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Abstract: 

The Indirect Symmetrical Phase Shift Transformer (ISPST) stands out from a power transformer due to 

its combination of electrically connected and magnetically coupled circuits. Hence in this work, an 

intelligent differential protection algorithm, based on Discrete Wavelet Transform (DWT) and 

Chebyshev Neural Network (ChNN), is proposed as main classifier to discriminate internal fault and 

inrush. Half cycle thee phase post fault differential current is considered for the proposed algorithm. 

PSCAD/EMTDC software is utilized to simulate different operating conditions of ISPST, resulting in 

the simulation of a significant amount of internal faults and inrush cases. The algorithm under 

consideration has undergone extensive evaluation across numerous cases, resulting in an accuracy rate 

exceeding 99%. The results indicate that the classifier based on DWT - ChNN yields extremely 

promising results, even when dealing with a noisy signal, current transformer (CT) saturation, and 

varying ISPST ratings.  Superiority of the proposed algorithm is also compared with Multilayer 

Perceptron (MLP), Radial Basis Function Neural Network (RBFNN) and Probabilistic Neural Network 

(PNN) based approaches under the same conditions and it is found that proposed classifier is the most 

efficient and rapid among all alternative classifiers for the differential protection scheme of an ISPST 

under the considered conditions. 

 

Keywords: Chebyshev neural network (ChNN), Discrete wavelet transform, Indirect symmetrical phase 

shift transformer (ISPST), Internal fault, Magnetizing inrush. 

 

1. Introduction 

Differential protection is a distinctive solution for protection of Phase shift transformer (PST) against 

winding fault in series and excitation unit due to its fast response, selectivity and sensitivity. Different 

types of PSTs have been the subject of numerous reports in the literature, discussing various current-

based differential protection methods [1–4]. Differential protection of an Indirect Symmetrical (ISPST) 

and Delta-hexagonal PSTs has been discussed in [2], however the method proves ineffective when it 

comes to turn-to-turn faults. The stability of the system can be compromised by un-faulted situations like 

inrush current and external faults caused by a non-standard phase shift of an ISPST, which can impact 

the effectiveness of differential protection. To avoid this condition, Harmonic restraint (HR) methods, 
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based on the second harmonic component are used widely [2, 5]. Phase shift compensation algorithm is 

used to avoid non-standard phase shift [6]. Currently, the transformers operate at high flux density as a 

result of advanced core materials that produce minimal harmonic components, even when experiencing 

magnetizing inrush conditions, which impacts the functionality of HR schemes [6]. An additional 

potential transformer, in conjunction with a current transformer (CT), is necessary to ensure the 

protection of the PST based on the normal operating voltage-current relationship and tracking of the tap-

changer position [6,7]. 

In recent years, the utilization of artificial neural network (ANN) in power system protection and pattern 

classification has witnessed a significant rise owing to its remarkable generalization capability. 

However, appropriate architecture of neural network with optimal parameter (number of hidden layer, 

number of hidden neuron, activation function) for any peculiar classification application is still a major 

problem for all types of ANNs [8,9]. Various optimization techniques such as Particle Swarm 

Optimization (PSO), Ant Colony Theory, and Genetic Algorithm (GA) have been employed to optimize 

these parameters. The transient characteristic causes a distinction between the frequency characteristic of 

the fault and inrush. Hence for investigating a signal with in a bandwidth, Wavelet Transform (WT) has 

been verified as an efficient tool. Therefore WT has wide application for protection in power system. In 

this work, Discrete Wavelet Transform (DWT) (an amended signal processing tool) is used for the 

frequency analysis of differential current signal. The application of DWT along with other AI classifier 

has been reported in the literature [10].  

In addition to that, Functional Link ANN (FLANN) has turned up as a improved AI technique for 

discrimination problem. A Chebyshev polynomial based integrated neural network for static function 

approximation is reported in [11]. Chebyshev Neural Network (ChNN) is a unit-layer network that 

offers advantages in terms of design and learning complexities. Additionally, it outperforms other 

classifiers such as SVM and fuzzy logic based systems due to the absence of a performance controlling 

parameter [12]. 

Hence using the superiority of DWT - ChNN, a new differential protection algorithm for the 

classification of internal fault condition from inrush condition is presented in this paper. In the present 

algorithm, PAS compensation is considered in account to resolve the problem of non-standard PAS 

between source and load sides of an ISPST for the differential protection [3,4]. Discrete post fault half 

cycle samples of the differential current are required for the algorithm with sampling frequency of 4 

kHz. Proposed algorithm is evaluated with 13738 test cases with wide variation of ISPST parameters. 

The proposed algorithm is also tested in presence of 15% gaussian noise in differential current samples. 

Performance comparison of the algorithm is made with Harmonics restraint (HR), Multilayer perceptron 

(MLP), Radial basis function neural network (RBFNN) and Probabilistic neural network (PNN) based 

classifiers. The proposed algorithm proves its superiority by providing overall classification accuracy 

greater than 99%.  

 

2. Discrete Wavelet Transform 

Over recent years,  wavelet transform (WT)  emerges as an excellent mathematical tool for the transient 

analysis of signals [13,14]. The provided function is transformed into a windowing function with 

varying time widths. This enables the ability to emphasize longer time durations for low frequency 

components and shorter time durations for high frequency components. As a result, the analysis of 

signals with oscillations and localized impulses is enhanced. Wavelet analysis is highly effective in 
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examining transients and enhancing current characterization, thereby facilitating the accurate 

identification of fault current from inrush current-[15].  

On performance investigation, in this paper Daubechies function (db8) is selected as a mother 

wavelet function. Daubechies function is a better frequency extractor than Haar. This is due to its low 

pass and high pass filter which resemble more ideal filters than those of Haar wavelet. On the other 

hand, because of its orthogonality, it satisfies Parsaval’s theorem, not like biorthogonal wavelets, such as 

Coifet and Meyer wavelets [16]. Table I shows a band of frequencies at different wavelet function 

coefficient for sampling frequency of 4 kHz. 

Table 1: Wavelet function coefficients at different frequency levels 

Frequency component Hz Wavelet component 

1000-2000 D1 

500-1000 D2 

250-500 D3 

62.5-125 D4 

0-62.5 A4 

 

3. Chebyshev Neural Network 

ChNN is a type of Functional Link ANN (FLANN) based on Chebyshev polynomials (ChPs). It is an 

architecture with a single layer, where the hidden layers of the MLP are disregarded by transforming the 

input patterns into a higher dimensional space. Each individual sample of the input pattern is expanded 

into multiple samples using the ChPs expansion. The ChPs consist of sets of orthogonal polynomials, 

which are obtained as the solution to the Chebyshev differential equation [17]. The ChPs stand out 

among the various orthogonal polynomials due to their superior convergence properties. When 

compared to regular polynomials, expansions in ChPs converge much faster for a wide range of 

functions. As a result, ChPs are widely regarded as fundamental functions for neural networks [11, 18]. 

The basic structure of the ChNN is shown in Fig. 1. As shown in the figure, l  dimensional input 

pattern 
1 2[  ..... ]T

lx x x  is enhanced in to a ( 1)lm +  dimensional expanded pattern 
1 1[1 ( )...... ( )]T

m lT x T x  

using mth order ChPs. These (lm+1) dimensional expanded pattern are cycled through the single layer 

structure of ChNN. Initially, the entire weights matrix is set to some random values. The weighted sum 

of enhanced input is than passed through an activation function to get an output. Sigmoidal function is 

used as activation function in this classification problem. ChNN provides a computational advantage 

over the MLP due to absence of hidden layer [18]. ChNN is free from the controlling parameters 

because of that it requires less memory as compare to other ANNs [19]. Training of ChNN can be 

performed either with gradient descent or conjugate gradient or levenberg-marquardt (LM) method. It 

has been found that LM gives better result as shown in Fig. 2. Hence in the present work, LM back 

propagation learning algorithm with least square errors has been used for training of the ChNN. 

https://www.ijfmr.com/
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Fig. 1. Basic structure of Chebyshev Neural Network 

 

 
Fig. 2. Number of epoch vs MSE graph of different training method 

 

4. Implementation of DWT - ChNN Based Algorithm 

Fig. 3 shows the schematic flowchart of the DWT - ChNN based proposed differential protection 

algorithm. It is to be noted that half cycle post fault differential current samples at sampling frequency of 

4 kHz (i.e., 32 samples/phase) have been considered to reduce the computational bourdon as well as 

time. These half cycle data are processed using DWT with ‘db8’ as mother wavelet. In the present work, 

four level of wavelet decomposition is found to be sufficient with DWT. Detail sub-bands ‘cD4’ 

contains 16 resolution values which is considered as a featured vector for ChNN. ‘cD4’ coefficient of 

phase ‘a’ differential current for LG internal fault at different percentage of primary winding of series 

unit shown in Fig. 4. Similarly Fig. 5 shows the ‘cD4’ coefficient of phase ‘a’ differential current for 

inrush condition at different switching angle. 

In the further stage, the feature vector (i.e., ‘cD4’) of 16-dimension is expanded into 64-dimension 

feature vector using fourth order ChPs (1). It is revealed from Fig. 6 and 7 that feature vector has been 

enhanced with ChP expansion feature vector of phase ‘a’ for internal fault and magnetizing inrush 

current respectively. If the order of Chebyshev expansion is increased, the non-linear processing 

capability of ChNN would be stronger. However this would result in heavier computation burden. 

Therefore the order of Chebyshev expansion has been limited up to fourth order.  

Once the expanded features vectors of for all the three-phases differential current is calculated, the 

expended feature vectors are formed as: 

4 4 4[ , , ]      
a b ccD cD cDChNN Input ChP ChP ChP=

                                       
 

where a, b and c represents phase 

Hence total number of input for ChNN is 192 (3×64samples/pahse) 
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After configuring the ChNN using training cases data sets, the abnormality detection technique 

discriminates between normal and abnormal conditions (magnetizing inrush and internal fault). The 

abnormality detection technique is made by comparing two consecutive peaks of differential current 

[10]. The over-excitation condition is determined by comparing voltage-to-frequency ratio with the rated 

voltage-to-frequency ratio. Whenever the abnormal condition is detected, half cycle three phase 

differential current sampled at frequency of 4 kHz (system frequency of 60Hz) is considered as an input 

vector for the proposed algorithm. It discriminates the internal fault from magnetizing inrush in the form 

of ChNN output (‘1’ for an internal fault and ‘0’ for inrush). 

 
Fig. 3. Schematic flowchart of the proposed algorithm 

 

 
Fig. 4. Fourth level DWT decomposition, vector cD4 of phase ‘a’ for LG at primary of series unit 
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Fig. 5. Fourth level DWT decomposition, vector cD4 of phase ‘a’ for magnetizing inrush 

 
Fig. 6. Chebyshev expansion pattern of cD4 for internal fault 

 

 
Fig. 7. Chebyshev expansion pattern of cD4 for magnetizing inrush. 

In this classification algorithm true positive (TP) is used for internal fault (ChNN output=1), true 

negative (TN) for inrush (ChNN output=0), false positive (FP) for false classification of inrush and false 

negative (FN) for false classification of internal fault.  Hence the classification accuracy (Ƞ) for the test 

cases is calculated by: 

Ƞ (%) =
𝑁𝑜.𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑜.𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 (𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 × 100%                                        (3) 
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5. Simulation Studies 

The effectiveness of the proposed algorithm has been investigated for a large number of internal 

fault and magnetizing inrush cases. A three phase 300MVA, 138kV/138kV, 1255A/1255A, 60Hz ISPST 

with max phase shift of ±30 degree in total 32 steps is considered for the illustration of the proposed 

algorithm [20]. Relevant CTs with the ratio of 2000/5A are connected in star on both side on the ISPST 

[21,22]. 

PSCAD/EMTDC has been used for simulation of various types of faults and magnetizing inrush 

conditions.The presence of residual flux is also included in the simulation of magnetizing inrush taken as 

10%, 20%, 30% …80% of maximum flux at full-load. The case of sympathetic inrush is also taken in to 

account for the simulation to increase the accuracy of proposed algorithm.   

Total 30528 cases are simulated by considering the condition of magnetizing inrush and fault at 

different percentage of winding and other ISPST parameter variation. The detailed information of all the 

cases is shown in Table 2. In this paper, out of 30528 (total cases), 16790 (55% of total) cases are used 

for the training and 13738 (45% of total) cases are used for the testing of DWT - ChNN based classifier. 

Table 2: Detail of training and testing cases 

Operating 

Conditions 

No. of cases Total 

no. of 

Cases 

Internal fault Fault in Excitation Unit-(Fault type: TT, LG, LL, LLG, LLLG 

(5))×(load: no-load, on load (2))×(Mode of operation: Advance mode, 

Retard mode (2))×(Tap position: 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 (6))×(fault 

location: 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 

(11))×(Fault inception angle(FIA): 0○ to 330 in step of 30○ (12)) 

15840 

Fault in Series Unit-(Fault type: TT, LG, LL, LLG, LLLG (5))×(load: no-

load, on load (2))×(Mode of operation: Advance mode, Retard mode 

(2))×(Tap position: 0, 0.2, 0.4, 0.6, 0.8, 1.0 (6))×(fault location: 2%, 5%, 

15%, 25%, 40%, 60%, 80%, (7))×(Fault inception angle(FIA): 0○ to 330 

in step of 30○ (12)) 

10080 

Magnetizing 

Inrush 

(Load: no-load, 10%, 25%, 35%, 40%,  60%, 75%, 90%, 100% 

(9))×(Mode of operation: Advance mode Retard mode (2))×(Tap 

position: 0 to 1.0 in step of 0.2 (6))×(Switching angle: 0○ to 330 in step 

of 30○ (12)) 

1296 

Residual Inrush (Load: on-load, no-load (2))×(Mode of operation: Advance mode Retard 

mode (2))×(Tap position: 0 to 1.0 in step of 0.2 (6))×(Residual flux: 10%, 

20%, 30%, 40%, 60%, 80% (6))×(Switching angle: 0○ to 330 in step of 

30○ (12)) 

1728 

Sympathetic 

Inrush 

(Load: 10%, 25%, 40%, 60%, 100% (5))×( Mode of operation: Advance 

mode Retard mode (2))×( Tap position: 0 to 1.0 in step of 0.2 

(6))×(Switching angle: 0○ to 330 in step of 30○ (12)) 

720 

Fault and Inrush 

simultaneously 

(Load: on-load, no-load (2))×(Mode of operation: Advance mode Retard 

mode (2))×(Tap position: 0 to 1.0 in step of 0.2 (6))×(Fault type: LG, LG, 

LLG (3))×(Fault and Switching angle: 0○ to 330 in step of 30○ (12)) 

864 

Total no. of cases 30528 
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Training cases (55% of the above cases) 16790 

Testing cases (45% of total cases) 13738 

 

6. Results and Discussion 

6.1. Effect of Order of Chebyshev Polynomials on Classification Accuracy 

Order of ChPs also affects the classification accuracy of the proposed algorithm; hence, to study its 

effect the order of ChPs is varied from 1 to 10. Fig. 8 shows the percentage classification accuracy of the 

test cases with different order of ChPs and reveals that fourth order of ChPs gives maximum accuracy 

(greater than 99%) for the proposed algorithm. Hence fourth order ChPs is considered for algorithm.  

 

 
Fig. 8. Effect of order of ChPs on classification accuracy 

                   

6.2. Performance Evaluation of Proposed Algorithm 

In the proposed algorithm, internal fault or inrush discrimination accuracy using half cycle data 

window length is shown in Table 3 which shows that the DWT - ChNN based proposed algorithm gives 

overall accuracy of 99.18%. From the detailed analysis of the different internal faults and inrush 

conditions, it is clear that fault in series unit is 100% classified and from excitation unit only TT and LG 

fault at minimum percentage due to minimum tap-position is failed. Lowest accuracy is found in case of 

the magnetizing inrush following an internal fault in any unit, which is very critical condition of 

abnormality. 

Table 3: Classification accuracy for the 300 MVA ISPST 

Operating 

Condition 

Type of abnormality No. of test 

cases 

TP & 

TN 

FP & 

FN 

Accurac

y (%) 

Internal fault 

(11660) 

Fault in 

Excitation Unit 

TT 713*+713** 1378# 48Ϯ 96.63 

LG 713*+713** 1401# 25Ϯ 98.25 

LL 713*+713** 1417# 09 Ϯ 99.36 

LLG 713*+713** 1426# 0 Ϯ 100 

LLLG 713*+713** 1426# 0 Ϯ 100 

Fault in Series TT 453*+453** 906# 0 Ϯ 100 

91.37

95.79

97.82

99.18
98.66

97.86
97.36

97.81
96.88

97.7

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
 (

%
)

Order of ChPs
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Unit LG 453*+453** 906# 0 Ϯ 100 

LL 453*+453** 906# 0 Ϯ 100 

LLG 453*+453** 906# 0 Ϯ 100 

LLLG 453*+453** 906# 0 Ϯ 100 

Inrush (1688) Magnetizing Inrush 293*+293** 586## 0 Ϯ Ϯ 100 

Residual Inrush 389*+389** 770## 8 Ϯ Ϯ 98.97 

Sympathetic Inrush 162*+162** 314## 10 Ϯ Ϯ 96.91 

Fault and Inrush 

(Simultaneously) 

(390) 

 195*+195** 378# 12 Ϯ 96.92 

Total Data (13738) 13738 13626 112 99.18 

*Advance mode of operation, **Retard mode of operation, #True positive, ##True negative, Ϯ 

False positive, Ϯ Ϯ False negative 

 

6.3. Performance Evaluation of Proposed Algorithm for Different Rating ISPST 

The performance of the proposed algorithm is also evaluated for two different sized ISPSTs 

(1400MVA, 400kV/400kV, 2020A/2020A, ±25○, 60Hz and 480MVA, 230kV/230kV, 1205A/1205A, 

±35.1○, 60Hz). Once again the data set is generated for both ISPSTs using PSCAD/EMTDC. This data 

set is tested on the same DWT - ChNN model which was trained by the data set of 300MVA ISPST. The 

accuracy of the proposed algorithm in classifying both ISPSTs for different cases is presented in Table 

4. The classifier's overall accuracy has been determined to exceed 99%. Hence it is exciting to know that 

that the proposed algorithm remains unaffected by the rating and parameter of the ISPST. 

Table 4: Classification accuracy for the different ratings of ISPST 

1400MVA 

Operating Condition No. of test cases TP & TN FP & FN Accuracy (%) 

Internal Fault 4608# 4576 32 Ϯ 99.30 

Inrush 576## 566 10 Ϯ Ϯ 98.26 

Fault and Inrush (Simultaneously) 216# 207 09 Ϯ 95.83 

Total cases 5400 5349 51 99.06 

480MVA 

Internal Fault 4608# 4587 21 99.54 

Inrush 576## 570 6 98.96 

Fault and Inrush (Simultaneously) 216# 205 11 94.91 

Total cases 5400 5362 38 99.29 
#True positive, ##True negative, Ϯ False positive, Ϯ Ϯ False negative 

 

6.4. Performance Evolution Considering CT Saturation 

The algorithm under consideration is also assessed for the impact of CT saturation during internal 

fault and the subsequent inrush following an internal fault. Source side CT is forced to saturate by 

considering remanent flux (up to 80%) and boosting the CT burden [23]. Table 5 shows the performance 

of proposed algorithm and found overall accuracy greater than 98% which shows that CT saturation 

negligibly influences the overall classification.  
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Table 5: Proposed algorithm considering CT saturation 

Operating 

Conditions 

No. of test 

cases 

Proposed Scheme 

TP FP % 

Internal fault 2880 2829 51 98.23 

Fault and Inrush 

(Simultaneously) 

288 277 11 96.18 

Total accuracy (3168) 98.04 

 

7. Comparisons of MLP, RBFNN, PNN and ChNN 

Neural network classifier such as MLP, RBFNN and PNN are most widely used for the 

classification problem [25]. These classifiers have been utilized to address the identical issue in order to 

compare them with the proposed DWT-ChNN based approach. The comparison has been made on the 

basis of architecture, number of required weight and classification accuracy. Furthermore, according to 

the literature, the discrimination time holds significant importance in relay operation and has also been 

taken into account for comparison.  All neural network simulation studies have been carried out on 

MATLAB environment using an Intel(R) Core(TM) i7-2600 CPU 3.40 GHz with 16.0 GB RAM 

machine. No optimization technique is used in any neural network for the purpose of making the actual 

comparison among the various classifiers. 

It is clear from Table 6 that ChNN gives better classification accuracy and takes less computation 

time due to less number of required weights as compare to others neural network.   

Table 6: Comparison of various Neural Networks 

Type of 

NN 

Type of 

architecture 

No. of 

weight 

required 

No. of 

epoch 

No. of 

case 

No. of 

failure 

cases 

% 

ChNN 193-1 193 5000 13738 112 99.18 

MLP 48-10-1 501 5000 13738 302 97.80 

RBFNN 48-946-1 47301 1000 13738 625 95.45 

PNN 48-16790-1 839501 1 13738 1051 92.35 

 

8. Conclusions 

This work presents a novel differential protection algorithm for safeguarding an ISPST, which is 

characterized by its precision, speed, and intelligence. The two-stage algorithm uses DWT for signal 

processing and ChNN is used for classification. In this algorithm, the discrimination is performed with 

half cycle data at sampling frequency 4 kHz after abnormality which makes it fast. The present work has 

taken into account all the variables that could potentially impact the accuracy of the proposed algorithm. 

The proposed algorithm gives overall accuracy greater than 99% and proves itself accurate even with the 

incorporation of signal noise, saturation of CTs and different rating of the ISPSTs. The algorithm's 

superiority is further demonstrated through a comparison with other available ANNs approaches. 
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