

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR23057823 Volume 5, Issue 5, September-October 2023 1

Performance Analysis and Improvement of Face

Recognition Algorithms on TMS320C64x

S. Chitra

Assistant Professor, ECE, Bharath University, Chennai

ABSTRACT:

Face recognition is an important part of today’s emerging biometrics and video surveillance markets. As

face recognition algorithms move from research labs to real world products, power consumption and

cost become critical issues, and DSP-based implementations become attractive. Our goal in this research

project was to evaluate the CPU and memory requirements of face recognition algorithms on the

TMS320C64x platform to determine the feasibility of implementing DSP-based face recognition

systems. The results of our project demonstrate that a generic C implementation with a modest C level

optimization effort results in a face recognition software prototype that has low CPU and memory

requirements onTMS320C64x, and runs with high speed to enable real-time applications. Therefore,

well - optimized face recognition implementations on TMS320C64x are an effective design choice for

embedded face recognition systems.

Keywords: Face Recognition-Biometrics-DSP-Optimization

1. Introduction

 Biometrics and automatic video surveillance are two emerging markets that are attracting increasing

interest from the research community and the industry. An important application in these markets is

automatic face recognition, which is the task of identifying a person based on an image of his or her

face. Face recognition has been a research area for almost 30 years, with significantly increased research

activity since 1990. This has resulted in the development of successful algorithms and the introduction

of commercial products. As face recognition algorithms move out of the research labs and into real

world applications, power consumption and cost become critical issues. This motivates searching for

DSP-based implementations. For a low cost, high volume deployment of face recognition systems, DSPs

offer a natural platform.

The goal of our research project was to evaluate the CPU and memory requirements of face

recognition algorithms on the TMS320C64x platform. Understanding these requirements will assist in

determining the feasibility of implementing DSP-based face recognition systems. To achieve our goal,

we implemented a fully automatic face recognition system on TMS320C6416, profiled the performance

and analyzed opportunities for optimization.

In the next section, we give an over review of the face recognition problem. Then, in section 3, we

describe two DSP-based face recognition applications that we considered in this project. In section 4, we

review the specific algorithms that we implemented. Finally, in sections 5 and 6, we describe our DSP-

based implementation and show the performance profile.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR23057823 Volume 5, Issue 5, September-October 2023 2

2. Face Recognition Overview:

 The goal of face recognition is to determine the identity of an individual based on a still image or

video sequence of his or her face. There are two different modes of operation for a face recognition

system: authentication and identification. In the authentication mode, the system accepts or rejects the

claimed identity of the individual. In the identification mode, the system compares the face image to a

database of known people, and returns the most likely identity or identities. Based on whether the input

is a still image or a video sequence, face recognition takes different approaches, each of which has its

advantages and challenges. Figure 1 shows the block diagrams of two possible approaches to face

recognition. For simplicity, the block diagrams assume that there is a single face in the given image or

video sequence. In case multiple faces exist, the system should work on each of them separately. With a

still image input, the system whose block diagram is shown in part (a) of Figure 1 first finds the location

of the face with a face detection module. Then, it searches for specific facial features, usually the eyes,

to register the face image. Finally, the registered image is normalized, and a classification algorithm

determines the identity of the person. Note that searching for the face and the features in still images is a

computationally intensive task. In the case of a video sequence input, the system whose block diagram is

shown in part (b) of Figure 1 finds and tracks the face using video information. Since motion is a very

important clue, a video sequence can significantly simplify face detection and feature localization stages.

For example, the movement of the face and the blinks of the eyes can quickly give an idea about where

the face and the eyes are. Having this information, the normalized face image can be easily obtained and

sent to the classification algorithm. If a face detection and tracking algorithm that utilizes video

information is not available, then the system should somehow select some specific frames from the

video according to some criteria, and send them to the face recognition block. In that case, the video

problem boils down to the still image problem where no motion information is used.

3. Examples of DSP-Based Face Recognition Systems

 In this project, we considered two exemplary application scenarios for a DSP-based face recognition

system.

3.1 Face Recognition Camera

 In this scenario, a fully automatic face recognition system is implemented on a single DSP that is

integrated into a camera or other image/video end equipment. Such a system can process still images or

video sequences. This approach would be convenient for small database applications since storing

and maintaining a very large database on each camera might not be practical. A face recognition camera

could be applied, for example, in retail stores to look for a number of known shoplifters who might be in

the area.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR23057823 Volume 5, Issue 5, September-October 2023 3

3. PreProcessor2 Face Recognition

In this scenario, a DSP that is integrated into a camera processes still images or video, and obtains the

normalized face image. Then, this normalized image is transferred to a central server for face

classification. The server compares the image to a large database of faces that is conveniently stored and

maintained at a centralized location. An application for a face recognition pre-processor could be a

badge reader unit that provides a face authentication function to confirm that an employee’s face

matches the person who is seeking entry in an access control system, using a network to access a secure

corporate database of employee faces.

4 System Description

To test feasibility of the scenarios we described above, we implemented a fully automatic DSP-based

face recognition system that works on still images. Our implementation follows the block diagram

shown in part (a) of Figure 1. In this section, we review the algorithms Our system consists of a face

detection block, an eye localization needs block, a face normalization block, and two face classification

blocks. A face recognition system clearly only one face classification block, but our goal was to be able

to compare different algorithms. The references for the algorithms we implemented are [1], [2], [3], and

[4]; for a detailed discussion of these algorithms and their detection or recognition rates, please refer to

these papers We can give a short description of our face recognition system as follows: For face

detection, we used the probabilistic visual learning approach.[1]. According to their approach, face

images are modeled as a multi-dimensional Gaussian distribution that is estimated with the help of a

Karhuenen Loeve Transform (KLT) based dimensionality reduction. To detect faces in still images,

blocks at different scales and locations are extracted from the image, and their probabilities of being a

face are calculated using the density mentioned above. Since searching a large image at multiple scales

and locations is a computationally intensive task, we tried to decrease the search space with the help of a

rule proposed by Kotropoulos and Pitas [4]. Assuming that there is a single face in a given image,

Kotropoulos and Pitas suggest that abrupt changes in the horizontal and vertical profiles of the image

correspond to head boundaries. The horizontal profile is obtained by averaging the pixels at each

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR23057823 Volume 5, Issue 5, September-October 2023 4

column, and the vertical profile is obtained by averaging the pixels at each row. However, in the general

case, if the person is in front of an arbitrary background, it is rarely possible to find the head boundaries

with this approach because there are other abrupt changes caused mainly by the background. But, even

in this case, we found the rule still useful to decrease the search space for the face. In the horizontal

profile, we find the first and last abrupt changes and assume that at least half of the face is located

between these two boundaries. If there are false detections due to the background, this just increases our

search space without causing us to miss the face. Similarly, in the vertical profile, we find the first

abrupt change, and assume that the face is located below that upper boundary. We search the space

between these boundaries at multiple scales and locations using the method proposed by Moghaddam

and Pentland that we have explained above. After the location of the face is found, eye localization is

performed, where we search for the two eyes inside the face at multiple scales and locations. We again

use the density estimation technique proposed by Moghaddam and Pentland, this time to model the

distribution of the eyes. After we find the eyes, we rotate the face image to make the eyes horizontal,

crop it to exclude the back ground, and decimate it down to a size of 128x128. We call these steps face

normalization. An illustration of the face detection, eye localization, and face normalization steps is

shown in Figure 2 and Figure 3. After the face image is normalized, we send it to a face classification

algorithm that compares it to a database of known people and returns the most likely person. We

implemented two different face classification algorithms. The first one is the well-known eigenfaces

algorithm proposed by Turk and Pentland [2], which is considered to be a base line algorithm for face

recognition. According to this approach

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR23057823 Volume 5, Issue 5, September-October 2023 5

face images are first projected into a subspace that is obtained by performing principal component

analysis on the training images. Then, recognition is performed by minimum distance classification. The

second classification algorithm. we implemented is the segmented linear subspaces algorithm proposed

by Batur and Hayes [3].This algorithm’s primary goal is to perform reliable face recognition under

varying illumination conditions.According to this approach, each person’s face images with a fixed pose

under varying illumination are modeled with a segmented linear subspace model, and recognition is

performed by computing the distance of the image to the subspace models in the database. We first

implemented the enrollment and recognition procedures for the complete face recognition system in

Matlab, and then, we tested the system on a subset of Yale Face Database B that contains a total of 300

frontal images of 10 people where the lighting direction changes between 0 and 50 degrees [7]. This

database can be obtained from the web page located at [8]. For each person, we used 5 images for

training, and the remaining 25 images for testing. For face detection and eye localization, we used 15

dimensional subspaces to estimate the multi-dimensional Gaussian densities. For eigenfaces, we used a

30 dimensional subspace representation, and for the segmented linear subspaces, we used 4 dimensional

subspaces with 64 regions. For the fully automatic system, the recognition rate with the eigenfaces.

classification was 88%, and the recognition rate with the segmented linear subspaces classification was

93%. Our goal in this project is not to evaluate the detection and recognition rates of the specific

algorithms we implemented, and more detailed information about the performances of these algorithms

can be found in their respective papers. After we finalized our algorithms in Matlab, we started the C

implementation of the face recognition system on a TMS320C64x DSP. We kept the enrollment

procedures in Matlab because enrolling is usually done offline in controlled environments.

5 Implementation on C64x

 We implemented the fully automatic face recognition system described in section 4 on a C6416 TEB

that contains a TMDX320C6416 fixed-point DSP running at 500 Mhz and an external memory of

size 16MB. The DSP has a two level internal memory architecture where the first level contains a

program and a data memory that are 16KB each and the second level contains a 1024KB memory, called

L2. The first level memories can only be used as cache while L2 can be configured as partial static RAM

and partial cache. In our implementation, we configured L2 as 256KB cache and 768KB static RAM,

which is the configuration with the largest possible amount of cache. We chose this configuration

because our system processes a lot of data, which makes the external memory accesses a performance

bottleneck, and a large cache increases the efficiency of internal memory usage significantly. For more

information about this issue, please refer to the application note titled Cache Usage in High-

Performance DSP Applications With the TMS320C64x (SPRA756) Our original implementation on the

C64x DSP was a floating-point generic C code compiled with the Code Composer Studio C compiler. It

consisted of a face detection block, an eye localization block, a face normalization block, and two face

classification blocks. Considering that it took around 2 minutes to recognize a single face image, we

concluded that this generic C implementation on C64x was not satisfactory in terms of computation

time. Therefore, we performed various C-level optimizations to increase the speed. The significant

gains we achieved as a result of these optimizations proved that some sort of optimization effort over

generic C code is clearly necessary and is well-worth the effort In the next section, we first describe the

performance bottlenecks we identified throughout our tests, and then, for each of these bottlenecks, we

explain the C level optimization tasks we performed to increase the performance.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR23057823 Volume 5, Issue 5, September-October 2023 6

5.1 C-Level Optimizations

 The most important performance penalty that our generic C code suffered was due to the overhead of

floating-point computations on a fixed-point DSP. Therefore, our initial optimization task was to

convert computationally intensive parts of our code to fixed-point arithmetic. The most computationally

intensive operations were subspace projections that were computed throughout the face detection, eye

localization, and face classification stages. Especially during the search for the face and the eyes at

multiple scales and locations, many subspace projections were needed to find the probabilities, and these

projections dominated the computational load of the face recognition system. To make efficient use of

the 16-bit multiplier C64x has, we tried to use Q.15 as much as possible. Q.15 is a 16-bit fixed-point

representation where the last 15 bits are used as the fractional part. Converting the computations of our

detection and classification algorithms to fixed-point was quite straightforward, and the resulting loss in

computational accuracy did not seem to be significant since the recognition rates remained exactly the

same after the conversion. Another significant performance penalty for our system was due to not

effectively utilizing C64x’s parallel computation capabilities. Computationally intensive parts of face

detection and recognition algorithms are usually large vector-matrix operations that are inherently

parallel. Well-known algorithms such as [1], [2], [5], and [6] can be given as examples. These large

vector operations can be very well optimized on C64x that provides a powerful architecture and special

instructions for packed data processing. In fact, C64x DSP library contains assembly-optimized routines

for some common vector operations. In our system, we used functions from this library to perform

subspace projections and vector length calculations. For more information about this library, please refer

to TMS320C64x DSP Library Programmer’s Reference. At certain places, we used C64x intrinsics to

access special C64x instructions directly from C, without switching to assembly. The intrinsics we used

were _sshvl and _mpylir, which helped us to implement fixed-point arithmetic efficiently.Conversion to

fixed-point, use of the optimized routines from the C64x DSP library, and use of C64x intrinsics

provided a factor of 14 increase in the speed. Another bottleneck for performance was the external

memory accesses. Although the cache helps to decrease this penalty, the performance can still be

improved by an optimized allocation of data into the internal and external memories. We placed the face

detection and eyelocalization subspaces and other frequently used data into the internal memory, which

provided us a factor of 2 increase in speed. The eigen faces, the segmented linear subspaces, and the

program code were placed in the external memory due their large sizes. Finally, we compiled our code

using –o3 –pm optimization options of the Code Composer Studio C compiler, and made sure that we

did not use –ss option which decreases the execution speed. The optimizations we explained above are

clearly not complete, and the code can be further optimized to achieve even more gains. We can propose

four major areas for improvement. First, DMA can be used to increase the efficiency of internal memory

usage. Second, all of the code can be converted to fixed-point to avoid the floating point overhead

completely. Third, the critical loops in the code can be better organized for software pipelining. Finally,

some parts of the code can be optimized at the assembly level for maximum performance.

6 Performance Profile

 We profiled our face recognition system on C64x by running the recognition on a 480x640 image that

contains a single face. The database we used had 10 people. We assumed that the data that would be

processed by the system was available in internal or external memory. Since the rule based approach we

used for decreasing the search space for face detection causes variability in computation time, we

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR23057823 Volume 5, Issue 5, September-October 2023 7

averaged the performance results over a certain number of input images. The resulting CPU and memory

requirements are shown in Table 1. A quick look at these results reveals that the face detection and eye

localization blocks consume most of the computation time, and the face classification blocks consume

most of the memory. These results are expected since searching for faces and features in still images at

multiple scales and locations is known to be a computationally intensive task, and the classification

blocks have to store the subspace models and the face databases which are large in size. Note that an

increase in database size will linearly increase the CPU and memory requirements of the Classification

blocks. Now, let us discuss these results from the point of view of the face recognition approaches we

have explained in section 2. Our implementation follows the still image processing approach shown in

part (a) of Figure 1. Therefore, based on the results shown in Table 1, we can conclude that it takes less

than 4 seconds to recognize a single face from a still image. Most of this time is spent during the face

detection and eye localization stages. Hence, choosing faster algorithms for these stages can increase the

recognition speed significantly. Although we did not implement the video based approach shown in part

(b) of Figure 1, we can make some comments about it based on the face normalization and classification

blocks we have implemented. We believe that it is possible to implement a real time face and facial

feature detection and tracking system on C64x. If such as system is available to process the video, the

location of the face and facial features can be known at any time. Then, according to the results shown in

Table 1, normalization and classification takes less than 1 second to complete. This can make it possible

to implement a very fast face recognition system on C64x. The above comments are all related to the

face recognition camera application we have described in section 3.1. The difference of the face

recognition pre-processor application shown in section 3.2 is to move the classification block to the

central server. Large memory requirements of the classification blocks shown in Table 1 may motivate

such an approach. Finally, if we look at the performance profiles of the two classification algorithms, we

notice a trade off between the recognition rate and the computational complexity. Eigen faces

classification is faster, consumes less memory, and, as we have mentioned in section 4,provides a lower

recognition rate than the segmented linear subspaces method. Similar tradeoffs would probably exist for

all face classification algorithms.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR23057823 Volume 5, Issue 5, September-October 2023 8

7. Conclusion

The results, we have shown in the previous section demonstrate that a generic C implementation with a

modest C level optimization effort results in a face recognition system with low CPU and memory

requirements on C 64x.There could be further optimizations to achieve even lower requirements, it

appears that DSP - based implementations can be a cost and power-effective choice for embedded face

recognition products.

8. Acknowledgements

I would like to thank Dr.Caroline Britto who encouraged me to publish a paper and also i express my

thanks to my family members .

9. References

1. B. Moghaddam and A. Pentland. “Probabilistic Visual Learning for Object Representation,”IEEE

Trans. Pattern Analysis and Machine Intelligence, Vol.19, pp. 696-710, July 1997.

2. M. A. Turk and A. P. Pentland. “Face Recognition Using Eigenfaces,” Proc. IEEE Conf. Computer

Vision and Pattern Recognition, pp. 586-591, 1991.

3. A. U. Batur and M. H. Hayes. “Linear Subspaces for Illumination-Robust Face Recognition,” Proc.

IEEE Conf. Computer Vision and Pattern Recognition, pp.296-301, 2001.

4. C. Kotropoulos and I. Pitas. “Rule-Based Face Detection in Frontal Views,” Proc. Int’l Conf.

Acoustics, Speech and Signal Processing, Vol. 4, pp. 2537-2540, 1997.

5. P. Belhumeur, J. Hespanha, and D. Kriegman. “Eigenfaces vs. Fisherfaces: Recognition Using Class

Specific Linear Projection,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 19, No. 7,

pp. 711-720, 1997.

6. K. K. Sung and T. Poggio, “Example-Based Learning for View-Based Human Face Detection,”

IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, pp. 39-51, Jan. 1998.

7. A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. “From Few to Many: Illumination Cone

Models for Face Recognition Under Variable Lighting and Pose,” IEEE Trans. Pattern Analysis and

Machine Intelligence, Vol. 23, No. 6, pp. 643-660, 2001.

https://www.ijfmr.com/

