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Abstract 

Many scientific problems have been solved using mathematical models. Using mathematical models to 

simulate dynamic biological processes has a long history. A main goal of mathematical and 

computational oncology is to develop quantitative tools to determine the most effective therapies for 

each individual patient. Over the past couple of decades or so, quantitative approaches have also made 

their way into cancer research. An increasing number of mathematical, physical, computational and 

engineering techniques have been applied to various aspects of tumor growth. Here we propose the use 

of emerging, quantitative tumour imaging methods to initialize a new generation of predictive models. In 

this study, we investigated a mathematical model that integrated mechanisms of tumor angiogenesis and 

tumor-targeted cytotoxicity in immune cells. The model considered the interaction of cancer cells with 

the immune system and the treatment that combines unlicensed dendritic cells and anti-vascular 

endothelial growth factor antibodies. Here in we describe fundamental so mathematical modelling of 

tumor growth and tumor-host interactions, and summarize some of the seminal and most prominent 

approaches. 
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Introduction 

Mathematical modeling of biological processes is widely used to enhance quantitative understanding of 

bio-medical phenomena. This quantitative knowledge can be applied in both clinical and experimental 

settings. One important application of modeling exercises is in the area of cancer biology. Many 

mathematical models have been developed to represent some aspects of cancer [1 - 3]. Mathematical 

models help to predict the tumor size and optimize the treatment procedure. In deterministic form, there 

are seven models including exponential, Mendelsohn, logistic, linear, surface, Gompertz and Bartalanffy 

that have been used to describe the behavior of cancer cell growth and proliferation .The mathematical 

model consists of a system of partial differential equations describing the production and/or activation of 

degradative enzymes by the tumor cells, the degradation of the matrix and the migratory response of the 

tumor cells. The mathematical model is a system of ODEs governing the tumor growth on a cell 

population level with a ratio-dependent like interaction between tumor cells and cytotoxic T cells. We 

will then discuss a number of different models and discuss their confirmative and predictive power for 

cancer biology. 
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Ordinary differential equation models of tumor growth 

The number of cancer cells in a tumor is difficult to estimate due to constant changes in time Tumor 

cells may proliferate, rest in a quiescent state, or die. Describing the number of tumor cells as a function 

of time is therefore remarkably challenging. It is, however, straightforward to formalize what changes in 

cell number are expected as time changes. The number of living cells only changes when cells 

proliferate or die: difference in live cell number overtime interval number of cells created and died 

overtime interval How many and how often cells proliferate and how many cells die is dependent on the 

considered time difference, i.e.,   dt (where d stands for difference and t stands for time).Let us assume 

the cell cycle length of an arbitrary cancer cell is 24 hours. Then, over the course of one day, the 

probability that the cell divides is close to 100%. Without knowing at what position in the cell cycle a 

cell currently is, we can assume that the probability of this cell to divide within the time frame of one 

hour is 1/24. Not knowing the exact number of cells in a tumor population, the above example can be 

directly translated to the population level. For a population of unsynchronized cells with a cell cycle 

length of 24 hours we can assume that all cells divide once if dt = 24 hrs. Similarly, if dt = 1 hr, only a 

fraction of cells in the population (about 1/24) is expected to divide. One reasons similarly for cell death. 

We therefore must introduce the time difference as well as two parameters into the above equation : 

where α and β are respectively understood as the fraction of dividing and dying cells each dt, and hence 

denote the per capita growth and death rates of the total cell population. It is obvious that the cell 

number must increase after a proliferative event and decrease after a cell death event. Let us introduce 

variable c as number of cells. The difference in cell number then becomes   dc, and the above equation 

can be written as: dc/dt = αc – βc is Called ODE. 

Let us assume that at time t=0, i.e., the starting point of an experiment, we have one million cells, 

i.e. c = 106.Population growth dynamics can follow one of three fates: (i) if α = β, then dc/dt = 0. 

In this case the number of cells in the population does not change and the population exhibits a 

state of tumor dormancy. It is of note that either α = β = 0, that is all cells in the population are in 

state of cellular dormancy or quiescence, or α = β >0 in which case cell proliferation is balanced 

by cell death [4, 5]. If (ii) α  > β, then dc/dt > 0 and the cell population will continuously grow 

with greater α - β rates yielding faster growth. On the other hand, the population will 

monotonically decrease if (iii) α < β and thus dc/dt < 0 (figure1). 

 

 
Figure1.Growth dynamic so f cell population cover time t ordiffeentrelativeratesof cell 

proliferation α and cell death β; c =106 cells at time t=0.Eqn. (1) can be reduced to a one-parameter 

problem. The terms αc - βc can be combined into the single term ( α – β ) c, and we introduce the 

single parameter, λ, λ =  α - β, which is called then at population growth rate. The differential 

equation describing cell population change over time is then   
𝑑𝑐

𝑑𝑡
 = 𝜆c    As before, if λ<0, λ=0, or 

λ>0 the population decreases, remains at a constant size, or increases respectively. Experimental 
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data from in vitro or in vivo population studies can then be used to parameterize such model (figure 

2). 

 

 
Figure 2. A) Mock population growth comparable to in vitro experimental data with 5% standard error 

bars (black dots) and calculated trend line (red).B) Mathematical model results of population growth for 

different parameters of λ.   

 

Partial differential equation models of  tumor growth 

 
 

Although ordinary differential equation models have proven to be a useful tool to simulate the evolution 

of the total tumor cell number over time, the most apparent short coming of this approach is the lack of 

spatial consideration. Patients do not die because of the total number of cancer cells in their bodies but 

because the primary tumors locally invade the tissue and spread (metastasize) to distant sites of the body 

to establish secondary tumors. It is these metastatic masses that are the main cause of death in cancer 

patients. Cancer invasion and metastatic spread are two crucial and inherently spatial processes, which 

can be simulated using partial differential equation (PDE) models. In such models, a population n at 

spatial positions (x), (x , y), or (x, y, z) in one, two, or three-dimensional space, respectively, is often 

described as a density, or fraction of maximum available volume at this position, and thus scaled 

between 0%-100%, or 0-1. The variable n is no longer only dependent on changes in time t, but also on 

variations in considered spatial dimensions. The equation for n therefore involves the partial derivatives 

of its independent variables. Omitting the considered spatial domain, the partial derivative of n with 

respect to time t is written as 
𝜕𝑛

𝜕𝑡
.Invasion of tissue is a key aspect of the growth and spread of cancer and 

is vital for successful metastasization. The process of invasion consists largely of three components: (i) 
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the cancer cells secrete various matrix degrading enzymes (MDEs); (ii) the MDEs destroy the 

surrounding tissue or extracellular matrix (ECM); (iii) the cancer cell s actively spread   into the 

surrounding tissue through proliferation and migration. 

 

Discrete models of tumor growth 

In addition to being the first 2-dimensional continuum model of cancer invasion focusing on the role of 

haptotaxis, the paper of Anderson et al. [6] was also the first to consider discrete model of cancer cell 

invasion (now also including proliferation at a discrete level), derived from the continuum PDE model. 

The computational simulation results of this model explored the observation that individual cancer cells 

can migrate beyond a “visible margin” of cancerous tissue, which was “detectable” by surgeons. This 

was perhaps the first paper to explore the issue of stochastic events and probability in invasion models. 

Figure 8 shows a sample result of a computation simulation of the discrete modeling a 2-dimensional 

domain. The individual cancer cells are secreting degrading enzymes and proliferating and migrating into 

the space created (through diffusion and haptotaxis). As can be seen from the figure, because of the 

stochastic nature of the discrete model, individual cancer cells mathematically possess the ability to 

penetrate the normal tissue at a greater depth then would be predicted by a deterministic PDE model. 

 

 
 

Specimen simulation result from the discrete invasion model of Anderson et al. 

The figure shows that individual cancer cells can penetrate the normal tissue at great depth. Other 

discrete models of invasion have subsequently been developed using a variety of techniques such as 

the Potts Model [7, 8], cellular automata and agent-based models, hybrid continuum-discrete 

approaches [9, 10] and individual, force-based model. One advantage discrete models have over 

continuum models is that events at the level of single cells can be considered. Using discrete models, 

important events such as mutations can be taken into account as well as different phenotypic 

properties. The introduction of discrete models have also led to the development of so-called “ 

multiscale models ”, where intracellular events can be modeled using systems of ordinary differential 

equations and these can then be linked to cellular level parameters [11,12]. 

 

Discussion 

An increasing variety of mathematical models has made its way into cancer research over the past 

couple of decades. Herein we have illustrated how simple quantitative models are developed and 

compared with experimental data, and showed how they can be used to simulate complex biological 
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processes and interactions. We have chosen seminal papers as examples, and for simplicity have had 

to leave out a large body of excellent mathematical modeling literature. The interested reader is 

referred to recent review articles and books that give a more inclusive overview of the state-of-the-art 

in cancer modeling [13-16] 
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