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Abstract 

The advent of quantum computing technology presents both unprecedented opportunities and profound 

threats to the field of cryptography. While quantum computers promise exponential speedup for certain 

computational tasks, they also pose a formidable challenge to the security of classical cryptographic 

systems. Quantum hacking, encompassing a spectrum of attacks leveraging the unique properties of 

quantum mechanics, has emerged as a pivotal area of research in the context of quantum information 

security. 

This review paper provides a comprehensive examination of quantum hacking, its underlying principles, 

and the vulnerabilities it exploits. We delve into the quantum algorithms and techniques that threaten 

classical cryptographic primitives, such as factoring large integers and solving discrete logarithm 

problems. Special attention is given to Shor's algorithm, heralded for its potential to break widely-used 

encryption schemes. 

In response to these threats, we explore the promising field of post-quantum cryptography, which aims to 

develop encryption and signature schemes resilient against quantum attacks. We survey quantum-resistant 

cryptographic protocol, the quantum key distribution (QKD), which leverage the principles of quantum 

mechanics to ensure secure key exchange in the era of quantum computing. 

As quantum hacking continually evolves, so too must our countermeasures. This review paper presents a 

balanced assessment of the current state of quantum hacking and the strategies for defending against it. It 

concludes by highlighting the importance of collaborative efforts among researchers, industry, and 

policymakers to ensure the integrity of our digital communications in a post-quantum world. 

 

Keywords: Quantum Hacking, Quantum Information Security, Post-Quantum Cryptography, Quantum 

algorithms, Quantum-resistant cryptographic protocol 

 

1. Introduction 

In recent years, advancements in quantum computing technology have opened up new avenues for 

innovation and research. However, along with the promises of faster processing and enhanced 

computational capabilities comes the rising concern of quantum hacking. Quantum hacking refers to the 

exploitation of vulnerabilities inherent in quantum systems to compromise the security of data 

transmission, encryption protocols, and other related applications. 

The field of quantum hacking is gaining substantial attention due to its potential to disrupt the security of 

various sectors, including finance, communication, and defense. Traditional cryptographic methods, 

which have been reliable for decades, are at risk of being rendered obsolete in the face of quantum 
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computing capabilities. As quantum computers continue to evolve, the concern for protecting sensitive 

information from quantum attacks becomes more urgent. 

The purpose of this research review paper is to provide a brief review of the current state of quantum 

hacking, highlighting the various techniques employed by malicious actors to exploit quantum systems. 

By understanding the vulnerabilities and potential risks associated with quantum computing, researchers 

can develop effective countermeasures and strategies to mitigate the threat of quantum hacking. 

This paper aims to delve into the fundamental principles of quantum computing and cryptography, explore 

the vulnerabilities that quantum systems expose, and analyze the existing quantum hacking techniques. 

Moreover, it will examine the potential impact of quantum hacking on various sectors and discuss the 

ongoing efforts in developing quantum-safe cryptographic solutions. 

Through this research review, it is expected to contribute to the understanding of the current landscape of 

quantum hacking and provide insights into the future implications of this emerging field. By identifying 

the challenges and opportunities presented by quantum computing, policymakers, researchers, and 

industry professionals can work together to develop robust security measures that can withstand the threat 

of quantum hacking. 

 

2. CURRENT SECURITY SYSTEM 

The idea of information, which is currently measured in bits, and the formalization of probabilities are 

relatively new, although having a significant impact on our daily lives. It is fascinating to realize that QC 

is at the nexus of quantum mechanics and information theory and that the security of quantum 

cryptography is closely related to the conflict between quantum mechanics and relativity, or the famous 

Einstein-Rosen-Podolsky (EPR) paradox (Einstein et al., 1935). 

The art of concealing information from unauthorized parties is known as cryptography. One utilizes 

encryption to accomplish this; a message is coupled with some additional secret information, called the 

key, using an algorithm to create a cipher. Say, for example, that Alice is encrypting and sending the 

message, Bob is receiving it, and Eve is the malicious listener. Unlocking the cryptogram without Bob's 

key should be difficult for a cryptosystem to be deemed secure. In reality, this requirement is frequently 

relaxed, and all that is needed is for the system to be sufficiently hard to break. It is proposed that the 

message should continue to be secure as long as the data it contains is valuable. 

The two main classes of crypto-systems namely, the public key and the secret key (private key) crypto-

systems: 

 

2.1 THE SECRET KEY CRYPTOSYSTEM 

It is also called Symmetric key cryptography. This system is based on a secret key which is used for 

various cryptographic operations. It is necessary for sender and receiver to have this key. Traditionally 

say, Alice (the sender) and Bob (the receiver) both have a private secret key. Alice sending a message 

encrypt using that key and sends the message and Bob receives the encrypted code and decrypt it using 

the private key. Since the Eavesdropper Eve don’t has the key he can’t read real message. But in this case 

there is no public key, so the private key should be shared by a secure method (some trusted means or 

personal meeting) to every pair of message sender and receiver. This out to be expensive and complicated. 

A one-time pad (OTP) is one of such technique invented in 1917 by Gilbert Vernam and Major Joseph 

Mauborgne.   It is considered mathematically unbreakable if certain conditions are met –  

1. The key must remain a secret. 
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2. The key must be cryptographically random. 

3. The key should never be used again. 

Hence, it provides perfect security. Even if hacker has infinite computational power, he can never break 

the OTP cipher. To encrypt a plaintext, we use its corresponding ASCII message m, than using secret key 

k, for each position I between 1 and |m|, it is computed by us as –  

• (𝑚[𝑖] + 𝑘[𝑖])%128, where 𝑚[𝑖] and 𝑘[𝑖] are converted to their representation to do arithmetic. 

An example is given here. The plaintext ′𝐻𝐸𝐿𝐿𝑂′ is encrypted with the secret key ′𝑑𝑎𝑣𝑖𝑑′. Then, each 

character is converted to its corresponding ASCII representation. Now, the first one is 

 ′𝐻′+′𝑑′ [where ′𝐻′ is 72 and ′𝑑′is 100 in ASCII]. On addition, a result of 172 is obtained. After taking 

the modulo operation, 172%128 yields 44, which is ′,′ in ASCII. This process is performed for all 

characters, resulting in a cipher of the same length as the original code (Refer to FIG. 1). 

Similarly, for decryption (Refer to FIG. 2), the cipher-text ‘c’ is taken, and the plaintext is recovered by 

subtracting each letters ASCII value in secret key from corresponding letters ASCII value in cipher as –  

•  (𝑐[𝑖] − 𝑘[𝑖])%128, where 𝑐[𝑖] and 𝑘[𝑖] are converted to their representation to do arithmetic. 

 
Figure 1: The figure shows the Encryption Process of a message using a Private Key to create a Cipher-

text. 
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Figure 2: The figure shows the Decryption Process of a Cypher-text using a Private Key to regain the 

Original Message. 

 
Figure 3: The figure shows the list of all 128 ASCII characters from 0 to 127 with their corresponding 

decimal, hexadecimal and octal equivalents. 

The one-time pad cryptosystem is well-known in cryptography for being characterized by a property 

referred to as perfect secrecy, which informally indicates that no information about the corresponding 

plaintext, apart from its length, is revealed by the ciphertext. Let the previous example be considered, in 

which the cipher is ′, &𝐵53′. 

This cipher could have been generated by any five-letter plaintext message because for any such message, 

there exists a secret key that could have been used to encrypt that message, resulting in the 

ciphertext ′, &𝐵53′. The plaintext message could have been ′𝐻𝐸𝐿𝐿𝑂′, encrypted with the secret 

key ′𝑑𝑎𝑣𝑖𝑑′, but it is equally likely that the message ′𝐹𝑈𝑁𝑁𝑌′ could have been sent using the secret 
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key ′𝑓𝑄𝑡𝑔𝑍′. Due to perfect secrecy, no information about the original plaintext message can be obtained 

by an eavesdropper, even if they possess the entire ciphertext. 

The One-Time Pad is not commonly employed in modern encryption systems due to its drawbacks. The 

essential requirement of never reusing the key implies that the size of the key must be equivalent to the 

size of the plaintext. This imposes a constraint on storage space, rendering OTP encryption impractical 

for encrypting large amounts of data. Generating substantial quantities of cryptographically random data 

is challenging, particularly in systems with low entropy. 

 

2.2 THE PUBLIC KEY CRYPTOSYSTEM 

This is also called Asymmetric key cryptography. Let K be the set of all "keys" and M be the set of all 

possible messages. For each key 𝑘 ∈ 𝐾 there exists both an encryption function  𝐸𝑘(𝑚): 𝑀 → 𝑀 and a 

decryption function 𝐷𝑘(𝑚): 𝑀 → 𝑀. The following requirements must be met for these functions to 

qualify as public key cryptosystems – 

1. For every message-character 𝑚 ∈ 𝑀 and every key-character 𝑘 ∈ 𝐾, the values of 

function 𝐸𝑘(𝑚) and 𝐷𝑘(𝑚) are not difficult to compute. 

2. For every message-character 𝑚 ∈ 𝑀 and every key-character 𝑘 ∈ 𝐾, 𝐸𝑘(𝐷𝑘(𝑚)) =

𝑚 and 𝐷𝑘(𝐸𝑘(𝑚)) = 𝑚. 

3. For almost every message-character 𝑘 ∈ 𝐾 if somebody knows only the function Ek, it is 

computationally infeasible to compute Dk. 

4. For a given message-character 𝑘 ∈ 𝐾, it is easy to find the functions 𝐸𝑘 and 𝐷𝑘. 

If a function 𝐸𝑘 satisfies all 4 points (1 to 4 given above) than the function is called a trap-door one-way 

permutation. The function is called so because it is simple to compute in one direction but not in other. 

The inverse functions become easy to compute once specific information is provided, which is referred to 

as the trap-door. 

This system is based on so-called one-way functions, which make it simple to calculate f(x) for a given x 

but challenging to calculate x from f(x).  "Difficult" signifies that the task will require a time that increases 

exponentially with the quantity of input bits. The RSA (Named on Ron Rivest, Adi Shamir, and Leonard 

Adleman who developed algorithm in 1977) crypto-system very popular from last 20 years is based on 

the factorizing of large integers. For example computing 211×197 is very easy and can be completed in 

few seconds, however finding prime factor of 41567 can take some time.  

To encrypt a message, two large prime numbers p and q, each about 50 digits, are chosen by Bob. After p 

and q are selected, n is obtained as 𝑛 = 𝑝 ∗ 𝑞. The encryption key or public key (which is made publicly 

available), is represented by the pair of integers (e, n) and the decryption key or private key is represented 

by the pair (d, n). The message can now be encrypted by Alice using this public key and transmitted to 

Bob, who then decrypts it with the private key. To encrypt a given message m, it is first represented as an 

integer within the range of 0 to n − 1. If the message is too large, it is divided into blocks until each block 

falls within the range of 0 to n − 1. Then m is encrypted by raising its power to e than taking modulo n. 

The resulting ciphertext is denoted as c. 

𝑐 = 𝑚𝑒(𝑚𝑜𝑑 𝑛) 

The cipher-text is decrypted by raising it to the power d than taking modulo n. 

𝑚 = 𝑐𝑑(𝑚𝑜𝑑 𝑛) 
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The integer’s e and d are closely related to p and q. Choose d to be any large random integer that 

is relatively prime to (𝑝 − 1)(𝑞 − 1). Then e is the multiplicative inverse of d modulo (𝑝 − 1)(𝑞 − 1). 

Example –  

1. Let prime number be 𝑝 = 7 𝑎𝑛𝑑 𝑞 = 17 

2. 𝑛 = 𝑝 × 𝑞 = 119 

3. 𝜓(𝑛) = (𝑝 − 1) × (𝑞 − 1) = 16 × 6 = 96 

4. Public/encrypting key 𝑒 = 5 

5. Calculate private/decrypting key 𝑑 = ((𝜓(𝑛) × 𝑖) + 1) 𝑒⁄  

a. 𝑑 = (96 × 1 + 1) 5⁄ = 19.4 

b. 𝑑 = (96 × 2 + 1) 5 = 38.6⁄  

c. 𝑑 = (96 × 1 + 1) 5⁄ = 57.8 

d. 𝑑 = (96 × 1 + 1) 5⁄ = 77 [ Integer, stop here 𝑑 = 77 ] 

6. Public key pair { 𝑒, 𝑛 } = { 5, 119 } 

7. Private key pair { 𝑑, 𝑛 } = { 77, 119 } 

8. Plain text 𝑃𝑇 = 6, Cipher-text 𝐶𝑇 = 𝑃𝑇𝑒 𝑚𝑜𝑑 𝑛 =  65 𝑚𝑜𝑑 119 = 41. [Cipher-text = 41] 

9. Cipher-text 𝐶𝑇 = 41, 𝑃𝑇 = 𝐶𝑇𝑑  𝑚𝑜𝑑 𝑛 =  4177 𝑚𝑜𝑑 119 = 6  [ Plain-text = 6 ] 

For known algorithms of factorization of integer n, the time for calculating Prime factors increases 

exponentially with the number of bits of n, and one can easily improve the safety of RSA by choosing a 

longer key. In 2016, a simple recalculation estimated that breaking a 64-bit key would take approximately 

545 years. To put this into perspective, consider that AES (Advanced Encryption Standard), which 

typically uses keys that are either 128 or 256 bits long, has never been broken. The most powerful method 

for breaking RSA is to use the NFS (Number Field Sieve) which runs in sub-exponential-time 

complexity 𝑂 (exp (𝑎(log 𝑛)
1

3) (log log 𝑛)
2

3), where 𝑎 ≈ 1.92 . In fact, all factoring algorithms that have 

been developed up to this date, including the NFS, are unable to execute in polynomial time. It is important 

to creating unbreakable cryptography because of ineffectiveness of factorization. 

Nevertheless, two significant faults might compromise the effectiveness of RSA. Firstly, it remains 

uncertain whether factorizing is genuinely challenging, and if a rapid algorithm for factorization emerges, 

it would compromise the security of the RSA framework. Moreover, although the emergence of such an 

algorithm is yet to be revealed, there is no guarantee it does not exist. This situation is even more 

concerning given recent advancements in quantum computation theory, which suggests that the creation 

of such machines will eventually be possible. Should either of these eventualities materialize, RSA would 

no longer be significant, and the only option remaining would be to shift to Secret-Key/Private Key 

cryptosystems. 

 

3. QUANTUM HACKING CHALLENGES 

Security is the sole purpose for cryptographic algorithms, so that your personal information either from 

bank or from any other places may not get into malicious hands. Who can use this information get into 

your personal space or use this info to transfer money from your bank without your will. The most 

commonly used algorithm as talked earlier is RSA (Rivest-Shamir-Adleman) ensures that the malicious 

decryption is not possible in a given time under certain circumstances. Nevertheless, most of these 

cryptographic schemes could be broken suddenly with unanticipated advances in algorithms and 

hardware, such as quantum computers. This is because these Quantum computers can efficiently prime 
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factorize very large integers in polynomial-time. There are many methods for attacking RSA, such as the 

integer factorization attack, the discrete logarithm attacks, the public exponent attacks, the private 

exponent attacks and side channel attacks. There are some quantum computer approaches with are 

successfully implemented {First implementation of Shor’s algorithm (factorization of 15 = 3x5) was 

realized using nuclear magnetic resonance (Vandersypen et al., 2001)}. IBM has 20 qubits 

superconductivity based quantum computers. Google, IonQ, Rigetti also has supercomputers in 

laboratories. Still there are many technical challenges for building hardware for gate based quantum 

computers with large number of qubits.  

 

3.1 Shor’s Algorithm for Factorization 

It is a polynomial time quantum factoring algorithm, proposed by Shor in 1994. One can solve the Integer 

Factorization Problem in a time proportional to 𝑂((log 𝑛)2+𝜀). Instead of giving a quantum computer 

algorithm to find the factor of integer n, it finds the order of an element x in the, which is the least integer 

r such that 𝑥𝑟 ≡ 1 (𝑚𝑜𝑑 𝑛), where gcd(x, n) = 1. So, there is randomized reduction from factoring to the 

order of an element. To factor an odd number n, for a given method to calculate the order of an element, 

we choose a random x and find the order of rx of x and hence compute gcd (𝑥
𝑟𝑥
2 − 1, 𝑛). This only fails 

if 𝑥
𝑟𝑥
2 ≡  −1 (𝑚𝑜𝑑 𝑛). Using this it can be shown that this to find the factor of an integer by this algorithm 

has probability at least 1 − 1
2𝑘⁄  where k is the number of distinct prime factors of n. This algorithm fails 

if the number n is a power of prime number, which can be efficiently done with already present factorizing 

algorithms. 

To find value of r for given x and n, such that  𝑥𝑟 ≡ 1 (𝑚𝑜𝑑 𝑛), we proceed as. Firstly, find the smooth q 

with 2𝑛2 ≤ 𝑞 < 4𝑛2. Next, we put our machine in uniform superposition of states, leaving machine in 

state  

 
Table 1: Resource Comparison of Algorithms 
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1

𝑞
1

2⁄
∑ |𝑎⟩ 

𝑞−1

𝑎=0

 

Next, we compute 𝑥𝑎  (𝑚𝑜𝑑 𝑛), this leaves our machine in the state 

1

𝑞
1

2⁄
∑ |𝑎, 𝑥𝑎 (𝑚𝑜𝑑 𝑛)⟩ 

𝑞−1

𝑎=0

 

Next, we perform quantum Fourier transformation Aq mapping 𝑎 → 𝑐 with amplitude 
1

𝑞
1

2⁄
exp (

2𝜋𝑖𝑎𝑐

𝑞
), 

this leaves our machine in state 

1

𝑞
∑ exp (

2𝜋𝑖𝑎𝑐

𝑞
) |𝑐, 𝑥𝑎  (𝑚𝑜𝑑 𝑛)⟩ 

𝑞−1

𝑎=0

 

Finally, we observe the machine and observe the value of c, now we compute the probability that our 

machine should end in the state |𝑐, 𝑥𝑎  (𝑚𝑜𝑑 𝑛)⟩, where we may assume 0 ≤ 𝑘 < 𝑟. Summing over all 

possibility, we get the probability, 

|
1

𝑞
∑ exp (

2𝜋𝑖𝑎𝑐

𝑞
)

𝑎:𝑥𝑎≡𝑥𝑘

|

2

 

Where sum is over all a, 0 ≤ 𝑎 < 𝑞, such that 𝑥𝑎 ≡ 𝑥𝑘(𝑚𝑜𝑑 𝑛). Because the order of x is r this sum is 

equivalent over all a satisfying 𝑎 ≡ 𝑘 (𝑚𝑜𝑑 𝑟). Writing 𝑎 = 𝑏𝑟 + 𝑘, we find that the above probability is  

|
1

𝑞
∑ exp (

2𝜋𝑖(𝑏𝑟 + 𝑘)𝑐

𝑞
)

⌊(𝑞−𝑘−1)/𝑟⌋

𝑏=0

|

2

 

We can ignore the term of exp (
2𝜋𝑖𝑘𝑐

𝑞
), as it can be factored out of sum and has magnitude 1. We can 

replace rc with {rc}𝑞, where {rc}𝑞 is the residue which is congruent to rc (mod q) and is in the range 

–
q

2
< {𝑟𝑐}𝑞 ≤

𝑞

2
. This leaves us with expression 

|
1

𝑞
∑ exp (

2𝜋𝑖𝑏{𝑟𝑐}𝑞

𝑞
)

⌊(𝑞−𝑘−1)/𝑟⌋

𝑏=0

|

2

 

We can show that {𝑟𝑐}𝑞 is small enough, hence we can use the change of variable 𝑡 =
𝑏

𝑞
 and approximate 

sum with integral as 

|∫ exp(2𝜋𝑖𝑏{𝑟𝑐}𝑞𝑡)𝑑𝑡

1
𝑞

⌊(𝑞−𝑘−1)/𝑟⌋

0

|

2

 

If |{𝑟𝑐}𝑞| ≤ 𝑟/2, this quantity can be shown to be shown to be asymptotically bounded below by 

4/(𝜋2𝑟2), and thus at least 1/3𝑟2. The probability of seeing a given state |𝑐, 𝑥𝑘 (𝑚𝑜𝑑 𝑛)⟩ will thus be at 

least  1/3𝑟2 if  
−𝑟

2
≤ {𝑟𝑐}𝑞 <

𝑟

2
 

I.e. if there is a d such that 
−𝑟

2
≤ 𝑟𝑐 − 𝑑𝑞 <

𝑟

2
 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23058046 Volume 5, Issue 5, September-October 2023 9 

 

Dividing by 𝑟𝑞 and rearranging the terms gives 

|
𝑐

𝑞
−

𝑑

𝑟
| ≤

1

2𝑞
 

We know c and q, because 𝑞 ≤ 2𝑛2, there is at most one fraction 𝑑/𝑟 with 𝑟 < 𝑛 that satisfies the above 

inequality. Thus we can obtain the fraction 𝑑/𝑟 in the lowest terms by rounding 𝑐/𝑞 to the nearest fraction 

having denominator smaller than n. This fraction can be obtained in Polynomial time by using a continued 

fraction expansion of 𝑐/𝑞.If we have fraction 𝑑/𝑟 in the lowest terms and if d is prime to r, we will get r.  

Thus, ones we have the factors of the RSA public key, it means we have the private key also. So anyone 

with the public key can decrypt the data and has the access to the secret information. The whole world 

will be under threat. 

 

3.2 Shor’s Algorithm for Discrete Logarithm 

On the similar ground Shor’s algorithm can also be used for calculating discrete logarithm problem 

efficiently in polynomial-time. The discrete log problem is stated as: given a prime p, a generator g of the 

multiplicative group (mod p) and an x (mod p), find r such that 𝑔𝑟 ≡ 𝑥 (𝑚𝑜𝑑 𝑝).  

 

4. Countermeasures and Solutions to these Challenges 

With emergence of quantum computers the threat to privacy is increasing. One can think of going back to 

Secret key cryptographic scheme in which each pair of sender and receiver has a secret key which is used 

to both encrypt and decrypt the data. But this may or may not work as we are still advancing in quantum 

algorithms as like the Grover's algorithm which can search the unsorted database in a time proportional to 

𝑂(√𝑛) which requires 𝑂(𝑛) operations for classical algorithms (Grover, 1996), so there may be 

development of new algorithm that can guess the key efficiently. Than the secret key scheme will also 

fail. So, the question arises what should be done? 

The answer is Quantum cryptographic which is in fact quantum key distribution (QKD) protocol (Bennett 

& Brassard, 1984), which has been implemented and commercially available for more than a decade. 

Quantum mechanics can be used to design a completely secure quantum channel by the use of photons 

which tiny packet of energy and the concept of polarization is related to the orientation of the electric field 

component of these waves. Ordinary light consist of light having different polarizations. If we pass this 

light to a polarizer the unnecessary polarization trims out and it has a particular polarization. These 

polarized photons is referred as a qubit in quantum cryptography (similar to a bit in in Classical 

Computing). 
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Figure 2: Unpolarized light enters the first filter which only allows light in specific direction. Second 

Polarizer is used to again polarize the photon to different orientation. 

a) Second polarizer allows the whole photon, no trimming occurs. 

b) Second polarizer is diagonal, it emits the component of initial polarization. 

c) Second polarizer is at 90ο which allows to photon through it. 

 

We send a polarized photon and receiver measures the polarization which is accomplished by using 

another polarizer filter. But this detection can be done conveniently by birefringent crystal (like calcite) 

which sends incident photon depending on their polarization, on one of the two paths.  

1. It passed the horizontally polarized light as it is. 

2. Vertically polarized light is deflected by some angle. 

3. Diagonally polarized light are repolarized at random in either the vertical or horizontal direction and 

are shifted accordingly. 

 

https://www.ijfmr.com/
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Figure 3: Diagonally polarized light entering into calcite crystal. 

 

We use two detectors at upper and lower. If upper detects it is horizontal is lower detects it is vertical. But 

it fails for diagonally polarized light. So we rotate apparatus by 45ο. Now either we can share a secret key 

and use it to subsequently encrypt or decrypt data or we can use a public channel as described below. 

Describing a similar scheme, let Alice and Bob use the public channel. First Alice generated and send a 

polarized photon to Bob. He decides randomly to choose any one method (either Rectilinear or Diagonal 

orientation of apparatus) to measure photon. Bob only announces this method publicly but not the results. 

Alice tells him publicly that he has choose right kind or not. They both discards wrong measurements. 

 As stated by fundamental concept of Quantum Mechanics, one cannot make an exact copy of a qubit (No 

Cloning Theorem). So, if Eve interprets some photon, there will be change in photon if she further transmit 

it to Bob. So to detect Eve, on comparison if there is evidence of eavesdropping they disregards their data 

and start with fresh batch. These type of scheme can be further extended to more number of qubits. Greater 

the number of qubits, greater is security against Brute-Force attack. These methods can be further refined 

to get better quantum channel and ensure a secured data transfer even after advent of Quantum Computers.  

 

5. Conclusion 

Concluding the notions now we can say that quantum computing has the potential to break the current 

security system in near future. So, we need to optimize the post quantum cryptographic schemes and 

replace the old cryptosystem with quantum cryptosystem as soon as possible. Still, there is big challenges 

in front of Quantum computer so that these shall be able to replace the existing computers. Real quantum 

crypto analysis is most likely to be finalized in 10 years. 
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