

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 1

On Computing General Root Algorithms Based

on Binomial Expansion, Bernoulli’s Method of

Continuous Compound Interest, Series

Expansion and Other Modification Methods.

Mr. K. Dikomang1, R. Tshelametse2, T. Yane3

University of Botswana

Abstract

Most of the Pth root algorithms exhibit high latency or small convergence rates when iteratively computing

the roots. Here we present a slew of algorithms based on series expansions of binomial form, and

exponential terms that show low latency or small computational cost for finding the Pth root. The latency

decreases if the family of series taken are truncated at higher terms. We show that Babylonian method

converges quadratically while the binomial series show an increase in convergence rate from quadratic,

cubic and higher order 𝑂(𝑡𝑁) convergence rate as the series is sequentially truncated at higher order terms.

Keywords: Binomial Expansion, Newton Rhapson Method, Babylonian Method, Computational

Cost.

Introduction

Square rooting technology is ubiquitously implemented in IEEE, science, and mathematics platforms such

as in computing for root mean square, solving linear equations, in vision apparatus and computer graphics.

Square rooting algorithms are also used in engineering platforms like field programmable gates arrays and

spectrum analysers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

The Babylonians were able to formulate a remarkable iterative loop [11, 12], for computation of positive

square roots in circa 1500 BC this primitive mathematical program emanating from the ancient Babylonian

epoch is still implemented today in many computing models. Kosheleva [13], explains how the

Babylonian method emerges naturally from somehow loose and archaic methods, he shows that by just

taking the first term of the binomial series and making a slight mathematical tweak will generate a method

that links well to the primitive Babylonian algorithm. Osler [14], somehow did extend the Babylonian

method to high order roots not just square root using a brute force method where he introduces well-

conditioned coefficients to fit the wanted algorithm using a technology the is quasi graph fitting or brute

force through trial and error and observation. In addition, Johnson [15], provided an iterative procedure

for computing square root. Knill [16], on the other hand developed a modified Babylonian method for

calculating square root and Dubeau [17], used a double iteration method to calculate general roots. Bagala

et. al [18], showed using binomial expansion that square root can be computed from the first term of the

series which is analogous to the Babylonian method. The Babylonian method which was later refined by

Heron of Alexandria is still in use today in calculators and other computing units [16].

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 2

The Heron method furnishes the average of a two guess roots. In the past, a lot of mathematicians have

shown a proficient approximation technique for square roots, and the general pth roots using binomial

expansion, and brute force [16, 18] approach while generating generic computational algorithms which

are analogous to Newton-Rhapson and the Babylonian method. These methods show case the Babylonian

method when the binomial series is truncated at the second term, or when authors furnish a brute force

method to approximate the Babylonian iterative loop.

Several methods for computing square roots exist in the literature, including a paleo technique that was

formulated by an ancient Indian mathematician Aryabhata using a long division algorithm known as digit-

by-digit calculation to compute square roots, and cube roots documented in his manuscript aryabhatiya

[19]. Another paleo document with origins from India was written by Bhakshali that gives an algorithm

for computing square roots which was shown to have quartic convergence because it’s an envelope of two

iterations of Newton-Rhapson method [20, 21]. This method is also equivalent to two iterations of Heron’s

algorithm which converges quadratically when two iterations are taken the convergence rate is quartic.

Taylor expansion is yet another technique that can be furnished to compute square roots which is like

binomial expansion.

In digital signal processing and field programmable gate array robust square rooting techniques that

surpass the need to use division in calculations are employed as division tends to serve as a bottle neck in

code execution time leading to increased computational cost, or high network latency. Most practitioners

want to use cheaper calculation units that have efficient software rather than spend money on hard wares

that centralize expensive divisors [22]. It’s true that most computer hardware has effectively powerful

multipliers that’s why algorithms like, single clock and reciprocal of square root methods are employed

in digital signal processing and field programmable gate array. In our work we focus on algorithms that

have small latency thus they converge rapidly rather than rely on the hardware specifications.

Johnson et al. [23] discussed convergence rate of the Babylonian algorithm quantitatively using relative

error of the tth iteration showing that the error will diminish quickly following subsequent iterative terms.

Given 𝐴𝑛 = 𝐴(1 + 𝑡𝑛) where 𝐴 = √𝑎 , is the exact solution, A relative error expression 𝑡𝑛 =
|𝐴𝑛−𝐴|

𝐴

given the Babylonian algorithm as viz:

𝐴𝑛+1 =
𝐴𝑛

2
+

𝐴2

2𝐴𝑛
. (1)

Set A = 1 and 𝐴𝑛 = 1 + 𝑡𝑛.

It can be shown that.

1 + 𝑡𝑛+1 =
1 + 𝑡𝑛

2
+

1

 2(1 + 𝑡𝑛)
. (2)

On expanding the term
1

 2(1+𝑡𝑛)
 as a geometric series, one obtains,

 1 + 𝑡𝑛+1 =
1 + 𝑡𝑛

2
+

1

2
(1 − 𝑡𝑛 + 𝑡𝑛

2 + 𝑂(𝑡𝑛
3)), (3)

where, 𝑡𝑛
3 is negligibly small. After some arithmetic manipulations we get the following:

𝑡𝑛+1 = 𝑡𝑛
2 + 𝑂(𝑡𝑛

3) (4)

so, it has been shown that the Babylonian algorithm converges quadratically since higher terms of order

3 and beyond are negligibly small.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 3

Rubin et al [24] provided a proof of convergence of monotonic sequence when it is bounded both above

and below converging to a limit √𝑎 ,. He detailed in his book principles of mathematical analysis 3 axioms

to confirm the convergence of a sequence.

1) Suppose 𝐴𝑛 > √𝑎 , it follows that √𝑎 < 𝐴𝑛 < 𝐴𝑛+1.

2) A monotonically decreasing series that is bounded below converges if 𝐴1 < √𝑎 , and above if

𝐴2 > √𝑎 , for 𝑛 > 2. This is a monotonically decreasing sequence.

3) The limit 𝐴 = lim
𝑁→∞

𝐴𝑁 is a Babylonian algorithm given by,

𝐴 =
𝐴𝑁

2
+

𝐴2

2𝐴𝑁
. (5)

Whiteside et al. [7] gave an outline of binomial series for the Pth power crediting Briggs, partial discovery,

the 17th century English mathematician, in anticipation of Newton of the general binomial expansion.

 (1 + 𝐴)𝑃 = lim
𝑁→ ∞

∑ [(𝑃
𝜆

) ∗ 𝐴𝜆
0≤𝜆<𝑁], 𝐴 < 1. (6)

(1 + 𝐴)𝑃 = 1 + 𝑃𝐴 +
𝑃(𝑃 − 1)

2!
𝐴2 +

𝑃(𝑃 − 1)(𝑃 − 2)

3!
𝐴3 + ⋯ (7)

Johnson et al [13] proposed a technique that shows that by extracting the first two terms of the binomial

series yields a Babylonian algorithm as viz, [25]:

 (𝐴2 + h)
1

2 ~ A +
ℎ

2𝐴
 ,0 < h <

𝐴2 (8)

When employing the first two terms of the binomial series, they gave a crude approximation of the

Babylonian algorithm as vide infra trying to justify the discovery or mechanics of the algorithm from

conventional mathematical technique. This is a method that was discovered by the Babylonians before

Heron of Alexandria modified it to what is currently known formula for the Babylonian algorithm.

(1 +
ℎ

𝐴2
)

1
2~1 +

ℎ

2𝐴2
 (9)

Square rooting algorithm is often employed in field programmable gate array applications of image

processing [20], spectrum analyser [26] and many others. Bagala et al [17, 27] proposed a single clock

square root algorithm applicable in field programmable gate array.

Methods and Procedures

Proposed Methods

In this section, we derive Binomial Expansion of Pth root and different algorithms as subsequently

extracted by truncating the series at different levels of performance or the Nth term.

We want to solve for 𝐴0, we start by adding and subtracting a dummy term 𝐴1
𝑝

 𝐴0 = (𝐴𝑂
𝑃 + 𝐴1

𝑃 − 𝐴1
𝑃)

1
𝑃

 (10)

 𝐴0 = (
𝐴0

𝑃

𝐴1
𝑃 − 1 + 1)

1
𝑝

𝐴1. (11)

Let 𝑥 =
𝐴0

𝑃

𝐴1
𝑃 − 1, then.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 4

 𝐴0 = (𝑥 + 1)
1
𝑝

𝐴1 (12)

We then expand the binomial series in terms of x.

 𝐴0 = (1 +
𝑥

𝑃
+

1
𝑃 (

1
𝑃 − 1)

2!
 𝑥2 +

1
𝑃 (

1
𝑃 − 1) (

1
𝑃 − 2)

3!
 𝑥3 + ⋯) 𝐴1 (13)

If we truncate the binomial expansion at the first term, we get the general Babylonian algorithm (or the

first-generation algorithm) of the Pth root.

 𝐴0 = 𝐴1 (1 −
1

𝑃
) +

𝐴1

𝑃

𝐴0
𝑃

𝐴1
𝑃 (14)

If we set P = 2, we consequently derive the Babylonian loop for square roots

𝐴0 = 𝐴1 (1 −
1

2
) +

𝐴1

2

𝐴0
2

𝐴1
2 =

𝐴1

2
 +

𝐴0
2

2𝐴1
 (15)

Second generation algorithm is extracted from truncating the binomial series at the second term.

𝐴0 = 𝐴1 +
𝑥𝐴1

𝑃
+

1
𝑃 (

1
𝑃 − 1)

2!
 𝐴1𝑥2 (16)

The series when truncated at consecutively higher terms yields even more robust iterative algorithms that

perform better than their predecessors and it is noteworthy that the series converges to the Pth root when

all the terms are taken.

Rate of convergence of the second-generation algorithm as it was derived from binomial expansion and

compared to quadratically converging Babylonian method for square roots is shown as viz:

The second-generation algorithm is depicted below:

 𝐴𝑛+1 =
𝐴𝑛

2
+

𝐴0
2

2𝐴𝑛
−

1

8
(

𝐴0
2

𝐴𝑛
2

− 1)

2

𝐴𝑛 (17)

Substitute 𝐴0 = 1 and 𝐴𝑛 = 𝑡𝑛 + 1 into the above equation, where tn is a relative error term.

 1 + 𝑡𝑛+1 =
𝑡𝑛 + 1

2
+

1

2(1 + 𝑡𝑛)
−

1

8
(

1

(1 + 𝑡)2
− 1)

2

(1 + 𝑡)1 (18)

By taking geometric series of reciprocal terms and simplifying the equation we get

 𝑡𝑁+1 = 𝑡𝑁
3 + 𝑂(𝑡𝑁

4) (19)

We have shown that our algorithm converges cubically and thus subsequent algorithms in the binomial

expansion have high order convergence rate better than the Babylonian algorithm.

A Rooting algorithm derived from the mathematics of compound interest (Bernoulli’s method)

Here we are going to derive the modified Babylonian iterative method for the pth root using a formula for

continuous compound interest. In addition, we also derive an extended second-generation iterative method

for the Pth root.

We want to approximate 𝐴0 by adding a fudge term to a guess function A1. A mathematical technique

analogous to the method of gradient descent where the step size is 1 and a 1-dimensional gradient is

denoted by N. we first introduce a thought process or a heuristic argument of how the method works. This

is a simple mental algorithm or mathematical thought process to show how we arrive at the square root of

𝐴0
2.

• Choose Trial root function, 𝐴1 = 5

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 5

• Compute 𝐴`1
2 = 25

• If 𝐴1
2 > 𝐴0

2 Lower the value of 𝐴1 = 5 by λ = 0.5

• 𝐴2 becomes 4.5

• Compute 𝐴`2
2 = 20.25

• If 𝐴2
2 > 𝐴0

2, Note 20.25 > 16

• Lower𝐴2 = 4.5 by 𝜆 = 0.5

• 𝐴1 = 4

• Q.E.D, our algorithm has converged,

• congratulations!!!

Figure 1. A map of square root A against square 𝑨𝟐

The length (gradient) of the line is:

𝑁 = 𝐴1 − 𝐴0 (20)

Which leads to:

𝐴0
𝑃 = (𝐴1 − 𝑁)𝑝 (21)

We take the limiting case of compound interest that applies when the power is infinite not just 2 for square

roots but for general positive root of real numbers.

 𝐴0
𝑃 = 𝐴1

𝑃 (1 −
𝑁

𝐴1
) 𝑃 (22)

Then we excerpt Bernoulli formula for compound interest or exponentials

𝐴𝑂
𝑠 = 𝐴1

𝑃 𝑒
−

𝑃𝑁
𝐴1

 (23)

power series expansion of N is derived by expressing ln (
𝐴0

𝑃

𝐴1
𝑃) as a power series.

𝑁~ −

𝐴1 ln (
𝐴0

𝑃

𝐴1
𝑃)

𝑃
 (24)

We only show the truncated power series of ln (
𝐴0

𝑃

𝐴1
𝑃) taken at the first term.

 𝑁~ −
𝐴1

𝑃
(

𝐴𝑂
𝑃

𝐴1
𝑃 − 1) + ⋯ (25)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 6

𝑁~
𝐴𝑂

𝑃

𝑃𝐴1
𝑃−1 +

𝐴1

𝑃
 (26)

Substitute N into equation [20]

𝐴0~𝐴1 +
𝐴𝑂

𝑃

𝑃𝐴1
𝑃−1 −

𝐴1

𝑃
 (27)

𝐴0~
𝐴1(𝑃−1)

𝑃

𝐴𝑂
𝑃

𝑃𝐴1
𝑃−1 , this is the general Babylonian iterative algorithm. Both the binomial expansion and

power series expansion of ln (
𝐴0

𝑃

𝐴1
𝑃) from the method of compound interest give the general Babylonian

algorithm when truncated at the first term.

Second generation Modified Babylonian method.

The second-generation Babylonian method is derived by truncating the ln (
𝐴0

𝑃

𝐴1
𝑃) at the second term. We

obtain this using equation [24] to get:

 𝑁~ −
𝐴1

𝑃
(

𝐴𝑂
𝑃

𝐴1
𝑃 − 1) +

𝐴1

2𝑃
(

𝐴𝑂
𝑃

𝐴1
𝑃 − 1)

2

+ ⋯ (28)

Substitute N into 𝐴0 = 𝐴1 − 𝑁, from gradient descent algorithm (20), we obtain:

𝐴0 = 𝐴1 +
𝐴1

𝑃
(

𝐴𝑂
𝑃

𝐴1
𝑃 − 1) −

𝐴1

2𝑃
(

𝐴𝑂
𝑃

𝐴1
𝑃 − 1)

2

+ ⋯. (29)

We prove that 𝐴𝑁 is a monotonically converging function and is bounded.

Prove that 𝐴𝑁+1 ≤An or 𝐴0 ≤ 𝐴𝑁+1

The following is a second-generation Babylonian algorithm for square roots extracted from the Bernoulli

method of compound interest power series.

 𝐴𝑁 −
3𝐴𝑁

4
+

𝐴0
2

𝐴𝑁
−

𝐴0
4

4𝐴𝑁
3 ≤ 𝐴𝑁 (30)

−3𝐴𝑁
4 + 4𝐴𝑁

2 𝐴0
2 − 𝐴0

4 ≤ 0 (31)

Set 𝐻 = 𝐴𝑁
2

 0 ≤ 3𝐻2 − 4𝐴0
2𝐻 + 𝐴0

4 (32)

 0 ≤ (𝐴0
2)(𝐻 − 𝐴0

2) (33)

replace H by 𝐴𝑁
2

 𝐴0 ≤ 𝐴𝑁 𝑜𝑟 √3𝐴0 ≤ 𝐴𝑁 (34)

Hence shown that 𝐴0 is bounded above.

The only wrinkle is the insight that this method (Bernoulli series of continuous compound interest) does

not converge to 𝐴0 but to some numerical value close to 𝐴0. Each truncation at subsequent term is an

iterative loop but it’s not necessarily true that successive terms perform better than their predecessors like

with the method of binomial expansion. There is a sweet spot somewhere in the series progression when

it comes to a more robust iterative algorithm.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 7

General roots here are obtained by extracting only the odd terms of the Bernoulli series.

 A0
p

= (A1 − N)p (35)

(
A0

A1
)

p

= (1 −
N

A1
)

p

 (36)

Again, we employ the Bernoulli formula of compound interest.

𝐴0
𝑃 = 𝐴1

𝑃𝑒
−𝑁𝑃

𝐴1 (37)

The root is expressed as vide infra.

 𝐴0 = 𝐴1𝑒
−𝑁
𝐴1 (38)

Note that N represents the number of iterations and P is the power of A

Let us make N the subject of the argument.

𝑁 = −
𝐴1

𝑝
ln (

𝐴0

𝐴1
)

𝑃

 (39)

Substitute N into equation [38]

 𝐴0 = 𝐴1𝑒
1
𝑃

ln(
𝐴0
𝐴1

)
𝑃

 (40)

Power series expansion of

log (
𝐴0

𝐴1
)

𝑃

= [(
𝐴0

𝐴1
)

𝑃

− 1] −
1

2
[(

𝐴0

𝐴1
)

𝑃

− 1]

2

+
1

3
[(

𝐴0

𝐴1
)

𝑃

− 1]

3

− ⋯ (41)

 Let 𝑥 = [(
𝐴0

𝐴1
)

𝑝

− 1] (42)

We take all the odd terms of the series and drop the even powers:

 𝐴0 = 𝐴1𝑒
1
𝑃

log(
𝐴0
𝐴1

)
𝑃

 (43)

 Power series expansion of equation [43]

 𝐴0 = 𝐴1 {1+
1

𝑃
([(

𝐴0

𝐴1
)

2

− 1] −
1

2
[(

𝐴0

𝐴1
)

𝑃

− 1]

2

+
1

3
[(

𝐴0

𝐴1
)

𝑃

− 1]

3

… −)} (44)

 𝐴0 = 𝐴1 {1+
1

𝑃
[𝑥 −

1

2
𝑥2 +

1

3
𝑥3 …] −} (45)

We show that equation [45] of odd terms is numerically expressed as below.

 ~𝐴1 {1 +
1

P
ln(1 + x)} (46)

Let’s extract the odd terms only.

𝐴0 = 𝐴1 {1 +
1

𝑃
(𝑥 +

1

3
𝑥3 +

1

5
𝑥5 …)} (47)

Let

𝑦 = 𝑥 +
1

3
𝑥3 +

1

5
𝑥5 + ⋯ (48)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 8

𝑑𝑦

𝑑𝑥
= 1 + 𝑥2 + 𝑥4 + 𝑥6 + 𝑥8 (49)

Note that equation [49] is a geometric series of the form:

𝑑𝑦

𝑑𝑥
=

1

1− 𝑥2 (50)

We then solve for y numerically as an approximate value of the sum by taking an integration instead of

the sum.

 𝑦 = ∫
1

1− 𝑥2
𝑑𝑥 (51)

 𝑦 = 0.5(ln(x + 1) − ln(1 − x)) (52)

This is the upper bound of y which shows that the odd terms of the series converge to.

𝐴0 = 𝐴1 +
𝐴1

2𝑃
(ln(x + 1) − ln(1 − x)) = 𝐴1 {1 +

1

𝑃
(𝑥 +

1

3
𝑥3 +

1

5
𝑥5 …)} (53)

When we excerpt the first term of the series, we succinctly derive the general Babylonian iteration loop

for the roots.

 𝐴0 = 𝐴1 +
𝐴1

𝑃
𝑥 (54)

Substituting an expression of x into equation [54]

𝐴0 = 𝐴1 +
𝐴1

𝑃
(
𝐴0

𝐴1
)𝑃 −

𝐴1

𝑃
 (55)

The general Babylonian iteration loop is typified by the formula above for 𝐴0.

Now let us truncate the series at the second odd term so that we get yet another iterative algorithm.

𝐴0 = 𝐴1 {1 +
1

𝑃
(𝑥 +

1

3
𝑥3)} (56)

Substituting the expression for x into equation [56] gives:

= 𝐴1 −
4𝐴1

3𝑃
+

2𝐴1𝐴0
𝑃

𝑃𝐴1
𝑃 +

𝐴1𝐴0
𝑃

3𝑃𝐴1
3𝑃 −

𝐴1𝐴0
2𝑃

𝑃𝐴1
2𝑃 (57)

We use binomial expansion to evaluate the 3rd term of the series of continuous compound interest.

𝐴1

5𝑃
[(

𝐴0

𝐴1
)

𝑃

− 1]5

=
𝐴1

5𝑃
[(

𝐴0

𝐴1
)

5𝑃

− 5 (
𝐴0

𝐴1
)

4𝑃

+ 10 (
𝐴0

𝐴1
)

3𝑃

− 10 (
𝐴0

𝐴1
)

2𝑃

+ 5 (
𝐴0

𝐴1
)

𝑃

− 1] (58)

Now we show the expression of Babylonian for the 3rd generation from the Bernoulli series of continuous

compound interest.

𝐴0 =
𝐴1

5𝑃
(
𝐴0

𝐴1
)5𝑃 −

𝐴1

𝑃
(

𝐴0

𝐴1
)

4𝑃

+
2𝐴1

𝑃
(

𝐴0

𝐴1
)

3𝑃

−
2𝐴1

𝑃
(

𝐴0

𝐴1
)

2𝑃

+
𝐴1

𝑃
(

𝐴0

𝐴1
)

𝑃

−
𝐴1

5𝑃
+ 𝐴1 −

4𝐴1

3𝑃

+
2𝐴1

𝑃
(

𝐴0

𝐴1
)

𝑃

+
𝐴1

3𝑃
(

𝐴0

𝐴1
)

3𝑃

−
𝐴1

𝑃
(

𝐴0

𝐴1
)

2𝑃

 (59)

General methodology when considering all the terms, odd and even of the series for Bernoulli

method of continuous compound interest.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 9

𝐴1 {1 +
1

𝑝
(𝑥 −

1

2
𝑥2 +

1

3
𝑥3 …)} (60)

The odd terms only method

𝐴𝑁+1 = 𝐴𝑁 {1 +
1

𝑃
(𝑥 +

1

3
𝑥3 +

1

5
𝑥5 …)} = 𝐴𝑁 +

AN

2P
(ln(x + 1) − ln(1 − x)) (61)

 𝑥 = [(
𝐴0

𝐴𝑁
)

𝑝

− 1]

This algorithm performs better than taking all terms or even terms only.

The even terms only method

𝐴0 = 𝐴1 {1 +
1

𝑃
(

1

2
𝑥2 +

1

4
𝑥4 …)} = 𝐴1(1 +

1

2𝑃
(ln(1 − x2)) (62)

This algorithm performs poorly, so it shall not be considered as it is a tortoise when it comes to iteratively

computing Pth roots.

Surrogate general algorithm as a modification of the general root algorithm

By using a quasi-curve fitting method we successfully derive a surrogate yet more robust algorithm that

is better than the three Bernoulli algorithms, by modifying equation [63] we get [64] or the surrogate

algorithm,

𝐴0 = 𝐴1 {1 +
1

𝑝
(ln(1 + 𝑥))} (63)

Is

𝐴0 = 𝐴1{1 + (ln(1 + 𝑥′))} (64)

Where:

 𝑥′ = (
1

𝑃

𝐴0
𝑃

𝐴1
𝑃 −

1

𝑃
) (65)

Experimental Results

When the Binomial series is truncated at terms 1, 2, 3 … etc. a progression trend of convergence rate is

observed.

When the series is truncated at term 1 Babylonian algorithm is obtained which converges quadratically,

term 2, term 3, … result in O(t3), O(t4), O(tN) convergence rates, respectively. Here we take the case of

square roots to illustrate our main ideas.

First generation algorithm or Babylonian iteration loop:

 𝐴𝑁+1 =
𝐴𝑁

2
+

𝐴0
2

2𝐴𝑁
 (66)

Set 𝐴0 = 1 and 𝐴𝑁 = 𝑡𝑁 + 1

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 10

 𝐴𝑁+1 = 𝑡𝑁+1 + 1 =
𝑡𝑁+1

2
+

1

2(𝑡𝑁+1)
 (67)

We employ geometric series to represent the reciprocal terms.

Convergence rate is 𝑡𝑁
2 + 𝑂(𝑡𝑁

3), higher order terms disappear because: 0 < 𝑡𝑛 < 1

 Second-generation binomial algorithm,

 𝐴𝑁+1 =
𝐴𝑁

2
+

𝐴0
2

2𝐴𝑁
−

𝐴𝑁

8
(

𝐴0
2

𝐴𝑁
2 − 1)

2

 (68) 𝑡𝑁 + 1 =

𝐴𝑁+1 =
𝑡3

2
− 𝑂(𝑡4) (69)

The algorithm converges cubically.

Third-generation binomial series:

𝐴𝑁+1 =
𝐴𝑁

2
+

𝐴0
2

2𝐴𝑁
−

𝐴𝑁

8
(

𝐴0
2

𝐴𝑁
2 − 1)

2

+
𝐴𝑁

16
(

𝐴0
2

𝐴𝑁
2 − 1)

3

 (70)

𝑡𝑁 + 1 = 𝐴𝑁+1 =
5𝑡4

8
+ 𝑂(𝑡5) (71)

The third-generation binomial algorithm converges quartically.

This trend continues for higher order terms.

Iteration Babylonian

𝐴𝑁

2
+

𝐴0
2

2𝐴𝑁

Even terms

only

𝐴𝑁(1

+
1

4
[ln (1

− (
𝐴0

2

2𝐴𝑁
2

−
1

2
)2)])

Odd terms

only

𝐴𝑁

+
𝐴𝑁

4
(𝑙𝑛(𝑥

+ 1)

− 𝑙𝑛(1

− 𝑥))

𝑥

= [(
𝐴0

𝐴𝑁
)

2

− 1]

Surrogate

Algorithm

𝐴1 {1

+ (ln(1

+ 𝑥′))}

 𝑥′

= (
1

𝑃

𝐴0
𝑃

𝐴1
𝑃

−
1

𝑃
)

General terms

𝐴𝑁

−
𝐴𝑁

2
ln (

𝐴0
2

𝐴𝑁
2)

Second-

generation

Binomial

algorithm

 𝐴𝑁+1

𝐴𝑁

2

+
𝐴0

2

2𝐴𝑁

−
𝐴𝑁

8
(

𝐴0
2

𝐴𝑁
2

− 1)

2

1 4.1 4.826 496

996

4.057 785

247

4.007 745

306

3.884 282 243 4.019

2 4.001 219

512

4.701 952

728

4.000 396

147

4. 000 000

005

3.998 309 797 4.000 044

411

3 4.000 000

186

4.608 609

337

4.000 000

002

4 3.999 999 643 4

Discussion

The computational cost of selected algorithms increases in the following fashion: surrogate method

algorithm, second generation binomial series derived algorithm,, odd terms only Bernoulli algorithm,

general Bernoulli algorithm, Babylonian algorithm, even terms only Bernoulli algorithm. But the study of

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 11

their convergence rates show that higher generation binomial terms have higher Order rate of convergence

rates. Babylonian series converges quadratically, while second, third and Nth -generation binomial

algorithms have progressive higher convergence rates as O (t3), (t4) …(tN) respectively. The Babylonian

method is simpler and has satisfactory convergence rate and computational cost. Other methods are

sophisticated and more robust in computing roots. But the even only terms algorithm is poor and has high

latency, so it is less useful in computing roots, it is a tortoise algorithm while higher order binomial

algorithm and surrogate method have low latency. The methods furnished here can be used to compute

root mean square and solve linear equations or serve as go to methods in IEEE platforms that require small

computational costs.

Conclusion

Several methods have been applied to calculate the roots of positive real numbers. Classical methods

include the Babylonian and Newton Raphson techniques. The current paper has employed series

expansion as a method of generating algorithms for roots truncated at different levels of accuracy. The

work has deduced several formulations that calculates the roots. The binomial expansion is somehow more

superior to other series expansion methods. This paper wishes to bridge the gap in which classical methods

did not exhaust.

References

1. Dikomang, K. (2023). In the computation of square roots using trigonometric exact method,

International journal of Advances in Engineering and Management, vol 5, 680 -683

2. Dianov, A, Anuchin A. (2020). review of fast square root calculation methods for fixed

microcontroller-based control systems of power electronica, international journal of power electronics

and drive system, vol 1, pp1153- 1164

3. Walczyk, C. J, Moroz, L.V, and. Cieslinki, J. L. (2021). improving the accuracy of the fast inverse

square root by modifying Newton-Rhapson corrections, Entropy, vol 13, 25(1), 86

4. Raspberry Pi 3 Model B. RS Components: Corby, UK. Available online:

https://www.alliedelec.com/m/d/4252b1ec d92888dbb9d8a39b536e7bf2.pdf (accessed on 08 March

20Raspberry Pi 3 Model B. RS Components: Corby, UK. Available online:

https://www.alliedelec.com/m/d/4252b1ec d92888dbb9d8a39b536e7bf2.pdf (accessed on 27 May

2020).

5. Pardeshi, M. A, Jadhav, S. A, Nair, N. A. 2023. Comparative study of calculating square roots using

Hero’s formula and a novel method discovered, international journal of advances in engineering and

management, Vol. 5, Issue 2 Jan2023, pp:366-370,

6. Kwon, T. J, Draper, J. 2019. Floating point division and square root implementation using a Taylor-

series expansion algorithm with reduced lookup table, computation, , 7(3),

7. Lomont, C. (2003). Fast inverse square root, Purdue university, technical report,

8. Parhami, B. Computer Arithmetic: Algorithms and Hardware Designs; Oxford University Press:

Oxford, UK, 2010; ISBN 9780195328486. [Google Scholar]

9. Dubeau, F. (1998). nth root extraction: double iteration process and Newton method, Journal of

computational and applied mathematics vol 91, 191-198

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240110717 Volume 6, Issue 1, January-February 2024 12

10. Hagara, M, Stojanovic R, Kubinec P, Ondracek, O. (2011). “Localization of moving edge with sub-

pixel accuracy in 1-D images and its FPGA implementation”, in Microprocessors and Microsystems,

Volume 51, pp. 1-7,

11. Burton, D. M. (1991). A history of mathematics: An introduction, McGraw Hill, (3rd ed), P79

12. Heath, T. (1921). A history of Greek mathematics, Clarendon press, oxford, , vol 2

13. Kosheleva. O. Babylonian method of computing the square root justification based on fuzzy

techniques and on computational complexity.

14. Osler, T. J. (1999). Extending the Babylonian algorithm, mathematics and computer education vol

33, No. 2, pp 120-128

15. Kenneth, R. J. An iterative method for approximating square roots, mathematics magazine 62:4, 253-

299

16. Ronald J. K. A modified Babylonian algorithm, The American mathematical monthly, 99:8; 734-737

17. Bagala, T. Fibich, A. Kubinec, M. H, P. Štofanik,V. single clock square root algorithm based on

binomial series and its FPGA implementation, 2018 7th Mediterranean conference on embedded

computing (MECO), 11-14 JUNE 2018, Budva, Montenegro

18. Clark. W. (1930). translation and commentary, the Aryabhatina of Aryabhata: an ancient Indian work

on mathematics and astronomy, university of Chicago, Chicago, 11,

19. Hagashi. T. (1995). The Bhakshali manuscript: an ancient Indian mathematical treatise, John

Benjamin’s publishing company, Amsterdam

20. Plofker. K. (2007). Mathematics in India, in vector J. Katz, ed, mathematics of Egypt, Mesopotamia,

China, India and Islam, A source book, Princeton university press, Princeton, N. J,

21. Dianov. A, Anuchin. A. (2020). review of fast square root calculation methods for fixed point micro-

controller-based control systems of power electronics, international of power electronics and drive

systems, vol 11, no.3, 1153-1164, https://math.mit.edu/~stevenj/18.335/newton-sqrt.pdf

22. Rubin, W. Principles of mathematical analysis, 3rd edition, pp 55

23. Eves, H. (1969). An Introduction to the History of Mathematics, Holt, Rinehart and Winston,

24. Feldhaus G. and Roth A. (2016). “A 1MHz to 50 GHz direct down-conversion phase noise analyzer

with cross-correlation,” in 2016 European Frequency and Time Forum (EFTF), pp. 1–4

25. Piromsopa J., Aporntewan C., Chongsatitvatana P. (2001). “An FPGA implementation of a fixed-point

square root operation,” in Proceedings of the IEEE Symposium on communication and Information

Technologies, pp. 587-589.

https://www.ijfmr.com/

