Novel Architecture of FIR Lattice Filter with Reduced Interconnect Delay Impacts Towards Reduced Power-Delay Product Using Pipelining and Parallel Processing for Medical Applications

S. Subathradevi¹, C. Vennila²

¹Assistant Professor, Department of ECE, Anna University, BIT Campus, Tiruchirappalli, TamilNadu, India
²Professor, Department of ECE, Saranthan College of Engineering, Tiruchirappalli, TamilNadu, India

Abstract

Three important parameters area, speed and power are important. In VLSI design, the speed is determined by the critical path delay. Delay is depending on the data path taken for processing in the VLSI design. By minimizing data-path delay using efficient architecture the speed of the design of system can be improved in turn to result in better performance. In this new era, data-path delay is the dominating one compared to logic delay. So, it is very essential to concentrate more towards path delay in any architecture design. Even though the speed is important it is having in trade of with power. This data-path delay can be reduced by different technique like pipelining, parallel processing, register retiming. Also, by constructing this architecture in an innovative way the power is having trade of with delay. So the power-delay product can be taken as the reduced one. In this paper, various architecture of delay-product optimized FIR filter and Lattice filter architecture is being surveyed and implemented in order to get minimum delay-power product.

Keywords: VLSI, Architecture, FIR filter, Lattice filter, delay, path delay, pipelining, parallel processing, System design.

I-INTRODUCTION

Finite impulse response (FIR) digital filters are common components in many digital signals processing (DSP) system. Throughout the years, with the increasing development in very large scale

Integration (VLSI) technology, the real time realization of FIR filter with less hardware requirement and less latency has become more and more important. The delay constrain is being met by the number of adder and multiplier used in the architecture and the way how they are interconnected to result with the longest path. So, in any system design, the arithmetic units are as much important to make it as a successful design. In arithmetic unit adders took much more contribution to play a role since subtraction and multiplication are all computed by addition and subtraction computation. So, if the speed is achieved by minimizing the delay in the architecture of adder and multiplier surely it leads to better performance in the speed of the design in the system.
So, various array multiplier architectures are realized and their delay is compared. As the complexity of implementation increases with the length of filter, several algorithms have been mapped into effective architectures using ASIC and FPGA, where one of them is being the distributed arithmetic.

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response (or response to to any finite length input) is of finite duration, because it settles to zero in finite time.

This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely. The impulse response of an N-th order discrete-time FIR filter lasts exactly N+1 samples before it then settles to zero. FIR filters can be discrete-time or continues time, and digital or analog.

The flow of the paper is organized in the following way as, Section - I gives about the Introduction. Section - II gives out the details about FIR filter. Section - III deals with Literature Survey on the FIR filter architecture used for delay reduction and Section -IV narrates conclusion and discussion.
Matrix models ensure that medicine prescribing is founded upon multiple rational and evidence-based criteria; other non-rational selection criteria do not play a role in the decision-making process. As a result, medicine prescribing becomes transparent and reproducible as the criteria and weightings on which decisions are based are known. A matrix which involves multiplication and addition model also avoids the situation where a decision is taken solely on one criterion and therefore supports a comprehensive approach towards medicine prescribing. The use of matrix models in The Netherlands and Northern Ireland suggests that this method for medicine prescribing greatly aids discussion in pharmacotherapy audit meetings between general practitioners and/or pharmacists, local or regional formulary committees, pricing, and reimbursement negotiations.

III-LITERATURE SURVEY

Various delay targeted architecture of FIR filter with their features is surveyed, compared and their contribution was viewed in connection with delay, which was briefed with various literature papers.

In paper [1], narrated that any FIR filter accuracy depends upon the filter coefficient, where low power and area efficient discrete wavelet transform architecture for fir filter is implemented. Whereas in paper [2] explained about the efficient design of FIR filter in order to reduce number of adders and multipliers and also the hardware complexity. For that different techniques and algorithms are used in that paper. In paper [3] FIR filter has been designed and realized by FPGA for filtering the digital signal. This implementation of FIR filter was done on cyclone IV GX FPGA. Today digital systems are designed by writing software in the form of HDL, the same was done on the paper.

In paper [4] it gives the basic structure and principles of FIR filter and give an efficient FIR filter on FPGA. Use MATLAB FDA tool to determine filter coefficients and designed to constant coefficient FIR filter by VHDL. The use of ISE 10.1 was used to simulate the performance of filter using two different techniques. The use of this software significantly shortens the R&D periods. The conclusion is windowing is better compared to frequency sampling.

In paper [5] it gives reduced dynamic power consumption of a digital filter which uses low power MUX based shift/add multiplier without clock pulse. Glitching is also reduced. The proposed FIR filter has been synthesized and implemented using Xilinx ISE VT.1 and VIRTEX FPGA to target device XC4VLX200. Also power is analyzed using Xilinx Xpower analyzer.

In paper [6] it derives the accurate order of estimation formulae for the bandwidth extension filter, which is designed in mini max sense with the ripple constraints as the design criteria. The derived filter order estimation is significant in evaluating the computational complexity from the view point of the Top-level system design. A bandwidth extension method for ADCs and utilizing FIR filters designed in the Mini max sense was also proposed.

In paper [7] an algorithmic approach to the design Low power frequency selective digital filters based on in the concepts of adaptive filtering and approximate processing was elaborated. Adaptive filtering and approximation processing concepts are combined to design digital filters which have the important
property that the filter order can be dynamically varied in accordance with the stop band energy of the input signal.

In paper [8] a smoothing FIR filter is addressed for discrete time invariant state space polynomial models commonly used to model signals over finite data. An application is given for the time interval errors of local slave clocks of digital communication networks. In paper [9] to design the optimal finite wavelength FIR filter for the application of a general purpose integer programming using computer program. In paper [10] Distributed Arithmetic has been used to implement a bit serial scheme of a general asymmetric version of an FIR filter taking optimal advantage of 3 input LUT based structure of FPGA.

In paper [11] design and implementation of low pass, high pass and band pass fir filter using Spartan -6 FPGA device. The EDA tool is used to define filter order and coefficients, FIR filter is used for simulink simulation.

V-RESULTS AND DISCUSSION
In this novel architecture the need for delay optimized system design of FIR filter architecture was discussed based on the various delay constrained architectures available which already exists. And different architectures of FIR filter for 4-tap, 8-tap, 12-tap can be implemented on the FPGA using Spartan 3E using

![Fig.5 Target device](image)

Verilog code for making a proposed technique which leads to the optimized delay in trade of with area and delay.

Simulation output

![Fig.6 Simulation output](image)

Plan for optimization of delay-power product in trade of with area is also suggested as bit serial and bit parallel implementation using pipelining and parallel processing can be done using the tool Xilinx system design to make a novel delay constrained FIR filter architecture.
Fig. 7 Synthesis Report

Fig. 8. FPGA kit used for Implementation

Table 1: Result Comparison Table

<table>
<thead>
<tr>
<th>Type of Architecture</th>
<th>No. of Slices</th>
<th>No. of LUTs</th>
<th>Delay in ns</th>
<th>Power in watts</th>
<th>Delay-Power Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-tap FIR Filter</td>
<td>4</td>
<td>8</td>
<td>7.508</td>
<td>8.113</td>
<td>60.9124</td>
</tr>
<tr>
<td>Transpose form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-tap FIR Filter</td>
<td>4</td>
<td>4</td>
<td>6.113</td>
<td>8.113</td>
<td>49.594</td>
</tr>
</tbody>
</table>
By this analysis on survey of various literatures, it was concluded that the reduced power-delay product can be obtained for design of FIR lattice filter architecture with pipelining and parallel processing approach with optimum usage of number of adders and multipliers. Due to reduced delay this architecture will find applications in high speed system design like system on-chip and Network on chip. Also found applications in high speed system design in making decision in the medical field by analyzing various parameter which are related. These architectures are implemented using FPGA can be done as in the form of micro chip.

REFERENCES

