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Abstract 

Quantile regression (QR) is a statistical method that addresses the issue of inconsistent data errors. QR 

utilizes minimum absolute deviation to reduce the absolute deviation by employing percentile estimators 

such as the median, 1st and 3rd quartiles, and 10th and 90th percentiles. This study focuses on the qth 

percentile estimators of QR. QR models not only detect varying effects of explanatory variables at 

different quantiles of the response variable but also provide more robust and accurate estimates 

compared to mean regression when normality assumptions are violated or when outliers and long tails 

are present. This study conducts several simulation studies to compare the suggested qth percentile 

estimators of QR under different sample sizes, explanatory variables, and qth percentiles. Additionally, 

the study examines the impact of error terms dependency on normal/non-normal distribution. The 

asymptotic properties of these estimators are also investigated. The study concludes with a discussion of 

the advantages and disadvantages of using these qth percentile estimators of QR. 
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1.introduction                                                                                                                                               

Regression models have three important conditions to be valid for estimation and inference: linearity 

between response variable and predictor variables, normal distribution of error terms, and homogeneous 

variances. However, these conditions may not always hold, requiring alternative approaches. In this 

paper, we focus on heterogeneous variances, which mean that some observations contain more 

information than others. Ordinary least squares (OLS) assume equal weighting, which can lead to loss of 

precision in estimation if the variances are not equal. Two approaches to handle heterogeneous variances 

are transformation and quantile regression (QR) [2].  

QR has gained popularity in various fields and is used to address inconsistency in data errors, which 

OLS cannot handle. QR estimates the model parameters by minimizing absolute deviation using median 

estimator and other percentiles estimators such as the 1st and 3rd quartiles and the 10th and 90th 

percentiles. 

It is expected that certain types of data will have heterogeneous variances, just like non-normal 

distributions. This is because in most non-normal distributions, the variance is related to the mean of the 
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distribution. Even if the underlying distributions are normal within groups, the variances may differ 

between groups. Typically, groups with larger means will have larger variances. To identify 

heterogeneous variances, several residual plots can be used, as suggested by [7]. 

The use of median regression for larger datasets has historically been less popular among statisticians 

compared to the least squares method because it can be tedious to calculate. However, with the 

widespread availability of computers in the late 20th century, quantile regression has gained renewed 

interest from both a theoretical and practical perspective. Quantile regression is a statistical technique 

that estimates conditional quantile functions by minimizing asymmetrically weighted absolute residuals. 

This method is analogous to classical linear regression, which minimizes sums of squared residuals to 

estimate conditional mean functions [9].  

Quantile regression can estimate conditional median functions and a full range of other conditional 

quantile functions. This was proposed by [7] 

According to the discussion in [6] paper, using conventional least squares estimators in linear models 

that are based on non-Gaussian settings can lead to poor results. In such cases, quantile regression 

provides more robust and efficient estimates. Although there may be a loss of efficiency compared to 

least squares estimators for data that follows normal distribution, the gain in accuracy for non-Gaussian 

data outweighs this. As a result, using quantile regression in addition to traditional mean regression 

models can enhance the overall performance of the models, as stated in [7] paper. 

 

2. Quantile Regression Analysis 

This section will provide the concept of quantile regression, which will be an important tool for the 

analysis in this paper. The aim is to establish a basic understanding of the methodology and its relevance 

to the research question. Following this, the proposed methodology for the analysis will be described in 

detail, including the statistical techniques, and analytical approaches [6]. 

 

Definition1(Quantile): Let Y be a real valued random variable with cumulative distribution function FY 

(y) = P(Y ≤y). For all 0 ≤ τ ≤ 1 the τ-quantile of Y is given by 

 
From the definition, τ-quantile of a continuous random variable Y is the point at which the area under 

the PDF curve, from the left to that point, is equal to 1, see Figure (1) for examples. 

 

 
Figure (1): Examples of the quantiles of a Normal distribution.  

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23058013 Volume 5, Issue 5, September-October 2023 3 

 

It is well-known that, in linear regression, the most commonly used loss function is the mean squared 

error (MSE) function. Similar to the linear regression framework, in order to penalize and infer the 

parameters, we need a loss function for quantile regression: 

 

Definition 2 (Quantile loss function): Given 0 ≤ τ ≤ 1, the quantile loss function is defined as 

 
where ǁ is the indicator function 

Note that the quantile loss function could also be rewritten as 

 
Now, given τ ϵ (0, 1), let Y be a real-valued random variable with cumulative distribution function FY 

(y) = P(Y ≤ y), the problem under consideration is the minimization of a convex stochastic [8]. 

 

2. The Basic Quantile Regression Model 

The classic model of quantile regression was originally proposed by [6] as a natural extension of the 

concept of ordinary quantiles in a location model, to a more general class of linear models where the 

conditional quantiles have a linear form. To briefly explain the concept of ordinary quantiles, consider a 

real-valued random variable Y that is characterized by the following distribution function. 

 

F (y) = Pr (Y ≤ y)                                 (1) 

Then, for any τ ∈ (0, 1), the τ -th quantile of Y is defined as follows: 

 

Q(τ) = inf {y : F (y) ≥ τ}                        (2) 

 

The median is then Q(1/2), the first quartile Q(1/4) and the first decile Q(1/10). 

The quantiles may be formulated as the solution to a simple optimization problem. For any 0 < τ <1, by 

defining the piecewise linear function demonstrate by ρτ (u) 

 

              (3) 

where I(.) is the common indicator function. The solution to the minimization problem is then 
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Figure (2) Quantile Regression _ Function Minimizing the expectation of 

ρτ 

( Y- ξ)          with respect to  ξ  yields solutions   

ξˆ 

(τ) the smallest of  which is Q(T) defined above. 

 

The sample analogue of Q(τ), based on a random sample, {y1,…...,yn}, of Y 's, is called the Qth sample 

quantile.  The τ-th quantile can then be identified, and in the spirit of equation (4) above, may be found 

the solution by solving, 

(5) 

Let xi, i = 1...n, a (K × 1) vector of repressors. We can then rewrite the equivalent of expression (2.1) as: 

 

 
 

which is basically a different form derived from the more familiar 

 

 
where the distribution of the error term uτ

i is left undetermined, the only constraint being the quantile 

restriction Qτ (uτ
i |xi) = 0. 

In a similar manner of the estimation of conditional mean functions as in 

 
Thus, the linear conditional quantile function 

 
can be estimated by solving the equivalent of expression (8) for this case: 
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2.1 The Quantile Regression Interpretation 

the least squares estimator of the mean regression model focuses on the dependency of the conditional 

mean of Y on the explanatory variables X. In contrast, the quantile regression estimator addresses this 

problem at each quantile of the conditional distribution, providing a more complete description of how 

the conditional distribution of Y given X = x depends on x. Quantile regression examines the possible 

effects on the shape of the distribution, rather than assuming that explanatory variables only shift the 

location or scale of the distribution  

[7]. 

[1] had provided a practical answer to the interpretation of quantile regression coefficients. The 

coefficients represent the partial derivative of the conditional quantile of Y with respect to one of the 

explanatory variables, say the jth one. This derivative can be interpreted as the marginal change in the τ-

th quantile due to the marginal change in the jth element of X [1]. 

Furthermore, as stated above in this section, x has K distinct variables, then this derivative would simply 

be the coefficient on the jth variable, βj. One must be careful when interpreting these results. They do not 

necessarily imply that a subject who happens to be in the τth quantile of one conditional distribution 

would still find itself there, had the corresponding value of x changed [7]. 

Although, the quantile regression estimates are inherently robust to contamination of the response 

observations, they could be rather sensitive to contamination of the design (X) observations [7]. 

 

2.2 Quantile regression using a linear model 

A simple but very effective way to estimate QY(τ) by using the linear model, in which τ -quantile of the 

response variable depends linearly on the features of the explanatory variables. Specifically, in linear 

model, Q (τ) is estimated by  

XTβτ 

where  

βτ ∊ Rn 

the unknown parameter (sometimes called coefficient of weight) is. Therefore, the Optimization problem 

becomes 

(11) 

Now, recall that, we used a single explanatory variable xi to refer to an observation of the stochastic 

variable X, that is the ith row of the matrix. So, if   

β∗τ 

s the solution of equation (11) then the τ -quantile of the response variable Y at an unseen input  

x ∊ Rn 

can be simply estimate by 
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Starting from here, the quantile regression can be considered as a linear model [3] 

 

2.3 From Quantile Regression to Linear Programming 

In this section we will demonstrate that the Optimization problem in equation (11) is basically 

equivalent to a standard linear programming. By rewriting a quantile regression problem as a Linear 

Programming, we simultaneously throw out the ambiguous in constrained quantile regression  

 

By definition, the quantile loss functions are able to solve the problem efficiently using simplex method, 

following the steps: 

First: we have by definition of quantile regression the following loss function,  

 
 where 

  for all i = 1, 2,…….., n. Therefore, the Optimization problem in equation (11) can be 

rewritten as 

 
here, we expressed ui as the difference of two non-negative variables 

 
In order to formulate this Optimization problem to a standard Linear Programming, we again split BT 

into two non-negative variables as we did with ui's: 

 
Therefore, the standard Linear Programming for a quantile regression Optimization problem becomes 

 
This Linear Programming can be rewritten in matrix notation form as 
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where     

In this paper, occasionally, the QR is used to refer to the non-standard Linear Programming form 

 
in which, the unknown parameters are kept as unspecified variables. As an extension to this, one might 

consider multiple kinds of training sets, and depending on the circumstances, the notations in (QR) could 

be changed [8]. 

As a final remark, as interesting and favorable properties of the quantile regression: 

Quantile regression offers a complete strategy for regression analysis by going beyond the primary goal 

of determining only the conditional mean and allowing one to examine the relationship between the 

response variable and explanatory variables at any quantile of the conditional distribution function. 

Since the loss function is piecewise linear, solving linear quantile regression is a linear programming 

problem that uses the standard doubling trick to substitute the absolute values by positivity constraints. 

Local estimation of conditional regression quantiles can be approximated at a point X = x by the quantile 

of the training observations in the neighborhood. By overcoming problems with heteroscedasticity and 

information loss in the tails of a distribution that are often encountered with OLS, quantile regression is 

a valuable tool for regression analysis. Finally, the trade-offs between quantities of bias and variance in 

quantile regression are essentially similar to those in the conditional mean least square [5]. 

 

3. The Simulation Study 

We conducted two sets of simulations to compare the performance of two estimators, namely the 

Ordinary Least Squares (OLS) and Quantile Regression estimators. These estimators were employed to 

address the issue of heterogeneity in variances. To gain a better understanding of the properties of the 

Quantile estimator and its alternatives, we performed various computations and generated graphics using 

the R software package, which is based on the statistical language S (Statistical Science, Inc 2015). We 

are confident that the results obtained from these simulations provide valuable insights into assessing the 

practical performance of the two proposed estimators in addressing the problem of collinearity. 

 

3.1 Description of The Experiment 

 The primary aim of conducting 24 simulation studies was to compare the performance of the Quantile 

estimator with the OLS estimator using different percentiles (q = 0.10, 0.25, 0.50, 0.75, and 0.90). This 

comparison aimed to better understand the advantages often associated with Quantile regression 

estimators, particularly their effectiveness when there are fewer explanatory variables. The simulations 

were designed to explore the impact of various scenarios of heterogeneity in variances on the regression 
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model, and they were divided into two distinct settings: Setting 1: The error terms follow a normal 

distribution and Setting 2: The error terms do not follow a normal distribution. 

Within each setting, we explored assorted options for the number of explanatory variables (p = 1, 5, 10, 

and 20). The sample sizes considered were n = 25, 50, and 100. The regression model followed the form 

Y=X 

β  

+  

ε  

. Additionally, we incorporated two distinct types of marginal distributional errors in the simulations. 

The first was the normal distribution, while the second involved non-normal distributions. By 

considering these varied factors, we aimed to examine the performance of the estimators under different 

conditions and gain a comprehensive understanding of their behavior. 

 

3.2 The Results of Setting 1: The error terms follow a normal distribution 

The experiment involved investigating various percentiles (q = 0.10, 0.25, 0.50, 0.75, and 0.90) by 

considering different numbers of explanatory variables (p = 1, 5, 15, and 20) and three different sample 

sizes (n = 25, 50, and 100). The simulations were performed for 1000 independent runs, and in each run, 

the marginal errors were distributed as normal. The results obtained from these simulations are presented 

in the following graphs, supplying insights into the performance of the estimators under different 

combinations of percentiles, explanatory variables, and sample sizes. 

 

(a) p=1 (b) p=5 

  

 

(c) p=10 

 

(d) p=20 
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Figure (3): The Box plots show how various choices of quantiles affect the mean (standard deviations) of 

the MSE values for the proposed quantile estimators along with the OLS estimator when for 

p=1,5,10,and 20 assuming the proposed marginal errors belongs to normal distribution. 

 

Based on the observations from Figure (3), which examines the performance of estimators under normal 

distribution errors with p = 1, 5, 10, and 20 we can draw the following important conclusion:  

Firstly, The OLS estimator consistently produces significantly higher Mean Squared Error (MSE) values 

compared to its corresponding Quantile estimators. This writes down that the OLS estimator is not 

practically useful for handling heteroscedastic errors. Additionally, in case P=1, the best estimators and 

their corresponding MSE values vary depending on the sample size. When the sample size is 25, the 1st 

quarter estimator achieves the minimum MSE. For a sample size of 50, the Median estimator performs 

the best, while the 10% quantile estimator shows the highest performance for a sample size of 100. 

Furthermore, it is noteworthy that as the sample size increases, both the MSE values and their 

corresponding standard errors consistently decrease. This pattern holds true regardless of the specific 

sample size or percentile used.  

 

Secondly, the Quantile estimators consistently demonstrate the best performance regardless of the 

number of independent variables (P), whether it is 5, 10, or 20. The minimum MSE values and their 

corresponding standard error values vary based on the sample size (n) and the specific estimator used. 

For example, when the sample size is 25, the 10% quantile estimator, 1st quarter estimator, Median 

estimator, and 3rd quarter estimator each achieve their minimum MSE values at P = 5. Similarly, for a 

sample size of 50, these estimators reach their minimum MSE values at P = 5. Meanwhile, the 90% 

quantile estimator attains its lowest MSE value at P = 10. Furthermore, when the sample size increases 

to 100, the 10% quantile estimator, 1st quarter estimator, Median estimator, and 3rd quarter estimator all 

show their minimum MSE values at P = 5.  

 

Thirdly, regardless of the specific percentile chosen (10th quantile, 1st quarter, Median, 3rd quarter, or 

90th quantile) or the sample size (n), the best performance of the Quantile estimators is consistently 

achieved at P = 5. The minimum MSE values and their corresponding standard error values vary 

depending on the percentile and sample size. Regardless of the chosen percentile or the number of 

independent variables (P), increasing the sample size (n) leads to a consistent decrease in both the MSE 

values and their standard error values.  
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Conversely, increasing the number of independent variables consistently results in an increase in both 

the MSE values and their standard error values, regardless of the chosen percentile or the sample size 

(n). These findings highlight the impact of sample size and the number of independent variables on the 

accuracy and precision of the estimators. 

 

3.3 The Results of Setting 2: The error terms do not follow a normal distribution. 

The experiment involved testing different percentiles (0.10, 0.25, 0.50, 0.75, and 0.90) with varying 

numbers of explanatory variables (1, 5, 10, and 20) and three different sample sizes (25, 50, and 100). 

The errors in the experiment were assumed to follow a non-normal distribution, and the experiment was 

repeated 1000 times independently. The results of this experiment are summarized in graphical form in 

Figures 3.8, 3.11, 3.12, and 3.14, which display the outcomes for different choices of correlation and 

sample sizes for each of the four cases (p = 1, 5, 10, and 20). 

 

(a) p=1 (b) p=5 

  

 

(c) p=10 

 

(d) p=20 

  

Figure (4): The Box plots show how various choices of quantiles affect the mean (standard deviations) of 

the MSE values for the proposed quantile estimators along with the OLS estimator when for 

p=1,5,10,and 20 assuming the proposed marginal errors belongs to non-normal distribution. 
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Figures (4), focusing on the scenario where errors follow a non-normal distribution, the following 

observations were made: Firstly, regardless of the number of independent variables (P) or the sample 

size (n), it is evident that the OLS estimator consistently yields higher Mean Squared Error (MSE) 

values compared to all its corresponding Quantile estimators. This shows that the OLS estimator is not 

suitable for use in cases of heteroscedastic errors.  

 

Therefore, it is strongly recommended to avoid its usage under such conditions. Secondly, in the context 

of the second simulation study, which aims to investigate the impact of non-normality on the regression 

model using the proposed Quantile estimators, direct comparisons were made regarding the performance 

of the various Quantile estimators based on the selection of P and n. These comparisons provide insights 

into the effectiveness of the Quantile estimators in the presence of non-normal errors, considering 

different combinations of independent variables and sample sizes. 

 

Table (1): The values for the minimum Mean Squared Error corresponding to different number of 

independent variables (P), sample size(n), and "Quantile" for the normally and non-normally distributed 

errors. 

Table (1): The values for the minimum Mean Squared Error corresponding to different number of 

independent variables (P), sample size(n), and "Quantile" for the normally and non-normally distributed 

errors. 

  normally distributed error non-normally distributed error 

P n Quantile MSE Quantile MSE 

 

  

1 

25 1st Quarter 0.0051 1st Quarter 0.7640 

50 Median 0.0024 Median 0.3750 

 100 10% Quantile 0.0018 10% Quantile 0.2023 

 

5 

25 10% Quantile 0.0054 10% Quantile 1.1225 

50 Median 0.0026 Median 0.4350 

100 Median 0.0012 Median 0.2192 

 

10 

25 1st Quarter 0.0059 1st Quarter 1.1662 

50 1st Quarter 0.0027 1st Quarter 0.4920 

100 10% Quantile 0.0013 10% Quantile 0.2255 

 

20 

  25 90% Quantile 0.0082 90% Quantile 1.4105 

50 Median 0.0029 Median 0.5344 

100 3rd Quarter 0.0013 3rd Quarter 0.2308 

Table  3.1 provides comparing the Mean Squared Error (MSE) values for normally distributed error and 

non-normally distributed error, we can draw the following conclusions: 

 

1. Effect of number of independent variables (P): 

   - As the number of independent variables (P) increases from 1 to 20, the MSE values generally 

increase for both the normally distributed and non-normally distributed errors. This indicates that larger 

parameter values result in higher prediction errors. 
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2. Effect of Sample Size (n): 

   - Increasing the sample size from 25 to 100 generally leads to lower MSE values for both the normally 

distributed and non-normally distributed errors. This suggests that larger sample sizes tend to improve 

the accuracy of predictions. 

3. Comparison between Normally Distributed and Non-normally Distributed Errors: 

   - Overall, the MSE values for the non-normally distributed errors tend to be higher than those for the 

normally distributed errors across different number of independent variables of (P) and sample sizes (n). 

This suggests that when errors deviate from a normal distribution, they introduce more variability and 

uncertainty into the predictions, leading to elevated levels of prediction errors. 

4. Comparison of Quantiles: 

   - Within each number of independent variables (P) and sample size (n), different quantiles of the error 

distribution exhibit varying levels of prediction accuracy. For example, the 10% quantile generally has 

higher MSE values compared to the median or other quantiles, indicating that the lower end of the error 

distribution contributes more to the prediction errors. 

In summary, the analysis of the Mean Squared Error (MSE) values suggests that non-normally 

distributed errors can significantly impact the accuracy of predictions compared to normally distributed 

errors. Additionally, larger parameter values and smaller sample sizes tend to increase prediction errors. 

Therefore, it is important to consider the distribution of errors and the sample size when evaluating and 

improving the performance of regression models. 

 

4. Summary and Conclusion 

In conclusion, the study conducted simulation studies to compare the performance of quantile regression 

(QR) estimators at different quantiles of the response variable. The study focused on the qth percentile 

estimators of QR and examined their performance under various conditions. The results of the study 

indicate that QR models offer advantages over mean regression when normality assumptions are 

violated or when outliers and long tails are present in the data. The qth percentile estimators of QR not 

only detect varying effects of explanatory variables at different quantiles but also provide more robust 

and accurate estimates. 

 

The study identified several key findings: 

1. Effect of number of independent variables (P): Increasing the number of independent variables 

generally resulted in higher mean squared error (MSE) values for both normally distributed and non-

normally distributed errors. This suggests that larger parameter values lead to higher prediction 

errors. Therefore, it is important to carefully consider the number of independent variables when 

building regression models. 

2. Effect of sample size (n): Increasing the sample size generally led to lower MSE values for both 

normally distributed and non-normally distributed errors. This implies that larger sample sizes 

improve the accuracy of predictions. Researchers and practitioners should strive to obtain an 

adequate sample size to enhance the reliability of QR models. 

3. Comparison between normally distributed and non-normally distributed errors: The study 

found that non-normally distributed errors generally resulted in higher MSE values compared to 

normally distributed errors. This indicates that errors deviating from a normal distribution introduce 

more variability and uncertainty into the predictions, leading to elevated levels of prediction errors. It 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23058013 Volume 5, Issue 5, September-October 2023 13 

 

is crucial to assess the distributional properties of errors and consider appropriate modeling 

techniques when dealing with non-normal data. 

4. Comparison of quantiles: Different quantiles of the error distribution exhibited varying levels of 

prediction accuracy. The 10% quantile generally had higher MSE values compared to the median or 

other quantiles, suggesting that the lower end of the error distribution contributes more to the 

prediction errors. Researchers should pay attention to the specific quantiles they are interested in and 

evaluate their performance accordingly. 

Overall, the study highlights the importance of considering the distribution of errors and the sample size 

when using QR models. It emphasizes that non-normally distributed errors can significantly impact the 

accuracy of predictions compared to normally distributed errors. Additionally, larger parameter values 

and smaller sample sizes tend to increase prediction errors. By understanding these factors and making 

appropriate adjustments, researchers and practitioners can enhance the performance of regression models 

in real-world applications.  
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