
 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23057823 Volume 5, Issue 5, September-October 2023 1 

 

Performance Analysis and Improvement of Face 

Recognition Algorithms on TMS320C64x 
 

S. Chitra 
 

Assistant Professor, ECE, Bharath University, Chennai 

 

ABSTRACT:  

Face recognition is an important part of today’s emerging biometrics and video surveillance markets. As 

face recognition algorithms move from research labs to real world products, power consumption and 

cost become critical issues, and DSP-based implementations become attractive. Our goal in this research 

project was to   evaluate   the   CPU   and memory requirements of face recognition algorithms on the 

TMS320C64x platform to determine the feasibility of implementing DSP-based face recognition 

systems. The results of our project demonstrate that a generic C implementation with a modest C level 

optimization effort results in a face recognition software prototype that has low CPU and memory 

requirements onTMS320C64x, and runs with high speed to enable real-time applications. Therefore, 

well - optimized face recognition implementations on TMS320C64x are an effective design choice for 

embedded face recognition systems. 
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1. Introduction 

    Biometrics and automatic video surveillance are two emerging markets that are attracting increasing 

interest from the research community and the industry. An important application in these markets is 

automatic face recognition, which is the task of identifying a person based on an image of his or her 

face. Face recognition has been a research area for almost 30 years, with significantly increased research 

activity since 1990. This has resulted in the development of successful algorithms and the introduction 

of commercial products. As face recognition algorithms move out of the research labs and into real 

world applications, power consumption and cost become critical issues. This motivates searching for 

DSP-based implementations. For a low cost, high volume deployment of face recognition systems, DSPs 

offer a natural platform. 

The goal of our research project was to evaluate the CPU and memory requirements of face 

recognition algorithms on the TMS320C64x platform. Understanding these requirements will assist in 

determining the feasibility of implementing DSP-based face recognition systems. To achieve our goal, 

we implemented a fully automatic face recognition system on TMS320C6416, profiled the performance 

and analyzed opportunities for optimization. 

In the next section, we give an over review of the face recognition problem. Then, in section 3, we 

describe two DSP-based face recognition applications that we considered in this project. In section 4, we 

review the specific algorithms that we implemented. Finally, in sections 5 and 6, we describe our DSP-

based implementation and show the performance profile. 

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23057823 Volume 5, Issue 5, September-October 2023 2 

 

2. Face Recognition Overview: 

    The goal of face recognition is to determine the identity of an individual based on a still image or 

video sequence of his or her face. There are two different modes of operation for a face recognition 

system: authentication and identification. In the authentication mode, the system accepts or rejects the 

claimed identity of the individual. In the identification mode, the system compares the face image to a 

database of known people, and returns the most likely identity or identities. Based on whether the input 

is a still image or a video sequence, face recognition takes different approaches, each of which has its 

advantages and challenges. Figure 1 shows the block diagrams of two possible approaches to face 

recognition. For simplicity, the block diagrams assume that there is a single face in the given image or 

video sequence. In case multiple faces exist, the system should work on each of them separately. With a 

still image input, the system whose block diagram is shown in part (a) of Figure 1 first finds the location 

of the face with a face detection module. Then, it searches for specific facial features, usually the eyes, 

to register the face image. Finally, the registered image is normalized, and a classification algorithm 

determines the identity of the person. Note that searching for the face and the features in still images is a 

computationally intensive task. In the case of a video sequence input, the system whose block diagram is 

shown in part (b) of Figure 1 finds and tracks the face using video information. Since motion is a very 

important clue, a video sequence can significantly simplify face detection and feature localization stages. 

For example, the movement of the face and the blinks of the eyes can quickly give an idea about where 

the face and the eyes are. Having this information, the normalized face image can be easily obtained and 

sent to the classification algorithm. If a face detection and tracking algorithm that utilizes video 

information is not available, then the system should somehow select some specific frames from the 

video according to some criteria, and send them to the face recognition block. In that case, the video 

problem boils down to the still image problem where no motion information is used. 

 

3. Examples of DSP-Based Face Recognition Systems 

    In this project, we considered two exemplary application scenarios for a DSP-based face recognition 

system. 

 

3.1 Face Recognition Camera 

  In this scenario, a fully automatic face recognition system is implemented on a single DSP that is 

integrated into a camera or other image/video end equipment. Such a system can process still images or 

video sequences. This approach    would   be  convenient   for small database applications since storing 

and maintaining a very large database on each camera might not be practical. A face recognition camera 

could be applied, for example, in retail stores to look for a number of known shoplifters who might be in 

the area.  
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3. PreProcessor2 Face Recognition 

In this scenario, a DSP that is integrated into a camera processes still images or video, and obtains the 

normalized face image. Then, this normalized image is transferred to a central server for face 

classification. The server compares the image to a large database of faces that is conveniently stored and 

maintained at a centralized location. An application for a face recognition pre-processor could be a 

badge reader unit that provides a face authentication function to confirm that an employee’s face 

matches the person who is seeking entry in an access control system, using a network to access a secure 

corporate database of employee faces. 

 

4 System Description 

To test feasibility of the scenarios we described above, we implemented a fully automatic DSP-based 

face recognition system that works on still images. Our implementation follows the block diagram 

shown in part (a) of Figure 1. In this section, we review the algorithms Our system consists of a face 

detection block, an eye localization needs block, a face normalization block, and two face classification 

blocks. A face  recognition system clearly only one face classification block, but our goal was to be able 

to compare different algorithms. The references for the algorithms  we implemented are [1], [2], [3], and 

[4]; for a detailed discussion of these algorithms and their detection or recognition rates, please refer to 

these papers We can give a short description of our face recognition system as follows: For face 

detection, we used the probabilistic visual learning approach.[1]. According to their approach, face 

images are modeled as a multi-dimensional Gaussian distribution that is estimated with the help of a 

Karhuenen Loeve Transform (KLT) based dimensionality reduction. To detect faces in still images, 

blocks at different scales and locations are extracted from the image, and their probabilities of being a 

face are calculated using the density mentioned above. Since searching a large image at multiple scales 

and locations is a computationally intensive task, we tried to decrease the search space with the help of a 

rule proposed by Kotropoulos and Pitas [4]. Assuming that there is a single face in a given image, 

Kotropoulos and Pitas suggest that abrupt changes in the horizontal and vertical profiles of the image 

correspond to head boundaries. The horizontal profile is obtained by averaging the pixels at each 
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column, and the vertical profile is obtained by averaging the pixels at each row. However, in the general 

case, if the person is in front of an arbitrary background, it is rarely possible to find the head boundaries 

with this approach because there are other abrupt changes caused mainly by the background. But, even 

in this case, we found the rule still useful to decrease the search space for the face. In the horizontal 

profile, we find the first and last abrupt changes and assume that at least half of the face is located 

between these two boundaries. If there are false detections due to the background, this just increases our 

search space without causing us to miss the face. Similarly, in the vertical profile, we find the first 

abrupt change, and assume that the face is located below that upper boundary. We search the space 

between these boundaries at multiple scales and locations using the method proposed by Moghaddam 

and Pentland that we have explained above. After the location of the face is found, eye localization is 

performed, where we search for the two eyes inside the face at multiple scales and locations. We again 

use the density estimation technique proposed by Moghaddam and Pentland, this time to model the 

distribution of the eyes. After we find the eyes, we rotate the face image to make the eyes horizontal, 

crop it to exclude the back ground, and decimate it down to a size of 128x128. We call these steps face 

normalization. An illustration of the face detection, eye localization, and face normalization steps is 

shown in Figure 2 and Figure 3. After the face image is normalized, we send it to a face classification 

algorithm that compares it to a database of known people and returns the most likely person. We 

implemented two different face classification algorithms. The first one is the well-known eigenfaces 

algorithm proposed by Turk and Pentland [2], which is considered to be a base line algorithm for face 

recognition. According to this approach 
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face images are first projected into a subspace that is obtained by performing principal component 

analysis on the training images. Then, recognition is performed by minimum distance classification. The 

second classification algorithm. we implemented is the segmented linear subspaces algorithm proposed 

by Batur and Hayes [3].This algorithm’s primary goal is to perform reliable face recognition under 

varying illumination conditions.According to this approach, each person’s face images with a fixed pose 

under varying illumination are modeled with a segmented linear subspace model, and recognition is 

performed by computing the distance of the image to the subspace models in the database. We first 

implemented the enrollment and recognition procedures for the complete face recognition system in 

Matlab, and then, we tested the system on a subset of Yale Face Database B that contains a total of 300 

frontal images of 10 people where the lighting direction changes between 0 and 50 degrees [7]. This 

database can be obtained from the web page located at [8]. For each person, we used 5 images for 

training, and the remaining 25 images for testing. For face detection and eye localization, we used 15 

dimensional subspaces to estimate the multi-dimensional Gaussian densities. For eigenfaces, we used a 

30 dimensional subspace representation, and for the segmented linear subspaces, we used 4 dimensional 

subspaces with 64 regions. For the fully automatic system, the recognition rate with the eigenfaces. 

classification was 88%, and the recognition rate with the segmented linear subspaces classification was 

93%. Our goal in this project is not to evaluate the detection and recognition rates of the specific 

algorithms we implemented, and more detailed information about the performances of these algorithms 

can be found in their respective papers. After we finalized our algorithms in Matlab, we started the C 

implementation of the face recognition system on a TMS320C64x DSP. We kept the enrollment 

procedures in Matlab because enrolling is usually done offline in controlled environments. 

 

5 Implementation on C64x 

    We implemented the fully automatic face recognition system described in section 4 on a C6416 TEB 

that contains a TMDX320C6416 fixed-point DSP   running   at   500  Mhz  and   an external memory of 

size 16MB. The DSP has a two level internal memory architecture where the first level contains a 

program and a data memory that are 16KB each and the second level contains a 1024KB memory, called 

L2. The first level memories can only be used as cache while L2 can be configured as partial static RAM 

and partial cache. In our implementation, we configured L2 as 256KB cache and 768KB static RAM, 

which is the configuration with the largest possible amount of cache. We chose this configuration 

because our system processes a lot of data, which makes the external memory accesses a performance 

bottleneck, and a large cache increases the efficiency of internal memory usage significantly. For more 

information about this issue, please refer to the application note titled Cache Usage in High-

Performance DSP Applications With the TMS320C64x (SPRA756) Our original implementation on the 

C64x DSP was a floating-point generic C code compiled with the Code Composer Studio C compiler. It 

consisted of a face detection block, an eye localization block, a face normalization block, and two face 

classification blocks. Considering that it took around 2 minutes to recognize a single face image, we 

concluded that this generic C implementation on C64x was not satisfactory in terms of computation 

time. Therefore, we performed various C-level optimizations to increase the speed. The  significant 

gains we achieved  as a result of these optimizations proved that some sort of optimization effort over 

generic C code is clearly necessary and is well-worth the effort In the next section, we first describe the 

performance bottlenecks we identified throughout our tests, and then, for each of these bottlenecks, we 

explain the C level optimization tasks we performed to increase the performance. 
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5.1 C-Level Optimizations 

    The most important performance penalty that our generic C code suffered was due to the overhead of 

floating-point computations on a fixed-point DSP. Therefore, our initial optimization  task was to 

convert computationally intensive parts of our code to fixed-point arithmetic. The most computationally 

intensive operations were subspace projections that were computed throughout the face detection, eye 

localization, and face classification stages. Especially during the search for the face and the eyes at 

multiple scales and locations, many subspace projections were needed to find the probabilities, and these 

projections dominated the computational load of the face recognition system. To make efficient use of 

the 16-bit multiplier C64x has, we tried to use Q.15 as much as possible. Q.15 is a 16-bit fixed-point 

representation where the last 15 bits are used as the fractional part. Converting the computations of our 

detection and classification algorithms to fixed-point was quite straightforward, and the resulting loss in 

computational accuracy did not seem to be significant since the recognition rates remained exactly the 

same after the conversion. Another significant performance penalty for our system was due to not 

effectively utilizing C64x’s parallel computation capabilities. Computationally intensive parts of face 

detection and recognition algorithms are usually large vector-matrix operations that are inherently 

parallel. Well-known algorithms such as [1], [2], [5], and [6] can be given as examples. These large 

vector operations can be very well optimized on C64x that provides a powerful architecture and special 

instructions for packed data processing. In fact, C64x DSP library contains assembly-optimized routines 

for some common vector operations. In our system, we used functions from this library to perform 

subspace projections and vector length calculations. For more information about this library, please refer 

to TMS320C64x DSP Library Programmer’s Reference. At certain places, we used C64x intrinsics to 

access special C64x instructions directly from C, without switching to assembly. The intrinsics we used 

were _sshvl and _mpylir, which helped us to implement fixed-point arithmetic efficiently.Conversion to 

fixed-point, use of the optimized routines from the C64x DSP library, and use of C64x intrinsics 

provided a factor of 14 increase in the speed. Another bottleneck for performance was the external 

memory accesses. Although the cache helps to decrease this penalty, the performance can still be 

improved by an optimized allocation of data into the internal and external memories. We placed the face 

detection and eyelocalization subspaces and other frequently used data into the internal memory, which 

provided us a factor of 2 increase in speed. The eigen faces, the segmented linear subspaces, and the 

program code were placed in the external memory due their large sizes. Finally, we compiled our code 

using –o3 –pm optimization options of the Code Composer Studio C compiler, and made sure that we 

did not use –ss option which decreases the execution speed. The optimizations we explained above are 

clearly not complete, and the code can be further optimized to achieve even more gains. We can propose 

four major areas for improvement. First, DMA can be used to increase the efficiency of internal memory 

usage. Second, all of the code can be converted to fixed-point to avoid the floating point overhead 

completely. Third, the critical loops in the code can be better organized for software pipelining. Finally, 

some parts of the code can be optimized at the assembly level for maximum performance. 

 

6 Performance Profile 

    We profiled our face recognition system on C64x by running the recognition on a 480x640 image that 

contains a single face. The database we used had 10 people. We assumed that the data that would be 

processed by the system was available in internal or external memory. Since the rule based approach we 

used for decreasing the search space for face detection causes variability in computation time, we 
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averaged the performance results over a certain number of input images. The resulting CPU and memory 

requirements are shown in Table 1. A quick look at these results reveals that the face detection and eye 

localization blocks consume most of the computation time, and the face classification blocks consume 

most of the memory. These results are expected since searching for faces and features in still images at 

multiple scales and locations is known to be a computationally intensive task, and the classification 

blocks have to store the subspace models and the face databases which are large in size. Note that an 

increase in database size will linearly increase the CPU and memory requirements of the Classification 

blocks. Now, let us discuss these results from the point of view of the face recognition approaches we 

have explained in section 2. Our implementation follows the still image processing approach shown in 

part (a) of Figure 1. Therefore, based on the results shown in Table 1, we can conclude that it takes less 

than 4 seconds to recognize a single face from a still image. Most of this time is spent during the face 

detection and eye localization stages. Hence, choosing faster algorithms for these stages can increase the 

recognition speed significantly. Although we did not implement the video based approach shown in part 

(b) of Figure 1, we can make some comments about it based on the face normalization and classification 

blocks we have implemented. We believe that it is possible to implement a real time face and facial 

feature detection and tracking system on C64x. If such as system is available to process the video, the 

location of the face and facial features can be known at any time. Then, according to the results shown in 

Table 1, normalization and classification takes less than 1 second to complete. This can make it possible 

to implement a very fast face recognition system on C64x. The above comments are all related to the 

face recognition camera application we have described in section 3.1. The difference of the face 

recognition pre-processor application shown in section 3.2 is to move the classification block to the 

central server. Large memory requirements of the classification blocks shown in Table 1 may motivate 

such an approach. Finally, if we look at the performance profiles of the two classification algorithms, we 

notice a trade off between the recognition rate and the computational complexity. Eigen faces 

classification is faster, consumes less memory, and, as we have mentioned in section 4,provides a lower 

recognition rate than the segmented linear subspaces method. Similar tradeoffs would probably exist for 

all face classification algorithms. 
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7. Conclusion 

The results, we have shown in the previous section demonstrate that a generic C implementation with a 

modest C level optimization effort results in a face recognition system with low CPU and memory 

requirements on C 64x.There could be further optimizations to achieve even lower requirements, it 

appears that DSP - based implementations can be a cost and power-effective choice for embedded face 

recognition products. 
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