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Abstract 

Employing a recent proposed method by Rindler-Ishak, the bending of light is calculated to second order, 

which reveals the exact Schwarzschild terms as well as the effects arising out of the parameters of the 

Mannheim-Kazanas solution of Weyl conformal gravity. Next using the approach of autonomous 

dynamical system, the stability of circular motion of massive and massless particles in the motion has 

been investigated. The main results justify why Rindler-Ishak method has to be preferred over text book 

methods when asymptotically non flat spacetime has been concerned. It turns out that there is no stable 

circular radius for light motion in the considered solution. 

 

I. Introduction 

Classical Einstein’s general relativity theory (EGRT) has been nicely confirmed within the weak field 

regime of solar gravity and binary pulsars. Certainly it continues to remain as one of the cornerstone of 

modern physics. However, it must be said in all fairness that within the ambit of classical EGRT, there 

still exists serious challenges. For instance, observations of flat rotation curves in the galactic halo still 

lack a universally accepted satisfactory explanation. The most widely accepted explanation, based on 

EGRT, hypothesizes that almost every galaxy hosts a large amount of nonluminous matter, the so called 

gravitational dark matter [1], consisting of unknown particles not included in the particle standard model, 

forming a halo around the galaxy. This dark matter provides the needed gravitational field and the required 

mass to match the observed galactic flat rotation curves. The exact nature of either the dark matter or dark 

energy is yet far too unknown except that the former has to be attractive on the galactic scale and the later 

repulsive on the cosmological scale. These requirements lead us to explore alternative theories, such as 

Modified Newtonian Dynamics (MOND) [2.3], braneworld model [4], scalar model [5]. A prominent 

candidate is Weyl Conformal Gravity that keep intact the weak field successes of EGRT and potentially 

resolves the dark matter/dark energy problem without hypothesizing them. By itself, Weyl Conformal 

Gravity seems quite as elegant as other theories because it is based on the conformal invariance with an 

associated 15- parameter largest symmetry group. An interesting solution in this theory is the Mannheim- 

Kazanas (MK) metric [6] that has successfully interpreted galactic flat rotation curves without invoking 

the elusive dark matter. 

The MK solution contains two arbitrary parameters 𝛾 and ᴋ that are expected to play prominent roles on 

the galactic halo and cosmological scale respectively. The fit to galactic flat rotation 𝛾 > 0 and a numerical 

value of the order of inverse Hubble radius [6c]. Therefore, it is expected that 𝛾 > 0 would lead to an 

enhanced bending of light 𝛾𝑅 due to the non-luminous halo over the usual Schwarzschild one due to 

luminous galactic mass. This enhancement is consistent with the observed attractive halo gravity. 
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Interestingly ᴋ cancels out of the light path equation and one might be led to believe that ᴋ has no role in 

light bending. The text book methods of calculation of bending using that path equation would then lead 

to diminished bending – 𝛾𝑅, which conflicts with observation. 

The purpose of the present article is to justify why Rindler-Ishak method [7] has to be preferred over text 

book methods when asymptotically non flat spacetimes are concerned. The method not only gives the 

needed enhanced bending 𝛾𝑅 due to the attractive halo gravity but also leads to a new additional effect 

right in the first order bending of light. Next, we proceed to investigate the stability of circular orbits of 

massive and massless particle via approach of dynamical systems, which also suggests that 𝛾 > 0. All the 

results are summarized at the end. 

 

II. Geodesic Equation 

The Weyl action is given by  

                                        𝑆 = 𝛼𝑔 ∫ 𝑑4𝑥(−𝑔)−1/2𝐶𝜇𝜗𝛾𝛿𝐶𝜇𝜗𝛾𝛿                                                          (1)  

where 𝐶𝜇𝜗𝛾𝛿 is the Weyl tensor, 𝛼𝑔 is the dimensionless gravitational coupling constant. Variation of the 

action with respect to the metric gives the field equations  

                                       (−𝑔)−1/2 𝛿𝑆 𝛿𝑔𝜇𝜗 = −2𝛼𝑔𝑊𝜇𝜗 = −𝑇𝜇𝜗/2⁄                                    (2) 

where 𝑊𝜇𝜗 is given by  

                                            𝑊𝜇𝜗 =
𝑔𝜇𝜗(𝑅𝛼

𝛼)
;𝛽
;𝛽

2
+  𝑅;𝛽

𝜇𝜗;𝛽
− 𝑅;𝛽

𝜇𝛽;𝜗
− 2𝑅𝜇𝛽𝑅𝛽

𝜗 +
𝑔𝜇𝜗𝑅𝛼𝛽𝑅𝛼𝛽

2
−

                                                           
2𝑔𝜇𝜗(𝑅𝛼

𝛼)
;𝛽
;𝛽

3
+

2(𝑅𝛼
𝛼);𝜇;𝜗

3
+

2𝑅𝛼
𝛼𝑅𝜇𝜗

3
− 𝑔𝜇𝜗(𝑅𝛼

𝛼)2/6 .                  (3) 

We can immediately confirm that the Schwarzschild 𝑅𝜇𝜗 = 0 solution is indeed an exterior solution to 

the theory so that the success of solar system tests are already embedded in to Weyl gravity. 

An interesting solution of the field equation is MK metric given by [6] (vacuum speed of light 𝑐0 = 1, 

unless restored): 

                                        𝑑𝜏2 = 𝐵(𝑟)𝑑𝑡2 −
1

𝐵(𝑟)
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2),  

                                      𝐵(𝑟) = 1 −
2𝑀

𝑟
+ 𝛾𝑟 − 𝑘𝑟2                                                               (4) 

where 𝑘 and 𝛾 are constants. The numerical value of 𝑘 ≈ 10−56𝑐𝑚−2 and 𝛾 ≈ 3.06 × 10−30𝑐𝑚−1 as 

determined from the fit to galactic flat rotation curve data [6c]. 

Using =
1

𝑟
 , we get the following path equation for a test particle 𝑚0 on the equatorial plane 𝜃 = 𝜋/2 as 

follows: 

                                    
𝑑2𝑢

𝑑𝜑2 = −𝑢 + 3𝑀𝑢2 −
𝛾

2
+

𝑀

ℎ2 +
1

2ℎ2𝑢2 (𝛾 −
2𝑘

𝑢
);                                 (5) 

where ℎ =
𝑈0

𝑚0
 , the angular momentum per unit test mass. Due to conformal invariance of the theory, 

geodesics for massive particles would in general depend on the conformal factor  𝛺2(𝑥), but here a fixed 

conformal frame has been considered not the other conformal variants of the metric. For photon, 𝑚0 = 0 

implies that ℎ → ∞ and one ends up with the conformally invariant equation but without 𝑘 making its 

appearance: 

                                                 
𝑑2𝑢

𝑑𝜑2
= −𝑢 + 3𝑀𝑢2 −

𝛾

2
                                                              (6) 

In the Schwarzschild-de Sitter (SdS) metric, such a cancellation has been noted for long [8]. The 

cosmological constant ˄ does not appear in the light path differential equation and hence it is believed that 
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˄ does not influence light bending [9-13]. Here we find that the cancellation of 𝑘 occurs despite the 

presence of 𝛾 in the metric. Exactly, as in the SdS case, one would now expect that the bending of light 

would be the same, to any order, with or without 𝑘. However, Rindler and Ishak [7] have shown that this 

need not be the case. They argued that “the differential equation and its integral are only half of the story. 

The other half is the metric itself, which determines the actual observations that can be made on the 𝑟, 𝜑 

orbit equation. When that is taken in to account a quite different picture emerges: the cosmological 

constant ˄ does contribute to the observed bending of light”. This argument also finds support in the fact 

that the effect due to 𝑘 must appear via the consideration of the full metric in the calculation of physically 

observable effects, such as the bending of light rays. 

 

III.  Bending of light rays 

Although the MK metric is different from the SdS metric, it will be shown that the influence of 𝑘 still 

appears in the bending provided the calculations are done using the Rindler-Ishak method. Thus the light 

path equation in zeroth order is  

                                                       
𝑑2𝑢0

𝑑𝜑2 + 𝑢0 = 0                                                                 (7) 

where 𝑢0 = 𝑢0̅̅ ̅ +
𝛾

2
. The solution of Eq.(7) is a straight line 𝑢0 =

𝑐𝑜𝑠𝜑

𝑅
 parallel to x-axis, where 𝑅 is the 

distance of closest approach to the origin ( just perpendicular distance). Following the method of small 

perturbations [14], we derive the solution up to second order in 𝑀2 as  

                𝑢 =
1

𝑟
=

𝑐𝑜𝑠𝜑

𝑅
+

3𝑀

2𝑅2 (1 −
1

3
𝑐𝑜𝑠2𝜑) +

3𝑀2

16𝑅3
(20𝜑𝑠𝑖𝑛𝜑 + 𝑐𝑜𝑠3𝜑 + 22𝑐𝑜𝑠𝜑)        (8) 

Assuming that 𝑢 → 0 for 𝜑 →
𝜋

2
− 𝜑, the solution can be rewritten as, 

                
1

𝑟
=

𝑠𝑖𝑛𝜑

𝑅
+

3𝑀

2𝑅2 (1 +
1

3
𝑐𝑜𝑠2𝜑) +

3𝑀2

16𝑅3
[10(𝜋 − 2𝜑)𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛3𝜑 + 22𝑠𝑖𝑛𝜑]     (9) 

The method of Rindler and Ishak [7] is based on the invariant formula for the cosine of the angle 𝜓 between 

two coordinate directions 𝑑 and 𝛿 such that  

                                                     𝑐𝑜𝑠𝜓 =
𝑔𝑖𝑗𝑑𝑖𝛿𝑗

(𝑔𝑖𝑗𝑑𝑖𝑑𝑗)
1/2

(𝑔𝑖𝑗𝛿𝑖𝛿𝑗)
1/2                                             (10) 

Differentiating Eq.(9) with respect to 𝜑, and denoting 
𝑑𝑟

𝑑𝜑
= 𝐴(𝑟, 𝜑), we get  

𝐴(𝑟, 𝜑) =
𝑟2

16𝑅3
[2(16𝑀𝑅𝑠𝑖𝑛𝜑 − 3𝑀2 − 8𝑅2)𝑐𝑜𝑠𝜑 + 3𝑀2{3𝑐𝑜𝑠3𝜑 + 10(𝜋 − 2𝜑)𝑠𝑖𝑛𝜑}]                                                                                                                                  

(11) 

Eq.(10) then yields 

                                                     𝑐𝑜𝑠𝜓 =
|𝐴|

[𝐴2+𝐵(𝑟)𝑟2]1/2
                                                      (12) 

or in a more convenient form 

                                                     𝑡𝑎𝑛𝜓 =
𝐵1/2𝑟

|𝐴|
                                                                    (13) 

when 𝜑 = 0, we get from Eq.(12) 

                                                     𝑟 =
16𝑅3(3𝑀2−16𝑅2)

(32𝑀𝑅+30𝜋𝑀2)2                                                            (15) 

The one sided bending angle is given by 𝜖 = 𝜓 − 𝜑and let us calculate 𝜖 = 𝜓 = 𝜓0 when 𝜑 = 0. Putting 

the value from Eqs.(14),(15) in Eq. (13), we get  

𝑡𝑎𝑛𝜓 ≅
𝑀(15𝜋𝑀+16𝑅)

8𝑅2 (1 +
3𝑀2

16𝑅2) [1 −
𝑀2(15𝜋𝑀+16𝑅)

8𝑅3 +
4𝛾𝑅3

15𝜋𝑀2+!6𝑀𝑅
−

32𝑘𝑅6

3𝑀2(15𝜋𝑀+16𝑅)2]        (16) 
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Expanding in powers of 𝑀 in second order for a small angle 𝜓0 (or, 𝑡𝑎𝑛𝜓0 ≅ 𝜓0), we obtain the following 

expression: 

                                                   𝜓0 ≅
2𝑀

𝑅
(1 +

15𝜋𝑀

16𝑅
−

𝑘𝑅4

24𝑀2 +
𝛾𝑅2

4𝑀
+

3𝛾𝑀

64
)                           (17) 

The roles of  𝛾 and 𝑘 are quite evident in the above. It is found that the contribution is exactly same to the 

bending due to 𝑘 as in Ref.[7] as well as the exact first and second order Schwarzschild terms in 
𝑀

𝑅
 derived 

by Bodenner and Will [14]. The result shows that the effect of 𝑘 does influence the bending although the 

trajectory equation (6) does not contain  𝑘. For 𝑘 = 0 it is found that the total Schwarzschild bending is 

enhanced by a halo contribution 𝛾𝑅. The result is quite consistent with the attractive halo gravity. 

Next, an entirely new effect has been noticed: The last term in Eq.(17) contains a coupling between 𝛾 and 

𝑀 giving rise to a dimensionless factor 
3𝛾𝑀

64
 that adds a constant to unity. This leads to a Weyl gravity 

modification to the observed first order bending itself. To get an idea of the magnitude involved, let 𝛼 

arcsec be the total first order bending in the solar gravity. Then 

                                                 𝛼 =
4𝑀

𝑅
(

1+𝛾0

2
) (1 +

3𝛾𝑀

64
) → 𝛾 =

64

3𝑀
(

𝛼𝑅

4𝑀

2

1+𝛾0
− 1)              (18) 

where 𝛾0 is the first post-Newtonian parameter. The prediction from EGRT gives 𝛼 =
4𝑀

𝑅
= 1.7504 

arcsec. Putting this in the above, we get   

                                                 𝛾 =
64

3𝑀
(

2

1+𝛾0
− 1)                                                                   (19) 

Assuming 𝛾 ≈ 10−30𝑐𝑚−1 and the solar mass to be  𝑀 ≅ 3 × 105𝑐𝑚, we get a value 𝛾0 ≈ 1 −

1.5 × 10−27. Currently estimated value is 𝛾0 = 2 × (0.99992 ± 0.00014) − 1 [15], which is close to 1 

up to an accuracy of 10−4. Note that the second post Newtonian correction demands an accuracy of the 

order of 10−6 but its measurement is already beset with some technical difficulties though not 

unsurmountable (See Refs [14-16]). Naturally, the accuracy of 10−27 demanded by the matching of 𝛾 

from the rotation curve data with that from solar gravity is technologically unattainable even in far future. 

 

IV. Stability of Circular Orbits via Hamiltonian Approach  

Analysis of dynamical system involves converting this second order equation in to two first order 

equations. For this purpose, we set the notation.  

                                                   𝑢 = 𝑥, 𝑦 = �̇� =
𝑑𝑥

𝑑𝜑
                                                               (20) 

To reduce Eq.(5) into a pair of first order autonomous system in the (𝑥, 𝑦) phase plane  

                                                  �̇� = 𝑋(𝑥, 𝑦) = 𝑦                                                                   (21) 

                                                  �̇� = 𝑌(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥−2 + 𝑒𝑥−3                     (22) 

where 

                                                  𝛼 =
𝑀

ℎ2 −
𝛾

2
 , 𝑏 = −1, 𝑐 = 3𝑀, 𝑑 =

𝛾

2ℎ2  , 𝑒 = −
𝑘

ℎ2                (23) 

(a) Massive particle motion 

 The equilibrium points are given by 𝑥 ̇ = 0 and �̇� = 0. The equation �̇� = 0 gives 𝑟 = 𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 

while �̇� = 0 gives 

                                                   ℎ2 = −
2𝑀𝑅2+𝑅4(𝛾−2𝑘𝑅)

𝑅(2+𝛾𝑅)−6𝑀
                                                        (24) 

The autonomous system (21), (22) can be phrased as a Hamiltonian system as follow 

                                                 
𝜕𝐻

𝜕𝑥
= −𝑌(𝑥, 𝑦) = −(𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥−2 + 𝑒𝑥−3)           (25) 
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𝜕𝐻

𝜕𝑦
= −𝑋(𝑥, 𝑦) =  𝑦                                                               (26) 

The necessary and sufficient condition for the system (25), (26) to be Hamiltonian system, namely, 
𝜕𝑋

𝜕𝑥′ +

𝜕𝑌

𝜕𝑦′
= 0, is fulfilled for all 𝑥 and 𝑦. Moreover, 

𝑑𝐻

𝑑𝜑
= 0 and therefore 𝐻(𝑥′, 𝑦′) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (independent 

of 𝜑). Intergrating Eqs.(25) , (26) , we get 

                                                𝐻(𝑥, 𝑦) = − (𝑎𝑥 +
𝑏

2
𝑥2 +

𝑐

3
𝑥3 − 𝑑𝑥−1 −

𝑒

2
𝑥−2) + 𝑢(𝑦)    (27) 

                                                𝐻(𝑥, 𝑦) =
1

2
𝑦2 + 𝑣(𝑥)                                                            (28) 

Where 𝑢(𝑦) and 𝑣(𝑥) are arbitrary functions subject to the consistency of Eqs.(27) and (28). These two 

equations will match only if 𝑢(𝑦) =
1

2
𝑦2 + 𝐶                                                    (29) 

                                                𝑣(𝑥) = − (𝑎𝑥 +
𝑏

2
𝑥2 +

𝑐

3
𝑥3 − 𝑑𝑥−1 −

𝑒

2
𝑥−2) + 𝐸          (30) 

Where 𝐶, 𝐸 are arbitrary constants. The family of Hamiltonian path on the phase plane are given by  

                                                   𝐻(𝑥, 𝑦) =
1

2
𝑦2 − (𝑎𝑥 +

𝑏

2
𝑥2 +

𝑐

3
𝑥3 − 𝑑𝑥−1 −

𝑒

2
𝑥−2) + 𝐺  (31) 

Where 𝐺 is a parameter. It follows that  

                                           
𝜕2𝐻

𝜕𝑥2 = −(𝑏 + 2𝑐𝑥 − 2𝑑𝑥−3 − 3𝑒𝑥−4)                                     (32) 

                                           
𝜕2𝐻

𝜕𝑦2 = 1                                                                                      (33) 

                                           
𝜕2𝐻

𝜕𝑥𝜕𝑦
= 0                                                                                     (34) 

As before, the equilibrium points occur when 𝑋 = 0 and 𝑌 = 0, which give the values 𝑟 = 𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

and ℎ2 as in Eq.(24). The quantity determining ability is [17] 

                                         
𝜕2𝐻

𝜕𝑥2

𝜕2𝐻

𝜕𝑦2 − (
𝜕2𝐻

𝜕𝑥𝜕𝑦
)

2

                                                                        (35) 

Putting the value of ℎ2, we get at the equilibrium points the following expression  

                                         𝑞0 = 1 −
6𝑀

𝑅
+

𝑅(3𝑘𝑅−𝛾)[𝑅(2+𝛾𝑅)−6𝑀]

𝑅2(2𝑘𝑅−𝛾)−2𝑀
                                           (36) 

We can also take 𝑘 = 0, then negative values of 𝛾 would lead to stable radius for some values of 𝑅, while 

unstable radius for some other values of 𝑅. There is no physical reason why such behaviour should occur. 

Therefore we conclude that negative values of 𝛾 should be ruled out. 

(b) Massless particle motion  

Light motion occurs in circular orbits defined by 𝑅(2 + 𝛾𝑅) − 6𝑀 = 0, hence we must have ℎ2 → ∞ so 

that 𝑑 = 𝑒 = 0 but 𝛾 ≠ 0. The equilibrium points are given by �̇� = 0, �̇� = 0, which for light yield 

(
−𝑏+√𝑏2−4𝑎𝑐

2𝑎
, 0) and (

−𝑏−√𝑏2−4𝑎𝑐

2𝑎
, 0). To locate these points on the real phase plane (𝑥, 𝑦), we must have 

𝛼2 ≡ 𝑏2 − 4𝑎𝑐 = 1 + 6𝛾𝑀 ≥ 0. For 𝛼2 = 0 → 𝛾 = −
1

6𝑀
, so the equilibrium points reduce to one single 

point given by 𝑃: (
1

6𝑀
, 0). For 𝛼2 > 0, or 𝛾 > −

1

6𝑀
, there are two distinct equilibrium points 𝑄∓ : (

1+𝛼

6𝑀
, 0) 

where 𝛼 = ∓√1 + 6𝛾𝑀. Thus 𝑄∓ correspond to two 𝛾-dependent light radii 𝑅∓ =
6𝑀

1±√1+6𝛾𝑀
, which 

expand as follows 

                                           𝑅+ =
−1+√1+6𝑀𝛾

𝛾
≅ 3𝑀 + 𝑂(𝛾)                                             (37) 
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                                           𝑅− =
−1+√1+6𝑀𝛾

𝛾
≅ −3𝑀 +

2

𝛾
+ 𝑂(𝛾)                                    (38) 

We have from Eq,(36) 

                                           𝑞0± = 1 −
6𝑀

𝑅±
                                                                           (39) 

Which yields 𝑞0+ = −√1 + 6𝑀𝛾 < 0 leading to unstable radii 𝑅 = 𝑅+ whatever be the value of 𝛾. 

Further 𝑞0− = −√1 + 6𝑀𝛾 > 0 showing that 𝑅 = 𝑅− are stable radii. The basic constraint (reality 

condition) however is that 𝛾 > −
1

6𝑀
 and in order to be compatible with the stability criterion for massive 

particle motion, we can conclude that 𝛾 > 0. 

 

V. Summary 

The new result obtained in the article are the following: 

(i) Since the constant 𝑘 cancelled out of the light path equation, one could think that the constant 

would not affect the bending of light rays. Using the new method proposed by Rindler and Ishak 

we have shown that this is not the case. The bending beyond Schwarzschild terms comes as a 

combination of the two constants 𝛾 and 𝑘 of the MK solution. The implication of this result is that 

one can have increased or decreased bending on the sign of the combination −
𝑘𝑅4

24𝑀2 +
𝛾𝑅2

4𝑀
. This 

flexibility can be tuned to the actual physical observations about attractive and repulsive gravity. 

(ii) There is a new first order effect 
3𝛾𝑀

64
 that adds a constant to unity in the bracket in Eq. (17). 

However, measurement of this demand a precision level of the order of 10−27, which is clearly 

out of question even in the far future. 

(iii) A very interesting result pertains to the well discussed [18,19] special case 𝐵(𝑟) = 1 + 𝛾𝑟, 

obtained by setting 𝑀 = 0, 𝑘 = 0 in the solution (4). This case is expected to describe purely the 

galactic halo gravity. Looking at Eq.(17), we see that it gives a total light deflection 2𝜓0 = 𝛾𝑅, 

which would mean a deflection toward the source provided 𝛾 > 0.Recalling that the fit to rotation 

curve data does give 𝛾 > 0. We immediately see that the special solution consistently explains the 

observed attractive halo gravity. We wish to emphasize that this consistent result has come about 

because of the use of Rindler-Ishak method. We had used the standard text book methods for the 

calculation of bending [19], we would end up with a deflection away from the source 2𝜓0 = −𝛾𝑅, 

which would be in direct conflict with attractive halo gravity. The fact that one can obtain the 

physically correct deflection in the halo justifies that the Rindler-Ishak method has to be preferred 

over standard methods when asymptotically non-flat spacetimes are concerned. When the 

spacetime is flat all methods lead to the same result.  

(iv) The dynamical system approach is elegant and the requirement of stability of massive particle 

circular motion revealed the negative values of 𝛾 should be ruled out. With regard to stability of 

light circular motion , we found that of the two light radii 𝑅− is stable provided that 𝛾 > −
1

6𝑀
. 

This reality condition does not exclude the possibility of  𝛾 > 0. Results from (iii) suggest that we 

should take 𝛾 > 0, which then rules out the radii 𝑅 = 𝑅− because they become negative. The other 

radii 𝑅 = 𝑅+ has already been shown to be unstable. We conclude that there cannot be any stable 

circular light orbit in the MK solution, just like in the Schwazschild case. 
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