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Abstract:  

In this paper we present the numerical solution of the Volterra  Integral Equations by using the analytic 

method ( Adomian Decomposition Method). To demonstrate the exactness and efficacy of the proposed 

method (ADM), some numerical examples have been performed. A Volterra integral equation is solved 

by ADM which gives us the comparatively accurate solution of the problem that tends to the exact 

solution of the problem.  
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ADOMIAN DECOMPOSITION METHOD  

The Adomian Decomposition method (ADM) is very powerful technique which considers the in exact 

solution of a nonlinear equation as an infinite series which essentially converges to the exact solution in 

this paper, ADM is proposed to solve some first order, second order and third order differential 

equations and integral equations. The Adomian Decomposition method (ADM) was firstly introduced by 

George Adomain in 1981. This method has been applied to solve differential equations and integral 

equations of linear and nonlinear problem in Mathematics, Physics, Biology and Chemistry up to know a 

large number of research paper have been published to show the possibility of the decomposition 

method.  

 

PROPOSED METHOD FOR SOLVING THE VOLTERRA  INTEGRAL EQUATION. 

The type of integral equation in which the restrictions of the integration are constant, in which 𝑎 and 𝑏 

are constant are called the Fredholm Integral equations, and is given as  

                       ∅(𝑥) = 𝑓(𝑥) + 𝜌 ∫ 𝐾(
𝑥

0
𝑥, 𝑡)∅(𝑡)(𝑡)𝑑𝑡                                                            (1)                                                                                                                                              

Where the function and the kernel are given in the advance, and 𝜌 is a parameter. In this division, the 

procedure of the Adomian decomposition method is used. The Adomian decomposition method 

connecting the decomposing of the unknown function  ∅(𝑥) of any equation into a addition of an infinite 

number of constituents defined by the  

decomposition series 

                                          ∅(𝑥) =  ∑ ∅𝑛(𝑥)∞
𝑛=0                                                                      (2) 
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Or In the same way 

∅(𝑥) =  ∅1(𝑥) + ∅2 (𝑥) + ∅3(𝑥) ± ⋯ 

 

When the constituents  ∅𝑛(𝑥), 𝑛 ≥ 0 will be resolved.  

 

The Adomain decomposition method analyze itself which discover the components 

∅0(x), ∅1(x),, ∅2(x)… 

 

To classify the recurrence relation ,  we substitute  (2) into the Volterra  integral equation  (1) to get 

 

              ∑ ∅𝑛 (𝑥) = 𝑓(𝑥) +∞
𝑛=0 ∫ 𝐾(

𝑥

0
𝑥, 𝑡) ∑ ∅𝑛 (𝑡)𝑑𝑡∞

𝑛=0                                                      (3) 

 

The zeroth component ∅0(x)  is spotted by all terms that are not comprises under the integral sign. This 

signifies that the components ∅𝑛(𝑥), 𝑛 ≥ 0  of the unknown function   ∅(𝑥) are totally resolved by the 

recurrence relation. 

 

∅0(x) = f(x), ∅𝑛+1(𝑥) = ∫ 𝐾(
𝑥

𝑜
𝑥, 𝑡) ∑ ∅𝑛(𝑡)𝑑𝑡∞

𝑛=0   , 𝑛 ≥ 0 

 

 Or correspondingly 

 

Thus the solution of the Volterra integral  equation (1) is easily acquired in a series form by make use of  

the series as assumption in (2) 

 

APPLICATIONS OF VOLTERRA  INTEGRAL EQUATIONS: 

Consider the linear volterra integral equation  

 

1. (x) =  𝑥 + ∫ (𝑡 − 𝑥)(x) 𝑑𝑡
𝑥

0
 

0(x) = x 

 

1(x) = ∫ 𝑘(𝑥,𝑡)∅0
𝑥

0
(𝑡)𝑑𝑡 

 

          =∫ (𝑡 − 𝑥)𝑡
𝑥

0
𝑑𝑡 

 

         =∫ (𝑡2 − 𝑥𝑡
𝑥

0
)𝑑𝑡 

         = (
𝑡3

3
− 𝑥

𝑡2

2
) 𝑥

0
 

 

 

         = (
𝑥3

3
−

𝑥3

2
)    = 

−𝑥3

6
                                  

       ∴ 1(x) = 
−𝑥3

6
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2(x) = ∫ (𝑡 − 𝑥) −𝑡3

6

𝑥

0
𝑑𝑡 

           = -
1

6
 ∫ (𝑡4 − 𝑥𝑡3𝑥

0
)𝑑𝑡 

           = - 
1

6
(

𝑡5

5
− 𝑥

𝑡4

4
)

0

𝑥

 

           = - 
1

6
(

𝑥5

5
−

𝑥5

4
) 

           =  - 
1

6
(

−𝑥5

20
) 

           = 
𝑥5

120
                                                   

∴ 2(x) = 
𝑥5

120
 

∴ (x) = 0(x) + 1(x)+ 2(x) +…………… 

               = x -  
𝑥3

6
 +

𝑥5

120
 -…………. 

               = x -  
𝑥3

3 !
 +

𝑥5

5!
 -…………. 

          (x)     = sinx 

 

2.Consider the volterra integral equation 

 (x) = 𝑒𝑥  + ∫ 𝑒𝑥−𝑡𝑥

0
  (t) dt 

       0(x) = 𝑒𝑥  

       1(x)= ∫ 𝑘(𝑥,𝑡)∅0
𝑥

0
(𝑡)𝑑𝑡 

                 =  ∫ 𝑒𝑥−𝑡𝑥

0
𝑒𝑡 dt 

                 =   ∫ 𝑒𝑥𝑥

0
 dt 

                 = 𝑒𝑥 (𝑡)0
𝑥     = x 𝑒𝑥                         

  ∴ 1(x) = x 𝑒𝑥  

2(x)= ∫ 𝑘(𝑥,𝑡) ∅1
𝑥

0
(𝑡)𝑑𝑡 

                 =  ∫ 𝑒𝑥−𝑡𝑥

0
 𝑡 𝑒𝑡 dt 

                 =   ∫ 𝑡 𝑒𝑥𝑥

0
 dt 

                 = 𝑒𝑥 (
𝑡2

2
)

0

𝑥

    = 
𝑥2

2
 𝑒𝑥                        

   ∴ 2(x) = 
𝑥2

2
 𝑒𝑥  

3(x)= ∫ 𝑘(𝑥,𝑡) ∅2
𝑥

0
(𝑡)𝑑𝑡 

                 =  ∫ 𝑒𝑥−𝑡𝑥

0
 
𝑡2

2
 𝑒𝑡 dt 

                 =   ∫ 𝑒𝑥𝑥

0

𝑡2

2
 dt 

                 = 
𝑒𝑥

2
(

𝑡3

3
)

0

𝑥

    = 
𝑥3

6
 𝑒𝑥                          ∴ 3(x) = 

𝑥3

6
 𝑒𝑥  

∴ (x) = 0(x) + 1(x)+ 2(x) +…………… 

              =  𝑒𝑥  + x 𝑒𝑥  + 
𝑥2

2
 𝑒𝑥  + 

𝑥3

6
 𝑒𝑥 + ……………..  
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              =  𝑒𝑥   [1 + x +  
𝑥2

2 !
 +  

𝑥3

3!
 +  … … … … … . . ] 

              = 𝑒𝑥 . 𝑒𝑥    = 𝑒2𝑥  

  

3. Consider the volterra integral equation 

(x) = 𝑒𝑥  - ∫ 𝑒𝑥−𝑡𝑥

0
  (t) dt 

       0(x) = 𝑒𝑥  

       1(x)= ∫ 𝑘(𝑥,𝑡)∅0
𝑥

0
(𝑡)𝑑𝑡 

                 =  ∫ − 𝑒𝑥−𝑡𝑥

0
𝑒𝑡 dt 

                 =   - ∫ 𝑒𝑥𝑥

0
 dt 

                 = - 𝑒𝑥 (𝑡)0
𝑥     = - x 𝑒𝑥                          

 ∴ 1(x) = - x 𝑒𝑥  

2(x)= ∫ 𝑘(𝑥,𝑡) ∅1
𝑥

0
(𝑡)𝑑𝑡 

                 =  ∫ − 𝑒𝑥−𝑡𝑥

0
(− 𝑡 𝑒𝑡) dt 

                 =   ∫ 𝑡 𝑒𝑥𝑥

0
 dt 

                 = 𝑒𝑥 (
𝑡2

2
)

0

𝑥

    = 
𝑥2

2
 𝑒𝑥                        

   ∴ 2(x) = 
𝑥2

2
 𝑒𝑥  

3(x)= ∫ 𝑘(𝑥,𝑡) ∅2
𝑥

0
(𝑡)𝑑𝑡 

                 =  ∫ − 𝑒𝑥−𝑡𝑥

0
 
𝑡2

2
 𝑒𝑡 dt 

                 =   ∫ − 𝑒𝑥𝑥

0

𝑡2

2
 dt 

                 =  − 
𝑒𝑥

2
(

𝑡3

3
)

0

𝑥

    = −  
𝑥3

6
 𝑒𝑥                         

  ∴ 3(x) = −  
𝑥3

6
 𝑒𝑥  

∴ (x) = 0(x) + 1(x)+ 2(x) +…………… 

              =  𝑒𝑥  - x 𝑒𝑥  + 
𝑥2

2
 𝑒𝑥  -  

𝑥3

6
 𝑒𝑥 + ……………..  

              =  𝑒𝑥   [1 − x +  
𝑥2

2 !
−  

𝑥3

3 !
 + … … … … … . . ] 

              = 𝑒𝑥 . 𝑒−𝑥    = 1 

 

Conclusion: 

   The aim of this paper is to employ the Adomain Decomposition Method  for solving the Volterra  

Integral Equation . It can be visibly seen that decomposition method for the Volterra Integral Equation is 

equivalent to consecutive approximation method. Even though the Adomain decomposition method is 

very burly and useful tool for solving the integral equations. 
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