but not the explicit electron-electron repulsion [5].

At the optimized structure of 1 H -IMAP, no imaginary wave number modes were observed, indicating that a real minima on the potential surface was discovered. The best shape was determined by reducing energy with all geometrical parameters without imposing molecular symmetry requirements. The fundamental modes are overestimated by the HF and DFT hybrid B3LYP functional methods. Density functional theory calculations have been claimed to offer excellent vibrational frequencies of molecular compounds when the measured frequencies are scaled to correct for the expected treatment of electron correlation, basis inadequacies, and anharmonicity [6, 7, 8, 9]. As a result, scaling factors must be applied to achieve a much greater agreement with experimental results.

Thus the scaling factors: $0.8992,0.9051$ and 0.9550 [10] have been uniformly applied to the HF and B3LYP methods respectively. The observed discrepancy between theoretical and experimental frequencies of any particular vibration of the molecule could be a consequence of basis set incompleteness, neglect of anharmonicity and electron correlation. The general tendency of quantum chemical method is overestimated the force constant at the exact equilibrium geometry of the molecule [11]. The assignments of the calculated wave numbers are aided by Gauss view program [12]. Combining the result of Gauss view program and the vibrational frequency assignments were made with a high degree of precision, taking into account symmetry.

Results and Discussion

Molecular Geometry

In accordance with the atomic numbering scheme shown in Figure 1, the optimised structural parameters of $1 \mathrm{H}-1 \mathrm{MAP}$ determined by ab inito HF level with $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p}), 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$, and DFT/B3LYP level with $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis sets are described in Table 1

Figure1.Optimized molecular structure of 1H-1MAP

Since the exact crystal structure of the title compound is not available till now, the optimized structure can only be compared with other similar systems for which the crystal structures have been solved. Therefore optimized geometrical parameters of $1 \mathrm{H}-1 \mathrm{MAP}$ are compared to those of ${ }^{2} \mathrm{~N} 2$ '-(1 H -indol3ylmethylene) carbonic dihydrazide. The optimized bond distance of all the $\mathrm{C}-\mathrm{H}$ bands is greater than the experimental value $(0.95 \AA)$ of *N2'-(1 H -indol-3ylmethylene) carbonic dihydrazide.

For the optimized indole(PhI) ring of the title compound, it has been observed that the optimized $\mathrm{C} 3-\mathrm{H} 9, \mathrm{C} 4-\mathrm{H} 10, \mathrm{C} 5-\mathrm{H} 11, \mathrm{C} 6-\mathrm{H} 12$ and $\mathrm{C} 7-\mathrm{H} 14$ bond distances are larger than the experimental $\mathrm{C}-\mathrm{H}$ bond distance $0.9500 \AA$ of the reference molecule [13].

Computed bond distances of C1-C2, C1-C6, C2-C3, C2-C8, C3-C4, C4-C5, C5-C6 and C7-C8 bond distances in indole ring (PhI) of the title compound by DFT method show closely related to experimental data of reference molecule [13]. But at same time C-C bond distance computed in HF method is found to be basis set sensitive and hence the value computed by $H F / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ coincides very well with experimental C-C bond length of reference molecule[13].

Table1. Geometric bond length of $1 \mathrm{H}-1 \mathrm{MAP}$ by B3LYP/6-31G(d, p), HF/ 6-31G(d,p) and HF/ 6311G(d,p)

Bond length (\mathbf{A})	B3LYP/ $\mathbf{6 - 3 1 G}$ $(\mathbf{d , p})$	HF/ $\mathbf{6 - 3 1 G}$ $(\mathbf{d , p})$	HF/ $\mathbf{6 - 3 1 1 G}$ $(\mathbf{d , p})$	XRD $^{[\mathbf{1 2]}}$
C1-C2	1.4201	1.399	1.3983	1.4125
C1-C6	1.3974	1.3923	1.3918	1.3973
C1-N15	1.3856	1.3753	1.3749	1.3784
C2-C3	1.4048	1.399	1.3986	1.4013
C2-C8	1.4485	1.4485	1.4481	1.4431
C3-C4	1.3894	1.3748	1.3742	1.3866
C3-H9	1.0861	1.0758	1.0754	0.95
C4-C5	1.4091	1.403	1.4025	1.4024
C4-H10	1.0858	1.0755	1.0752	0.95
C5-C6	1.3901	1.3749	1.3743	1.3844
C5-H11	1.0857	1.0756	1.0753	0.95
C6-H12	1.0862	1.076	1.0757	0.95
C7-C8	1.3822	1.3578	1.3571	1.3807
C7-H14	1.0796	1.0699	1.0698	0.95
C7-N15	1.3704	1.3591	1.359	1.3672
C8-C16	1.4484	1.4588	1.4596	1.4424
H13-N15	1.0073	0.9915	0.9911	0.88
C16-H17	1.0997	1.086	1.0861	0.95
C16-N28	1.2866	1.2589	1.2559	1.2862
C18-C19	1.4039	1.3884	1.3871	1.3887
C18-C20	1.4086	1.3932	1.3922	1.384
C18-N28	1.4049	1.4078	1.4084	1.3712
C19-C21	1.3914	1.3832	1.3831	1.4007
C19-H22	1.0852	1.0748	1.0745	0.95
C20-C23	1.3905	1.3822	1.3813	1.3816
C20-H24	1.0858	1.0754	1.0751	0.95
C21-C25	1.3993	1.386	1.385	1.4111
C21-H26	1.0883	1.0776	1.0774	0.95
C23-C25	1.3988	1.3854	1.3845	1.3949
C23-H27	1.0851	1.0745	1.0744	0.95
C25-O29	1.369	1.3539	1.3533	1.3626
O29-H30	0.966	0.9425	0.9402	0.84

The optimized N15-H13 bond distance for the title compound is $0.9915 \AA$ in HF/6-31G (d,p) $0.9110 \AA$ in $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and $1.0073 \AA$ in B3LYP/6-31G(d,p). The latter one shows much deviation from the experimental $\mathrm{N}-\mathrm{H}$ bond distance $0.8800 \AA$ of the reference molecule [13].

The experimental bond distance of $\mathrm{C}=\mathrm{N}$ is $1.2862 \AA$ and the computed $\mathrm{C} 16=\mathrm{N} 28$ bond distance is $1.2866 \AA$ in $B 3 L Y P / 6-31 G(d, p), 1.2589 \AA$ in $H F / 6-31 G(d, p) 1.2559 \AA$ in $H F / 6-311 G(d, p)$. The B3LYP/6-31G(d,p) method renders values that are very much coincide with the experimental values of reference molecule and better than other two methods.

The optimized (PhI) C1-N15 and C7-N15 bond distances of five membered ring of indole moiety are computed. The B3LYP/6-31G(d,p) method shows good agreement with the experimental value of reference compound $1.3784 \AA$.

Table2. Geometric bond angle of $1 \mathrm{H}-1 \mathrm{MAP}$ by B3LYP/6-31G(d, p), HF/ 6-31G(d,p) and HF/ 6311G(d,p)

Bond Angle (${ }^{\circ}$)	$\begin{gathered} \text { B3LYP/ } \\ \text { 6-31G(d,p) } \end{gathered}$	$\begin{gathered} \text { HF/ } \\ 6-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$	$\begin{gathered} \text { HF/ } \\ 6-311 G(d, p) \end{gathered}$	$\mathrm{XRD}^{[12]}$
C2-C1-C6	122.65	122.49	122.45	122.54
C2-C1-N15	107.1	107.5	107.5	107.85
C6-C1-N15	130.23	129.99	130.04	129.59
C1-C2-C3	118.61	118.83	118.86	118.98
C1-C2-C8	106.96	106.62	106.62	106.55
C3-C2-C8	134.42	134.54	134.58	134.45
C2-C3-C4	119.05	119.05	119.06	118.75
C2-C3-H9	120.69	120.87	120.88	120.6
C4-C3-H9	120.24	120.06	120.05	120.6
C3-C4-C5	121.23	121.05	121.03	121.18
C3-C4-H10	119.55	119.72	119.72	119.4
C5-C4-H10	119.21	119.22	119.23	119.4
C4-C5-C6	121.08	121.09	121.08	121.48
C4-C5-H11	119.48	119.36	119.37	119.3
C6-C5-H11	119.42	119.53	119.53	119.3
C1-C6-C5	117.35	117.45	117.49	117.05
C1-C6-H12	121.4	120.34	121.35	121.5
C5-C6-H12	121.23	121.2	121.15	121.5
C8-C7-H14	128.51	128.3	128.27	125.1
C8-C7-N15	109.73	110.2	110.18	109.75
H14-C7-N15	121.74	121.48	121.53	125.1
C2-C8-C7	106.43	106.32	106.34	106.56
C2-C8-C16	127.34	127.61	127.54	128.18
C7-C8-C16	126.21	126.05	126.1	125.24
C1-N15-C7	109.75	109.33	109.33	109.28
C1-N15-H13	125.24	125.58	125.6	125.4
C7-N15-H13	125	125.07	125.05	125.4
C8-C16-H17	115.82	115.88	115.79	120
C8-C16-N28	122.52	123.57	122.68	119.98
H17-C16-N28	121.64	121.53	121.51	120
C19-C18-C20	118.01	118.14	118.1	119.8
C19-C18-N28	117.72	118.03	118.04	118.31
C20-C18-N28	124.21	123.77	123.79	122.9
C18-C19-C21	121.15	121.1	121.1	121.61
C18-C19-H22	118.29	118.68	118.67	119.2
C21-C19-H22	120.54	120.2	120.21	119.2
C18-C20-C23	121.11	121.07	121.09	120.09
C18-C20-H24	119.62	119.82	119.86	120
C23-C20-H24	119.22	119.07	119.01	117.56
C19-C21-C25	120.02	120.03	120.09	120
C19-C21-H26	119.99	119.83	119.78	119.8
C25-C21-H26	119.97	120.12	120.11	119.8
C20-C23-C25	120.02	120.01	120.07	120.45
C20-C23-H27	121.12	120.95	120.92	119.8
C25-C23-H27	118.84	119	119	119.8
C21-C25-C23	119.62	119.57	119.47	120.46
C21-C25-O29	122.81	122.66	122.69	122.57
C23-C25-O29	117.55	177.76	117.82	116.97
C16-N28-C18	119.95	119.94	120.01	120
C25-O29-H30	108.9	110.81	110.56	109.5

Table3. Geometric dihedral angle of 1H-1MAP by B3LYP/6-31G(d, p), HF/ 6-31G(d,p) and HF/ 6-

	311G($\mathrm{d}, \mathrm{p})$			
Dihedral angle (${ }^{\circ}$)	B3LYP/ $\mathbf{6 - 3 1 G}$ (\mathbf{d}, \mathbf{p})	HF/ $\mathbf{6 - 3 1 G}$ $(\mathbf{d , p})$	$\mathbf{6 - 3 1 1 G}$ (\mathbf{d}, \mathbf{p})	XRD $^{[12]}$
C6-C1-C2-C3	0.0694	-0.0914	-0.0892	0.9
C6-C1-C2-C8	179.98	-179.9	-179.98	-177.38
N15-C1-C2-C3	-179.89	179.9	179.88	179.57
N15-C1-C2-C8	-0.0278	-0.0054	-0.004	1.29
C2-C1-C6-C5	-0.0244	0.0189	0.0166	0.33
N15-C1-C6-C5	179.92	-179.97	-179.95	-178.03
C2-C1-N15-C7	-0.0831	0.0643	0.0531	-1.54
C6-C1-N15-C7	179.96	-179.94	-179.97	177
C1-C2-C3-C4	-0.069	0.1076	0.1069	-1.26
C8-C2-C3-C4	-179.95	179.98	179.96	176.42
C1-C2-C8-C7	0.0359	-0.0544	-0.0459	-0.58
C1-C2-C8-C16	-179.95	-179.91	-179.94	177.62
C3-C2-C8-C7	179.93	-179.93	-179.91	-178.47
C3-C2-C8-C16	-0.054	0.2007	0.1843	-0.3
C2-C3-C4-C5	0.0276	-0.0559	-0.0564	0.44
C3-C4-C5-C6	0.0181	-0.0177	-0.0174	0.8
C4-C5-C6-C1	-0.0196	0.0361	0.0372	-1.19
N15-C7-C8-C2	0.0878	0.0957	0.08	-0.35
N15-C7-C8-C16	179.9	179.95	179.98	-178.62
C8-C7-N15-C1	0.1089	-0.1024	-0.0852	1.19
C2-C8-C16-N28	177.3	-176.52	-176.52	179.45
C7-C8-C16-N28	-2.6781	3.4402	3.35921	177.29
H17-C16-N28-C18	-4.0076	2.5762	2.5314	0.9
C20-C18-C19-H22	-178.51	178.33	178.22	-178.62
N28-C18-C19-H22	-0.8891	0.6671	0.7055	-1.1
C19-C18-C20-H24	176.16	-176.37	-176.38	-179.42
N28-C18-C20-H24	-1.2961	1.1456	0.977	-179.42
C19-C18-N28-C16	148.01	-141.56	-141.31	-146.25
C20-C18-N28-C16	-34.51	40.91	41.31	40.89
C18-C20-C23-C25	-0.0388	-0.2463	-0.2917	-0.1
C19-C21-C25-C23	-0.2081	0.2594	0.2715	0.192
C19-C21-C25-O29	179.28	179.54	179.54	-178.26
C20-C23-C25-C21	0.9918	-0.783	-0.7796	0.9
C2O-C23-C25-O29	-179.87	179.89	179.91	-178.86

The optimized $\mathrm{C} 19-\mathrm{H} 22$, $\mathrm{C} 20-\mathrm{H} 24, \mathrm{C} 21-\mathrm{H} 26$ and $\mathrm{C} 23-\mathrm{H} 27$ bond distances in phenyl ring (Ph) moiety values are larger than the experimental C-H bond distance $0.9500 \AA$ of the reference molecule [13].

The optimized (Ph) C18-N28 bond distance for title compound computed by HF/6-31G (d,p), HF/6-311G(d,p) and B3LYP/6-31G(d,p), methods are $1.4078,1.4084$ and $1.4049 \AA$ respectively. On comparison with C-N bond distance $1.3712 \AA$ of experimental XRD value of reference compound and it has been observed that the computed values are remarkably greater than the experimental value.

The experimental bond distance of O-H is $0.8400 \AA$ in [13]. The computed $\mathrm{O} 29-\mathrm{H} 30$ bond distances for the title compound in HF and DFT methods show anomalously different from that of experimental bond distance of reference molecule.

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ifmr.com

The computed bond angles of C2-C1-N15 and C8-C7-N15 values are coinciding very well with experimental bond angles. The bond angle C6-C1-N15 closely related to experimental value by HF/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ method only and other two methods deviate from experimental bond angles. The bond angles C8-C16-N28 and C20-C18-N28 are 1^{0} higher than experimental bond angles. For bond angle C19-C18N28, HF methods show good agreement whereas B3LYP/6-31G(d,p)method 1^{0} lesser value than experimental bond angle[13].

The bond angles C2-C3-H9, C4-C3-H9, C3-C4-H10, C5-C4-H10, C4-C5-H11, C6-C5-H11, C1-C6-H12, C5-C6-H12, C8-C7-H14 for PhI are computed by B3LYP/6-31G(d,p) method stand closer to the experimental bond angles of reference molecule [13]. Computed from HF/6-31G(d,p) and HF/6$311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ methods show much deviation from the experimental bond angles of similar moieties of the reference compound.

Out of these computed bond angles C19-C18-C20, C18-C19-C21, C18-C20-C23, C19-C21-C25, C20-C23-C25, C21-C25-C23 for Phenyl ring(Ph) moiety, C18-C19-C21, C19-C21-C25, C20-C23-C25 bond angles show coincide with experimental values, infact the remaining bond angles distinctly deviate from the experimental bond angles.

The bond angles C18-C19-H22, C21-C19-H22, C18-C20-H24, C23-C20-H24, C19-C21-H26, C25-C21-H26, C20-C23-H27, C25-C23-H27 for Phenyl ring (Ph) moiety are computed. Among the computed bond angles, $\mathrm{C} 23-\mathrm{C} 20-\mathrm{H} 24, \mathrm{C} 20-\mathrm{C} 23-\mathrm{H} 27$ bond angles appreciably deviate from the experimental values. However, the remaining bond angles coincide with very small deviation.

The optimized bond angles C1-N15-C7, C16-N28-C18 for both PhI and Phenyl ring (Ph)moiety are $109.75^{0}, 119.95^{0}$ in B3LYP/6-31G(d,p), $109.33^{0}, 119.94^{0}$ in HF/6-31G (d,p) and $109.33^{0}, 120.01^{0}$ in HF/6-311G(d,p) respectively. Both HF and DFT methods coincide with experimental bond angles $109.28^{0}, 120^{0}$.

The optimized bond angles C2-C1-C6, C1-C2-C3, C1-C2-C8, C3-C2-C8, C2-C3-C4, C3-C4-C5, C4-C5-C6, C1-C6-C5, C2-C8-C7, C2-C8-C16 for PhI are in agreement with experimental bond angles. The bond angles of $\mathrm{C} 8-\mathrm{C} 16=\mathrm{N} 28$ computed by HF and DFT methods for $1 \mathrm{H}-\mathrm{IMAP}$ are remarkably lesser than that of reference compound [13].

Computed dihedral angles of 1H-IMAP are comparable with that of reference compound [13]. Theoretically computed dihedral angle for C18-C20-C23-C25 is -0.0388^{0} in B3LYP/6-31G(d,p), 0.2463^{0} in $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$, and -0.2917^{0} in $\mathrm{HF} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$, the corresponding experimental value of reference molecule is -0.1^{0}. Both the computed and experimental dihedral angles are negative. On comparing the computed and experimental dihedral angles are not coincides with one another.

On Comparing both the computed and experimental dihedral angles, it is observed only for C6-C1-C2-C8, N15-C1-C6-C5, C3-C2-C8-C7, C19-C18-C20-H24 group both experimental and computed values by HF method coincide with each other, but the other two dihedral angle $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 8-\mathrm{C} 7$ and $\mathrm{C} 19-$ C18-N28-C16 values deviate from one another.

The optimized dihedral angles for N15-C7-C8-C16, C19-C21-C25-O29 groups are 179.9 ${ }^{0}$, 179.28^{0} in B3LYP/6-31G(d,p), $179.95^{0}, 179.54^{0}$ in HF/6-31G(d,p), $179.98^{0}, 179.54^{0}$ in HF/6-311G(d,p) and the experimental dihedral angles are $-178.62^{\circ},-178.26^{\circ}$. The computed dihedral angle values are positive, but the experimental values are negative. Both HF and DFT method show no agreement with the experimental dihedral angles of similar moieties of the reference compound [13].

VIBRATIONAL ASSIGNMENT

The title molecule consists of 30 atoms so they have 84 normal vibrational modes which are IR active. According to theoretical calculation, the optimized geometry of the title molecule $1 \mathrm{H}-\mathrm{IMAP}$ has C1 point group symmetry. Optimized ground state geometries and vibrational modes for studied molecule were obtained by HF and DFT (B3LYP) methods. The fundamental vibrational frequencies calculated for IH-IMAP at HF and B3LYP levels using the triple split valence basis set along with polarization function, $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and $\mathrm{HF} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and observed FT-IR frequencies for various modes of vibrations have been collected in table(3).

Comparison of the frequencies calculated at HF and B3LYP with experimental values table (3) reveals the overestimation of the calculated vibrational modes due to neglect of anharmonicity in real system. Inclusion of electron correlation in Density Functional Theory to certain extends makes the frequency values smaller in comparison with the HF frequency data. Reduction in the computed harmonic vibrations, though basis set sensitive are only marginal as observed in the DFT values using $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$. Anyway not with standing the level of calculations, it is to scale down the calculated harmonic frequencies in order to experimental.

The calculated frequencies were scaled by factors $0.8992,0.9051$ and 0.955 for HF and DFT computation respectively. The resulting vibrational frequencies for the optimized geometries, the proposed vibrational assignments and available experimental Infrared frequencies are also given in table (3).

Vibrational modes are numbered from smallest to largest frequency. In the last columns are given a detailed description of the normal modes. The combined experimental and theoretical spectrum is given in figure(4).

C-H vibration

The title molecule $1 \mathrm{H}-1 \mathrm{MAP}$ is an imine derivative and contains heterocyclic indole ring. Heteroaromatic systems exhibit C-H stretching vibrations in the region $3100-3000 \mathrm{~cm}^{-1}[16]$. For $\mathrm{PhI}\left(\right.$ Phenyl indole), the computed $\mathrm{C}-\mathrm{H}$ stretching frequencies are assigned at $3137,3036 \mathrm{~cm}^{-1}$ for B3LYP/6-31G(d,p), $3095,3001 \mathrm{~cm}^{-1}$ for HF/6-31G(d,p) and 3094, $3002 \mathrm{~cm}^{-1}$ for HF/6-311G(d,p). Among these methods, the mode 82 value obtained for B3LYP/6-31G(d,p) and mode 72 value obtained for HF methods are in agreement with experimental FT-IR band for the corresponding group at (modes $82,75) 3170,2979 \mathrm{~cm}^{-1}$ for $\mathrm{C}-\mathrm{H}$ stretching of PhI .

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@iffmr.com

For all the aromatic compound the carbon-hydrogen stretching vibrations are observed in the region $3100-3000 \mathrm{~cm}^{-1}[14,15,16]$. Accordingly, in this range there are two calculated vibrations for Phenyl ring moiety (Ph) which are $3066,3047 \mathrm{~cm}^{-1}$ for B3LYP/6-31G(d,p), 3036, $3015 \mathrm{~cm}^{-1}$ for HF/6-31G(d,p) and $3035,3015 \mathrm{~cm}^{-1}$ for HF/6-311G(d,p). Among these methods, the B3LYP/6-31G(d,p) method vibrations are in agreement with experimental frequencies which are(modes 81,77$) 3105,3044 \mathrm{~cm}^{-1}$ and also literature value.

Fig.2. Comparison of Experimental and Theoretical B3LYP, HF/6-31G (d,p) and HF/6-311G (\mathbf{d}, \mathbf{p}) FT-IR spectrum of 1H-IMAP.

Fig. 3. The graphical correlation between experimental and theoretical frequencies for IH-IMAP by B3LYP/6-31G(d,p), HF/6-31G(d,p) and HF/6-311G(d,p).

Fig.4. Experimental FT-IR spectrum of 1H-IMAP

Table 4a: Vibrational wave numbers obtained for 1H-IMAP at B3LYP/6-31G(d,p), HF/631G(d,p) and HF/6-311G(d,p)

Mode	$\begin{gathered} \text { Experimental } \\ \text { value } \end{gathered}$	Calculated Frequencies $\mathrm{cm}-1$			HF/6-311G(d, ${ }^{\text {P }}$)		HF/6-311G(d, P)		Viibrational assigument
No	FT-IR	B3L YP/6-31 G (d,p)	HF/6-31 G(d, p)	HF/6-311 G(d, $\mathrm{p}^{\text {d }}$	$\underset{\substack{\text { IRtensity }}}{ }$	$\begin{aligned} & \text { Raman } \\ & \text { Activity } \end{aligned}$	Reduced	Force Constant	
1	-	26	26	26	0.12	0.52	3.87	${ }^{\text {con }}$	z(torsion)
2	-	41	41	41	0.32	0.17	6.23	0	r(torsion)
3	-	45	45	46	0.17	0.16	5.21	0	r(torsion)
4	-	99	98	97	0.32	0.39	5.2	0.03	z(torsion)
5	-	144	139	138	0.49	0.19	5.77	0.08	(torsion)
6	-	189	184	185	1.31	1.03	3.85	0.09	$\omega \mathrm{C} 16-\mathrm{H17}$
7	-	205	203 219	203 219	${ }_{4.13}^{1.02}$	0.06 0.13	5.08 3.04	0.15 0.13	Ring breathing of P .
9	-	220	225	226	${ }_{0} .51$	0.15 0.05	3.94 4.36	${ }_{0.16}$	
10	-	321	256	246	32.03	0.18	1.17	0.05	ω ofPh\& Ph
11	-	329	323	323	0.45	0.27	4.73	0.35	ω-OH
12	-	360 386	367	368	6.76	0.05	4.84	0.47	ω - OH
13	-	386 408	395	394 412	10.76 13.63	0.18 0.05	2.84 1.97	0.31 0.24	${ }^{\mathrm{y}} \mathrm{C}-\mathrm{CofPh}$
14	-	408 412	${ }_{421}^{415}$	${ }_{423}^{412}$	13.63 1.28	0.05 0.34	1.97 2.94	0.24 0.38	$\omega_{\omega}^{\omega C-H-H o f p h}$
16	427	425	426	426	0.08	0.01	2.63	0.34	$\omega \mathrm{C}$-Hof $\mathrm{PH}+\omega \mathrm{N} 15-\mathrm{H} 13$
17		443	443	445	2.25	0.1	3.7	0.52	$\omega_{\text {¢ }} 15 \mathrm{~N}-13 \mathrm{H}$ of Ph
18 19	468	480 485	482	484	5 1.46	0.14 0.01	7.1 4.63	1.2 0.8	${ }_{\text {t-Phe }}^{\text {t-Phaf }}$
20		519	536	537	4.6	0.07	2.83	0.59	$\omega \mathrm{C}-\mathrm{Hof} \mathrm{Ph}$
21	531	551	559	561	1.39	0.28	4.43	1	$t-\mathrm{Ph}$
${ }_{23}^{22}$	601	560 607	571 612	574 615	1.35	0.02 0.52	3.15 6.48	0.74 1.76	${ }_{\mathrm{t}-\mathrm{PhI}}^{\mathrm{C}} \mathrm{H}$ of Ph
24	-	615	621	624	0.14	0.06	2.86	0.8	$\omega 15 \mathrm{~N}-13 \mathrm{H}+\oplus 7 \mathrm{C}-14 \mathrm{H}$
25		627	636	639	0.14	0.51	6.36	1.87	$\gamma \mathrm{C}-\mathrm{CofPh}$
${ }_{27}^{26}$	640	690	714	719	${ }^{2.66}$	0.42	3.84 5.52	1.43 2.14	$\omega \mathrm{C}$ - H of Ph
27 28	-	${ }_{730}^{721}$	${ }_{741}^{731}$	734 743	1.39 4.76	0.27 1.67	5.52 5.39	2.14 2.14	
29	-	739	754	753	21.42	0	1.29	0.53	t (twisting)
30	$7{ }^{6} 1$	742	764	769	0.6	0.04	3.96	${ }_{2}^{1.69}$	$\omega \mathrm{C}$-H ofph
32	790	797	824	824	${ }_{1} 1.28$	0.23	1.26	0.62	
33		803	843	844	14.97	0.91	2.07	1.06	$\omega 7 \mathrm{C}-14 \mathrm{H}$ of PH
34	-	811	854	857	0.35	0.08	4.81	2.54	ω C-HofPh
35	-	821	864	863	0.04	0.01	1.5	0.8	$\omega \mathrm{C}-\mathrm{Hof} \mathrm{PH}$
36 37	-	846	875 895	877	9.72	0.82	3.29 1.46	1.82 0.84	${ }^{\gamma}-\mathrm{Phg}$
37 38	$88 \overline{6}$	${ }_{886}^{861}$	${ }_{953}^{895}$	897 953	2.73 0.27	0.23 0.1	1.46 1.4	0.84 0.92	${ }_{\omega}^{\text {t-Ph }}$ C-H of Pm
39	-	899	954	957	0.3	0.02	1.36	0.89	$\omega \mathrm{C}$ - ofPh
40		907	972	976	0.05	0.15	1.34	0.92	$\omega \mathrm{C}-\mathrm{Hof} \mathrm{Ph}$

For Phenyl ring moiety (Ph), the in-plane and out-of-plane deformation vibration normally observed in the region 1300-750 cm^{-1} [14]. The C-H in plane bending vibration computed at (mode47) $1076 \mathrm{~cm}-1$ for B3LYP/6-31G(d,p), $1074 \mathrm{~cm}^{-1}$ by HF methods. Both HF and DFT shows very good agreement with experimental FT-IR band at $1083 \mathrm{~cm}^{-1}$. The C-H out-of-plane bending vibration computed at (modes31, 32 , 26) 797, 776, $690 \mathrm{~cm}^{-1}$ for B3LY/6-31G(d,p)P, 714, $812,824 \mathrm{~cm}^{-1}$ for HF/6-31G(d,p) 719, 812, 824 cm^{-1} for HF/6-311G(d,p). Among these methods, the B3LYP/6-31G(d,p) method values are closely related to FT-IR band at $790,761640 \mathrm{~cm}^{-1}$.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

For PhI (Phenyl indole), the $\mathrm{C}-\mathrm{H}$ in-plane bending vibrations in aromatic heterocyclic compounds occur in the region between 1300 and $1000 \mathrm{~cm}^{-1}$ [16]. The C-H rocking mode obtained at(modes $65,62,61$, 58 , 49) $1465,1402,1358,1294,1127 \mathrm{~cm}^{-1}$ for B3LYP/6-31G(d,p), 1489, 1428, 1382, 1293, $1110 \mathrm{~cm}^{-1}$ for HF methods. On comparing them, the B3LYP/6-31G(d,p) method show very good agreement with experimental values of FI-IR band at $1445,1391,1336,1296,1127 \mathrm{~cm}^{-1}$.
The C-H-out of plane bending for $\mathrm{PhI}\left(P h e n y l\right.$ indole), occur in the region between 1000 and $650 \mathrm{~cm}^{-1}$ [16]. The C-H wagging mode for PhI assigned at (modes16,38) 425, $886 \mathrm{~cm}^{-1}$ for B3LYP/6-31G(d,p), $426,956 \mathrm{~cm}^{-1}$ for $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ methods. Among these methods, the B3LYP/6-31G(d,p)method show good agreement with FI-IR band at 427, $886 \mathrm{~cm}^{-1}$.

Table 4a: Vibrational wave numbers obtained for 1H-IMAP at B3LYP/6-31G (d,p), HF/631G(d,p) and HF/6-311G(d,p)

41	-	929	990	990	0.01	0.02	1.3	0.91	$\omega \mathrm{C}-\mathrm{H}$ of Ph
42	-	955	993	993	0.26	0.13	2.53	1.8	$5 \mathrm{C} 16-\mathrm{Hl} 7$
43	-	977	999	997	1.2	1.23	2.17	1.56	$5 \mathrm{C}-\mathrm{C}$ ofPh
44		995	1015	1016	0.55	1.68	1.61	1.19	$5 \mathrm{C}-\mathrm{C}$ of ph
45	1008	1029	1037	1038	5.07	4.05	3.91	3.03	$5 \mathrm{C}-\mathrm{C}$ of PhI
46		1063	1066	1060	9.03	0.86	2.05	1.66	$515 \mathrm{~N}-13 \mathrm{H}+57 \mathrm{C}-14 \mathrm{H}$ of pht
47	1083	1076	1074	1074	26.14	1	1.53	1.27	$\rho \mathrm{C}-\mathrm{H}$ of Ph
48		1103	1108	1106	6.42	1.19	1.62	1.43	$\rho \mathrm{C}-\mathrm{H}$ of Ph
49	1128	1127	1110	1108	11.81	0.48	1.95	1.73	$\rho \mathrm{C}-\mathrm{H}$ of Ph
50	-	1132	1115	1115	2.93	0.49	1.46	1.3	$\mathrm{pC}-\mathrm{H}$ of Ph
51	-	1144	1150	1151	2.05	2.11	1.12	1.07	$\rho \mathrm{O}-\mathrm{H}+\rho 21 \mathrm{C}-26 \mathrm{H}$
52	-	1186	1202	1202	0.55	7.25	3.24	3.37	Ring breathing of Ph
53	-	1209	1212	1215	0.4	0.56	1.88	2	$5 \mathrm{C}-\mathrm{H}$ of Ph
54		1209	1219	1217	42.93	0.87	2.13	2.27	$\rho \mathrm{C}-\mathrm{H}$ of Ph
55	1243	1245	1228	1229	25.76	5.42	1.76	1.91	Ring breathing of Ph
56	-	1262	1244	1242	2.77	2.95	2.48	2.75	$\rho \mathrm{C}-\mathrm{H}$ of Ph
57		1281	1259	1255	3.83	0.88	3.99	4.52	$\rho \mathrm{C}-\mathrm{H}$ ofPhI $+\rho \mathrm{Cl} 16-\mathrm{Hl} 7$
58	1296	1294	1293	1293	5.45	2.3	2.59	3.12	$\rho \mathrm{C}-\mathrm{H}$ of Ph I
59	-	1311	1310	1312	8.04	0.18	1.4	1.73	$\checkmark \mathrm{C}-\mathrm{C}$ ofPh
60		1321	1320	1320	0.3	2.07	1.89	2.38	$v \mathrm{C}=\mathrm{C}$ of ph I
61	$13 \overline{3} 6$	1358	1382	1382	24.82	8.82	1.56	2.16	$\rho \mathrm{C}-\mathrm{H}$ of PhI $+\rho \mathrm{Cl} 16-\mathrm{H17}$
62	1391	1402	1428	1428	1.75	1.64	2.51	3.69	$\rho \mathrm{C}-\mathrm{H}$ of PhI
63	-	1410	1436	1435	24.97	2.65	2.37	3.52	$\rho \mathrm{C}-\mathrm{H}$ of Ph
64		1427	1456	1454	10.73	1.23	2.48	3.77	$\rho \mathrm{C}-\mathrm{H}$ of Ph
65	1445	1465	1489	1487	10.82	3.34	2.79	4.45	$\rho \mathrm{C}-\mathrm{H}$ of Ph
66	-	1477	1515	1512	84.52	11.13	2.73	4.5	$\mathrm{pC}-\mathrm{H}$ of Ph
67		1513	1544	1542	20.21	28.89	4.88	8.35	v C8=C7 of PhI
68	1552	1554	1595	1593	2.61	6.57	5.62	10.29	$v \mathrm{C}=\mathrm{C}$ of Ph I
69		1559	1604	1604	3.79	2	6	11.11	$v \mathrm{C}=\mathrm{C}$ of Ph
70	1575	1585	1635	1633	0.52	14.44	5.74	11.04	$v \mathrm{C}=\mathrm{C}$ of Ph
71		1598	1639	1637	5.68	14.29	5.85	11.28	$\vee \mathrm{C}=\mathrm{C}$ of Ph I
72	$16 \overline{63}$	1614	1702	1698	100	100	8.02	16.66	$v \mathrm{Cl} 16=\mathrm{N} 28+\mathrm{vC}=\mathrm{C}$ of Ph
73	2888	2888	2905	2906	7	1.24	1.08	6.6	$v \mathrm{C} 16-\mathrm{H} 17$
74	2931	3020	2991	2992	8.13	7.93	1.09	7.02	$v \mathrm{C}-\mathrm{H}$ of $\mathrm{Ph}(\mathrm{asym})$
75	2979	3036	3001	3002	0.23	2	1.08	7.04	$v \mathrm{C}-\mathrm{H}$ of Phi(asym)
76		3042	3008	3010	1.6	7.95	1.09	7.1	$v \mathrm{C}-\mathrm{H}$ of PhJ
77	$30-44$	3047	3015	3015	2.52	2.56	1.08	7.12	$\checkmark \mathrm{C}-\mathrm{H}$ of Ph
78	-	3053	3019	3021	9.81	3.77	1.09	7.19	$v \mathrm{C}-\mathrm{H}$ of Ph
79	-	3062	3030	3031	6.26	18.14	1.09	7.26	$v \mathrm{C}-\mathrm{H}$ of Ph
80		3063	3032	3032	3.32	2.41	1.09	7.24	$v \mathrm{C}-\mathrm{H}$ of Ph
81	3105	3066	3036	3035	1.46	10.88	1.09	7.26	$v \mathrm{C}-\mathrm{H}$ of Ph
82	3170	3137	3095	3094	0.09	3.38	1.09	7.57	v $7 \mathrm{C}-14 \mathrm{H}$ of Ph
83	-	3513	3533	3538	31.98	9.02	1.08	9.73	$v 15 \mathrm{~N}-13 \mathrm{H}$
84		3651	3774	3791	29.61	7.59	1.06	11.03	v $\mathrm{O}-\mathrm{H}$

The twisting mode for PhI occur at (mode21) 551, 559, $561 \mathrm{~cm}-1$ for B3LYP/6-31G(d,p), HF/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and $\mathrm{HF} / 6-311 \mathrm{G}(\mathrm{d} . \mathrm{p})$ respectively. Among these computational methods, the B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ method show good agreement with experimental FI-IR band at $531 \mathrm{~cm}^{-1}$.

$\mathrm{C}=\mathrm{C}$ stretching vibration

For Phenyl ring moiety (Ph), the ring carbon-carbon stretching vibrations occur in the region 1650-1400 cm^{-1} in benzene derivative varsanyi observed five bands $1625-1590,1590-1575,1540-1470,1465-$ 1430 and $1380-1280 \mathrm{~cm}^{-1}$, in this region [15]. The vibrations $1636,1575 \mathrm{~cm}^{-1}$ have been assigned to $\mathrm{C}=\mathrm{C}$ bond stretching vibration by obtained at experimentally. The $\mathrm{C}=\mathrm{C}$ stretching vibrations computed at (modes 70, 72) 1614, $1585 \mathrm{~cm}^{-1}$ for B3LYP/6-31G(d,p) 1702, $1635 \mathrm{~cm}^{-1}$ for HF/6-31G(d,p) and 1698,
$1633 \mathrm{~cm}^{-1}$ for $\mathrm{HF} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$. It is observed, the value obtained at B3LYP/6-31G(d,p) method shows very good agreement with experimental value.
For $\mathrm{PhI}($ Phenyl indole), In aromatic heterocyclic compounds, the $\mathrm{C}=\mathrm{C}$ stretching vibration occur in the region $1600-1300 \mathrm{~cm}^{-1}$ [16]. The theoretically computed $\mathrm{C}=\mathrm{C}$ stretching vibration at (mode 68) 1554 cm^{-1} for B3LYP/6-31G(d,p), $1595 \mathrm{~cm}^{-1}$ for HF/6-311G(d,p). On comparing them, the B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ vibration shows good agreement with the experimental value of corresponding group.

C-C Vibration

Vibrations C-C For B3LYP/6-31G(d,p), HF/6-31G(d,p), and HF / 6-311G(d,p), the C-C in plane bending for Phenyl ring moiety (Ph) is assigned at (mode43) 977, 999, and 997, respectively. There isn't any experimental evidence. Ph exhibits C-C out-of-plane bending at (modes13,25) 386, 627 cm^{-1} for B3LYP/6-31G(d,p), 395, $636 \mathrm{~cm}-1$ for HF/6-31G(d,p), and 394, $639 \mathrm{~cm}^{-1}$ for HF/6-311G(d,p). The $\mathrm{C}-\mathrm{C}$ in plane bending for $\mathrm{PhI}\left(\right.$ Phenyl indole) is $1029 \mathrm{~cm}^{-1}$ for B3LYP/6-31G(d,p), $1037 \mathrm{~cm}^{-1}$ for HF/6-31G(d,p), and $1038 \mathrm{~cm}^{-1}$ for HF/6-311G(d,p), respectively. The B3LYP/6-31G(d,p) technique, among these, shows good agreement with experimental assignment at $1008 \mathrm{~cm}^{-1}$.

$\mathbf{C}=\mathbf{N}$ Stretching Vibration

The identification of $\mathrm{C}=\mathrm{N}$ stretching vibration is not the easiest task, since the mixing of the several bonds are possible in this region Silverstein et al assigned $\mathrm{C}=\mathrm{N}$ stretching absorption in the region 1689$1471 \mathrm{~cm}^{-1}$ [16]. In the present work, mode (72) have been assigned to $\mathrm{C}=\mathrm{N}$ stretching vibrations are $1702 \mathrm{~cm}^{-1}$ for HF/6-31G(d,p), $1698 \mathrm{~cm}^{-1}$ for HF/6-311G(d,p) and $1614 \mathrm{~cm}^{-1}$ for B3LYP/6-31G(d,p) method respectively.

$\mathrm{N}-\mathrm{H}$ stretching vibration

Heteroaromatic compounds containing a N-H group exhibits N-H stretching absorption in the region $3500-3200 \mathrm{~cm}^{-1}$ [16]. Indoles display very strong N-H stretching absorption between 3500 and $3450 \mathrm{~cm}^{-}$ ${ }^{1}$ while for the title compound the N-H stretching vibrations are assigned at (mode83) $3513 \mathrm{~cm}^{-1}$ for B3LYP/6-31G(d,p), $3533 \mathrm{~cm}^{-1}$ for HF/6-31G(d,p) and $3538 \mathrm{~cm}^{-1}$ for HF/6-311G(d,p. The N-H out-of plane bending (wagging) occurs at (24) $615 \mathrm{~cm}^{-1}$ for B3LYP/6-31G(d,p), at $612 \mathrm{~cm}^{-1}$ for HF/6-31G and at $624 \mathrm{~cm}^{-1}$ for HF-6-311G. The N-H in-plane bending computed at (mode46) $1063 \mathrm{~cm}^{-1}$ for B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$, at $1066 \mathrm{~cm}^{-1}$ for $\mathrm{HF} /-631 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and at 1060 for HF/6-311G (d,p).

O-H stretching vibration

According to Silverstein [16] et al, the hydroxyl stretching occur above $3610 \mathrm{~cm}^{-1}$ while the theoretically computed value at $3651 \mathrm{~cm}^{-1}, 3770 \mathrm{~cm}^{-1}$ and $3791 \mathrm{~cm}^{-1}$ (mode84) for B3LYP/6-31G(d,p), HF/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and $\mathrm{HF} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ respectively. B3LYP/6-31G(d,p) method shows very good agreement with literature data. The $\mathrm{O}-\mathrm{H}$ wagging computed at $329 \mathrm{~cm}^{-1}, 360 \mathrm{~cm}^{-1}$ (modes11,12) for B3LYP, $323,367 \mathrm{~cm}^{-1}$ for HF/6-31G(d,p) and 323, $368 \mathrm{~cm}^{-1}$ for HF/6-311G(d,p). Computed vibrations for B3LYP/6-31G(d,p) coincide with experimental value.

NLO properties

The first hyperpolarizability of the 1 H -IMAP molecular system, as well as related properties (μ, β, α_{0}, and $\Delta \alpha$) have been calculated using the HF/6-31G (d,p),6-311G(d,p),andB3LYP/6-31G(d,p) methods
based on the finite field approach for 1H-IMAP.The energy of a system in the presence of an applied electric field is a function of the electric field. The first hyperpolarizability is a third rank tensor represented by a $3 \times 3 \times 3$ matrix. Due to the Kleinman symmetry, the 27 components of a 3D matrix can be reduced to ten components. [17].The components of β are defined as the coefficients in the Taylor series expansion of the energy in the external electric field. When the external electric field is weak and homogenous this expansion becomes

Where E_{0} is the energy of unperturbed molecules, F_{i} is the field at the origin $\mu_{\mathrm{i}}, \alpha_{\mathrm{ij}}, \beta_{\mathrm{ijk}}$ and γ_{ijk} are the components of the dipole moment, polarizability, first hyperpolarizability and the second hyperpolarizabilities, respectively. The static dipolemoment (μ), the mean polarizability (α_{0}), the anisotropy of the polarizability $(\Delta \alpha)$ and the mean hyperpolarizability $\left(\beta_{0}\right)$ using $\mathrm{x}, \mathrm{y}, \mathrm{z}$ components they are defined as
$\mu=\left(\mu_{\mathrm{x}}{ }^{2}+\mu_{\mathrm{y}}{ }^{2}+\mu_{\mathrm{z}}{ }^{2}\right)^{1 / 2}$
$\alpha_{0}=\left(\alpha_{x x}+\alpha_{y y}+\alpha_{z z}\right) / 3$
$\alpha=\left[\left(\alpha_{x x}-\alpha_{y y}\right)^{2}+\left(\alpha_{y y}-\alpha_{z z}\right)^{2}+\left(\alpha_{z z}-\alpha_{x x}\right)^{2}+6 \alpha_{x x}\right]^{1 / 2} /(2)^{1 / 2}$
$\beta_{0}=\left(\beta_{x}{ }^{2}+\beta_{y}{ }^{2}+\beta_{z}{ }^{2}\right)$
$\beta_{\mathrm{x}}=\boldsymbol{\beta}_{\mathrm{xxx}}+\beta_{\mathrm{xyy}}+\beta_{\mathrm{xzz}}$
$\beta_{y}=\beta_{y y y}+\beta_{y x x}+\beta_{y z z}$
$\boldsymbol{\beta}_{\mathrm{z}}=\boldsymbol{\beta}_{z z z}+\boldsymbol{\beta}_{\mathrm{zxx}}+\boldsymbol{\beta}_{\mathrm{zy}}$
The first Hyperpolarizability of 1H-IMAP computed by ab inito and DFT methods are shown in the Table (4a-4c).

Table 4a: The electric Dipole moments (Debye) and Dipole moment for 1H-IMAP were calculated using ab initio HF and DFT.

困			
μ_{x}	1.5743	$\mathrm{HF} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$	1.6231
μ_{y}	0.2546	0.2157	B3LYP/6-31G(d.p)
μ_{z}	0.2324	0.2571	-0.1053
μ	1.6115	1.6574	0.3135

Molecules with high hyperpolarizability do have in them planar $\mathrm{D}-\pi$-A chromophores group, but the title compound is non-planar and non-conjugative system. Hence its hyperpolarizability value is of the order $1 \times 10-{ }^{30}$ esu [18].

Table 5b: Calculated all β components and $\beta_{\text {tot }}\left(x 10^{-30}\right)$ value of $\mathbf{1 H}$-IMAP in (Debye-Ang **2) or $\beta_{\text {tot }}$ in esu.

	HF/6-31G(d,p)	HF/6-311G(d,p)	B3LYP/6-31G(d,p)
$\beta_{\text {天xג }}$	43.0057	42.9576	42.7723
$\beta_{x x \mathrm{x}}$	-49.3346	-50.3101	-47.8475
$\beta_{x y y}$	13.5478	13.9914	14.6025
$\mathrm{B}_{\mathrm{zryz}}$	-6.0856	-6.4816	-7.7217
$\mathrm{B}_{7 \times z}$	53.9699	53.2946	51.8616
$\mathrm{B}_{3 \times \mathrm{z}}$	3.4956	2.8863	2.6433
$\mathrm{B}_{\mathrm{xyz}}$	-9.7824	-9.5379	-8.3615
$\mathrm{B}_{\mathrm{B}} \mathrm{B}_{3}$	-25.0761	-25.4599	-23.0622
$\mathrm{B}_{\mathrm{yzz}}$	-0.2149	-0.6915	-0.3713
$\mathrm{B}_{\text {zzz }}$	1.236	1.3537	1.2446
$\beta_{\text {tot }}$	78.418	79.2808	78.2841
	(0.6774X $10^{-30} \mathrm{esu}$)	(0.6849X10 ${ }^{-30} \mathrm{esu}$)	(0.6763X10 ${ }^{-30} \mathrm{esu}$)

Table 5c: The average polarizability for $\mathbf{1 H}$-IMAP $\alpha_{\text {tot }}$ (Debye-Ang) or $\alpha_{\text {tot }}$ in esu

	HF/6-31G(d,p)	HF/6-311G(d,p)	B3LYP/6-31G(d,p)
$\alpha_{x x}$	-90.554	-91.3567	-86.8599
$\alpha_{x x}$	2.5219	2.147	0.5798
$\alpha_{s \mathrm{sx}}$	-91.5775	-92.1646	-91.122
$\alpha^{8 z}$	-15.9157	-15.4872	-14.4108
$\alpha_{\text {sz }}$	5.069	4.9703	4.4202
$\alpha_{z z}$	-111.598	-113.4551	-108.1888
α_{0}	-97.9099	-98.9921	-93.7235
	(1.4510× $10^{-23} \mathrm{esu}$)	(1.4670×10-23 esu)	(1.3889X $10^{-23} \mathrm{esu}$)
$\alpha_{\text {тот }}$	158.1848	159.685	157.6234
	(2.3442 X $10^{-23} \mathrm{esu}$)	(2.3665X $10^{-23} \mathrm{esu}$)	(2.3359X $10^{-23} \mathrm{esu}$)

Conclusion

The structural properties of 4 [(IH-indol-3yl) methylene amino]phenol were thoroughly investigated in this study using ab initio Hartree-Fock Theory and Density Functional Theory with B3LYP exchange correlation. The vibrational frequencies were computed, and the scaled values were compared to the experimental values.The XRD values were compared to the optimised geometric parameters such as bond angles, bond lengths, and dihedralangles. The measured and observed frequencies are found to agree well. The Non-Linear Optical properties are addressed theoretically. The electric dipolemoment (μ_{tot}), the isotropic polarizability ($\alpha_{\mathrm{tot})}$ and the hyperpolarizability $\left(\beta_{\mathrm{tot}}\right)$ of the title compound are also studied

Notes and References

1. Victor, S.J.Baumgarten, H.G., Lovenberg, Depletion of tryptophan hydroxylase by 5,6- dihydroxy tryptamine in rat brain time course and regional differences.Neuro.chem. 22(1974) pp. 541.
2. Baumgarten, H.G.Victor, S.J., Lovenberg, Effect of intraventricular in infection of 5,7- dihydroxy trytamines on regional tryptophan hydroxylase in rat brain.Neuro.chem. 21(1973) pp.251.
3. Singh, C.P., Kumar, A., Gaurav, K., Hasan, Ultra Sc. Of phy. 15 (2003) pp.107-116.
4. Reham, M.Z., Choundhary. J.A. chem.pharm.Bull. 54 (2006) pp. 1175.
5. David C. Young, Computational Chemistry, John Wiley and Sons, New York, 1st ed., (2001).
6. N.C.Handy, P.E.Maslen, R.D.Amos, J.S.Andrews, C.W.Murry, G.Laming, Chem.Phys.Lett. 197 (1992) pp. 506.
7. N.C.Handy, C.W.Murry, R.D.Amos, J.Phys.Chem. 97 (1993) pp. 4392.
8. P.J.Stephen, F.J.Devlin, C.F.Chavlowski, M.J.Frish, J.Phys.Chem. 98 (1994) pp. 11623.
9. S.Y.Lee, B.H.Boo, Bull.Korean Chem. Soc. 17 (1996) pp. 754.
10. A.P. Scott, L. Radom. J.Phys.Chem. 100 (1996) 16502.
11. G. Rauhut, P. Paulay, J.Phys.Chem, 99 (1995) 093.
12. Gaussian 03 Program. (Gaussian Inc, Wallingford CT) (2004).
13. Siti Munirah Saharin, Hapipah Mohd Ali, Ward T.Robinson, A. A. Mahmood, Acta Cryst. 64 (2008) pp. 2357.
14. V.Krishnakumar, R.Ramasamy, spectrochimica Acta part A62 (2005) pp. 570.
15. G.Varsanyi, Assignments 06 vibrational spectra of 700 Benzene Derivatives, Wiley, New York, (1974).
16. C.J. Cramer, Essentials of Computational Chemistry, Wiley; Hoboken, NJ, (2004).
17. D.A. Kleinman, Phy Rev. 126 (1962) pp. 1977.

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com
18. Wei Wu, Chengye Ye, Dong Wang, Chinese Academy of Science, Beijing 100080, China, (2003).

