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Abstract 

Traffic signal control plays a vital role in effectively managing traffic flow and alleviating congestion in 

urban areas. Traditional methods for controlling traffic signals often rely on fixed timing plans or 

predefined algorithms, which may not be adaptable to changing traffic conditions. Reinforcement 

Learning is gaining traction as a favored data-centric method for adapting traffic signal control in intricate 

urban traffic networks. This article represents a conceptual review of recent studies and techniques that 

showcase the effectiveness of Deep Reinforcement Learning (DRL) in enhancing the performance of 

traffic signal control. These improvements include reducing travel time, fuel consumption, and emissions. 

Additionally, we will delve into different algorithms and learning systems explored in research papers, 

such as multi-agent reinforcement learning and Deep Q Networks (DQN). 
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1. Introduction 

Due to the rapid growth in the population, there is an increase in the demand for vehicles and public 

transportation. The Ongoing traffic light control framework conveys a fixed-time traffic signal change 

disregarding the continuous traffic conditions. Which results in more traffic jams and fuel wastage at 

traffic signals. And leads to more road accidents. Also, creates harmful emissions which are not good for 

the health of humans. During congestion, vehicles decelerate or halt. Which increases the waiting time for 

vehicles. Traffic jams are a well-established significant issue with basic outcomes at the ecological, Social, 

and financial levels [2].  

Traffic jams have long been a vital factor in urban development, but it has now evolved into a significant 

issue that requires immediate attention, as the surge in vehicle numbers and transportation demand 

exacerbates the problem. The reason behind the traffic jams is the number of vehicles which are leaving 

the traffic signal less than the number of vehicles which are coming towards the traffic signal. Another 

reason behind the traffic jams is when people are in a hurry to leave the intersection, they cross-block by 

moving the vehicle to another lane.  

To deal with these kinds of problems Deep Reinforcement learning is used. The use of deep learning in 

RL characterized another field called deep reinforcement learning (DRL) [30]. Deep learning is utilized 
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for feature extraction and has an altogether further developed execution since this technique can learn with 

more point-by-point data [32]. In reinforcement learning, the agent starts to learn when the traffic is 

heaviest, which direction through which vehicles are coming, and how quickly they pass through the 

intersection. Then they adapted accordingly and continued to test and maximize the reward and minimize 

the average waiting time [2], [15]. The most important part of RL Which results in fewer traffic jams.  

In recent years, DRL has achieved many successes in the world of artificial intelligence. DRL is used 

where situations are computationally complex. DRL methods have been well applied in the traffic signal 

control of single- intersections and have shown a better performance than traditional methods [8], [9]. 

Recent works began to try to apply DRL algorithms, Such as multi-agent Reinforcement learning (MARL) 

[1], [3], [10], [18], [29], [30], Deep Q-Learning (DQN) [4], [6], [8], [19], [27]. These algorithms have 

gained popularity. The advantages of Deep Reinforcement Learning (DRL) in Traffic Signal Control are 

as follows: 

• The DRL algorithm can improve traffic signal control by adjusting the timings of signals according to 

the traffic conditions, in real-time.  

• DRL can help to minimize the vehicle's ideal waiting times and unusual stops, by optimizing traffic 

signal timing. Which leads to reduced fuel emissions and consumption. This can contribute to a more 

environmentally friendly transportation system.  

• Traditional traffic signal control systems often require manual adjustments and maintenance, which 

are more time-consuming and costly. On the other hand, DRL-based traffic signals are once trained, 

autonomously optimize signal timing without human intervention, which reduces operational costs 

and improves resource allocation efficiency. 

While reviewing other research papers found that there are two common approaches Multi-agent 

reinforcement learning and Deep Q- Network. 

Section I is an introduction. Section II is a literature review and section III is a rules and design 

consideration of the utilization of DRL for TSC. Section IV will be the conclusion of our review. 

 

TABLE I.   ABBREVIATIONS 

In this article, we present an overview of RL and DRL. Additionally, we further explain DQN and MARL. 

 

 

DRL Deep Reinforcement Learning 

RL Reinforcement Learning 

ATSC Adaptive Traffic Signal Control 

DQN Deep Q - Network 

MARL Multi-Agent Reinforcement Learning 

TSC Traffic Signal Control 

A2C Advantage-Actor-Critic 

IA2C Independent Advantage-Actor-Critic 

MA2C Multi-Agent Advantage-Actor-Critic 

3DQN Double Dueling Deep Q - Network 

PG Policy Gradient 

DDPG Deep Deterministic Policy Gradient 
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1.1  Reinforcement Learning 

Reinforcement learning, a branch of artificial intelligence (AI), differs from supervised and unsupervised 

learning. It represents a machine-learning technique that holds significant promise in problem-solving. 

The primary aim of RL is for an agent to acquire an optimal policy in order to interact effectively with a 

complex environment and ultimately achieve the most rewarding outcome over the long term [11], 

[15].Reinforcement learning methods to improve urban traffic flows and reduce travel time and fuel 

emission [13]. RL-based methods are proposed such as DynamicLight [14], DenseLight [16], MetaLight 

[20], and PressLight [37]. These methods aim to reduce average travel time. The reinforcement learning 

model is well defined by the tuple (S, A, R, S`) [8], [15],[23],[26] which has the following meaning: 

1. S: A feasible group of state space (e.g. queue length, waiting time), s is a specific space (s ϵ S). 

2. A: A feasible group of action space, a is an action (a ϵ A). 

3. R: A reward is what an agent receives after performing an action. 

4. S`: Next state after taking action (a ϵ A) on the state (s ϵ S). 

 

The S2A policy embodies a sequence of indirect measures in reinforcement learning. Its ultimate goal is 

to uncover an optimal policy that maximizes the cumulative predicted rewards derived from the current 

state. Typically, the agent progressively moves from an individual state s by taking action a to arrive at 

state s'. The corresponding reward received, denoted as r, defines the impact of the (s, a, r, s'). Let t 

represent a 𝑡𝑡ℎ step in the policy. The cumulative future reward from selecting action a at state s can be 

expressed by the equation Q(s, a), 

 

Qπ(s, a) = 𝐸[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+1 + ⋯ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] 

 

= 𝐸 [ ∑ 𝛾𝑘𝑟𝑡+𝑘
∞
𝑘=0 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋].              (1) 

 

In the above equation, where 𝛾 is the rebate factor, which is typically in 𝛾ϵ[0,1) [7],[8],[26]. It means that 

the rewards nearest will be worth more than the rewards further away. 

The optimal policy 𝜋∗can be attained through a recursive approach. When the agent encounters gaining 

states, the optimal strategy is simply to choose the action that yields the highest reward. Consequently, the 

optimal 𝑄(𝑠, 𝑎) is determined by establishing the optimal 𝑄 values for subsequent states. This can be 

formulated using the Bellman optimality equation 𝑄𝜋∗
(𝑠, 𝑎) , 

 

𝑄𝜋∗
(𝑠, 𝑎) =  𝐸𝑠′ [𝑟𝑡 +  𝛾𝑚𝑎𝑥

𝑎′
𝑄𝜋∗

(𝑠, 𝑎) |𝑠, 𝑎].           (2) 

 
Fig. 1. Basic framework of RL for TSC [22] 
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1.1.1 Value-based Methods 

These approaches rely on a value function to estimate the anticipated reward of every action in a given 

state. The agent subsequently selects the action that maximizes this value function. Take DQN as an 

instance, which employs a deep neural network to approximate the Q-function, serving as the value 

function for the optimal policy. For example, DDQN. 

 

1.1.2 Policy Gradient Methods 

PG methods are a class of reinforcement learning algorithms that straightforwardly upgrade the policy, 

which guides states to actions. In policy gradient methods, the agent gathers directions by interacting with 

the state and afterward utilizes these directions to refresh the policy parameters. One critical benefit of the 

policy gradient method is that it can deal with continuous action spaces, as they straightforwardly 

parameterize the policy. For example, DDPG, MARDDPG, and so on. 

 

1.1.3 Actor-Critic Methods 

The actor-critic algorithm in reinforcement learning combines an 'actor,' responsible for action selection 

based on the state, and a 'critic.' The actor develops a policy correlating states to actions. With the aim of 

maximizing cumulative reward. The actor executes actions to gain a reward. It updates its policy based on 

the feedback, using policy gradient optimization. For example, MA2C. 

 

1.2  Deep Reinforcement Learning 

Nowadays, it is becoming more popular to use the DRL approach for traffic signal control (TSC) because 

of its capacity and adaptability toward complex situations. DRL is a merge of  Deep learning and 

Reinforcement learning. In traffic signal control systems, DRL-based approaches and algorithms have 

resulted in excellent results. For example, the DRL algorithm with experience replay and target network 

[5], Adaptive traffic signal control system (ATCS) [17], Successor feature [33], and delay-based fairness 

and throughput-based fairness [35]. However, these methods and algorithms are more effective than fixed-

time traffic light control. 

 

1.2.1 Deep Q-Network (DQN) 

The Deep Q-Network is widely recognized as the first method based on Deep Reinforcement Learning 

(DRL) that finds extensive application in traffic signal control (TSC). Unlike a simple tabular 

representation of values, DQN employs a deep neural network to represent the Q Function. This allows 

for determining the most favorable action to undertake in any given environment [6]. Through iterative 

updates of the Q-function, as the agent interacts with the environment, Q-Learning enables the algorithm 

to handle environments with numerous states and actions, as well as learn from inputs with high 

dimensionality such as images or sensor data. 

However, one of the crucial challenges in implementing Deep Q-Learning lies in the Q-function, which 

often exhibits non-linearity and multiple local minima. Consequently, the neural network may encounter 

difficulties in converging to the correct Q-function. To address this issue, several approaches have been 

introduced, including experience replay and target network techniques [5]. 

DQN has been successfully applied to various domains, including Atari games, robotics, and traffic signal 

control. It has shown promising results in improving traffic flow efficiency and reducing travel time 

compared to traditional control methods. 
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1.2.2 Multi-Agent Reinforcement Learning (MARL) 

MARL is characterized by a scenario in which multiple agents interact within a shared environment. 

However, coordinating these agents is a crucial aspect of the multi-agent framework. In the context of 

Traffic Signal Control (TSC), MARL commonly employs two approaches. The first approach is known 

as the centralized approach, wherein a single global agent controls multiple intersections. In a centralized 

approach, the agent takes all interactions as input and gives the action to all intersections simultaneously.  

However, it has one limitation which is the dimensionality issue as the state space increments with the 

number of intersections. The second one is the decentralized approach [31] refers to a system where each 

traffic signal decides in view of the local conditions. From the above two approaches we have seen that 

the decentralized approach is more adaptive than the centralized approach. 

 

2. Literature Review 

Past work has been finished to dynamically control adaptive traffic lights. In any case, because of the 

restricted computational resources and simulation tools, early examinations focused on tackling the issue 

by fuzzy logic [15], etc. In this work, Street traffic is demonstrated by limited data, which can’t be applied 

on a huge scope. DRL was applied in traffic light control. However, The DRL-based methods [1, 3, 4, 5, 

8, 10, 16] have some limitations as follows: 

• It requires a lot of training data and computational resources to accomplish good performance, 

especially for large-scale traffic networks. 

• These methods and algorithms assume that the traffic demand is stationary and does not change over 

time. However, traffic demand may vary due to different factors such as weather, events, or accidents. 

• It does not consider the communication and coordination among agents explicitly. 

Further research can be undertaken to address the safety concerns associated with Deep Q-network (DQN) 

in Traffic Signal Control (TSC). Since DRL (Deep Reinforcement Learning) models learn through trial 

and error, there is a potential risk of accidents occurring during the decision-making process. Each 

potential action within a given state carries a certain degree of risk. To mitigate this, it is possible to 

establish a set of rules to ignore highly risky actions from the pool of possible choices. By excluding 

actions associated with higher risk factors, the safety of DQN-based TSC systems can be enhanced, 

ensuring a more secure and reliable control mechanism. 

Currently, most traffic simulators primarily focus on the movement characteristics of individual vehicles, 

following a microscopic approach. However, there is a lack of research utilizing various types of Traffic 

Signal Controllers (TSCs), such as the DQN-based TSCs, to effectively manage overall traffic flow on a 

macroscopic level. This approach takes into consideration factors like general traffic density and vehicle 

distribution. To enhance the accuracy of results, future studies can be conducted to explore the 

incorporation of macroscopic attributes alongside the microscopic approach. 

In the field of Multi-Agent Reinforcement Learning (MARL), the number of agents is progressively 

growing, consequently leading to an expansion in the state-action space. Additionally, the traffic control 

system (TSC) operates within a non-stationary environment due to these factors. Consequently, it becomes 

imperative to establish effective communication channels among the agents to collectively determine the 

optimal decision. 

There are several papers that propose the utilization of independent A2C, MA2C, and multi-intersection 

V2X-based traffic systems to address the challenges posed by end-to-end TSC and multi-intersection 

traffic congestion[1][24][40]. However, these papers have limitations in terms of the environment they 
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consider. Further research is required to explore interface time, memory consumption, and the individual 

action space of each agent to find optimal solutions. These factors can significantly impact the efficiency 

of the system. Additionally, it is important to consider the areas of data collection for training and to train 

MARL models for each intersection. 

 

3. Rules and Design Considerations for the Utilization of DRL for TSC 

In This part, we will explore the rules and design considerations for the utilization of DRL to TSC. Which 

will help distinguish the optimal DRL solution for various kinds of TSC issues. In a previous study, a deep 

reinforcement learning model with the 3DQN design, and a value-based approach was applied to Traffic 

signal control. This model targets the minimization of vehicles' mean journey time in  TSC scenarios [8, 

19].  

Furthermore, we will define the representations of state, action, and reward, as well as discuss the strategy 

selection for DRL applications in TSC. By understanding these components, we can optimize the 

performance of DRL applications in TSC. 

 

3.1  Defining State 

It is defined as the dynamic factor that an agent discovers to discern distinctive elements from the operative 

state. In [8], the objective is to enhance the combined reward while reducing the wait time of vehicles at 

intersections. Consequently, the agent interprets the state by considering two data snippets of the vehicle, 

enabling it to determine an appropriate course of action. In [8], the input layer is configured as a 60 × 60 

× 2 grid, representing the position and speed of the vehicle. 

 

3.2  Defining Action 

In the context of maximizing rewards, an agent strives to identify the most optimal course of action. 

Moreover, when aiming to minimize average waiting time for vehicles, it is crucial for the agent to 

appropriately select the time for each traffic stage. This decision involves choosing between maintaining 

the present stage or transitioning to the next stage within a specified order. Such a choice addresses the 

issue of inefficient traffic phase allocation. In the specific scenario mentioned in [8, 19], the output layer 

comprises 9 neurons, each representing the best feasible action. 

 

3.3  Defining Reward 

An agent is awarded based on its past actions. In the presented scenario [8, 19], the reward is based on the 

alteration in the mean wait time for vehicles at a crossroad. The agent improves system performance and 

achieves its objectives by raising the reward. 

 

3.4  Choosing A Method 

The objectives relating to the model need a clear definition in a method. To accelerate learning progress, 

the integration of mechanisms like double Q-learning, Dueling networks, and prioritized experience replay 

within a unified structure is explored in [8,19]. An increased learning rate diminishes the duration needed 

to examine every potential state-action combination, thereby facilitating the discovery of the best action. 

This optimal action determination, like opting to sustain or alter the imminent traffic phase, promotes 

smoother traffic management for Traffic Signal Controllers(TSCs). The value-based approach evaluates 
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each state-action duo, facilitating the selection of the optimal action within any particular state. This 

approach effectively aligns with the goals of TSCs and is thus selected. 

 

3.5  Defining Architecture 

To address the challenges posed by Traffic Signal Control (TSC), it is essential to define a suitable Deep 

Learning (DL) architecture for Deep Reinforcement Learning (DRL). An example of such an architecture 

is the 3DQN presented in references [8, 19]. This architecture comprises three convolutional and two fully 

connected layers. Its purpose is to capture the position and speed information of vehicles to address 

inefficiencies in traffic signal timing, necessitating the integration of convolutional layers within the 

3DQN structure due to the reliance on visual inputs. Determining the right number of layers is a challenge 

in itself. An inadequate number of layers can hinder the model's capacity to learn from the data effectively, 

whereas too many layers can lead to overfitting, where the model memorizes training data, impairing its 

performance.  

Selecting an ideal quantity of neurons per layer is pivotal. Commonly, the number of neurons in the input 

layer corresponds to the number of features. For instance, an intersection with 80 cells should be 

represented by an input layer containing 80 neurons, reflecting queue lengths and vehicle locations. 

However, the configuration of neuron count in hidden layers is typically empirical. It should be noted that 

a larger number of neurons generally boosts system efficacy but adds to its complexity. 

 

4. Conclusion 

This article presents a conceptual review of the utilization of deep reinforcement learning (DRL) in traffic 

signal control (TSC). To ensure efficient traffic movement, various methodologies and algorithms are 

employed to determine the most appropriate traffic phases at intersections. Section 2 comprises a literature 

review that highlights the deficiencies observed in recent studies. Section 3 provides a set of rules and 

design considerations for implementing DRL in TSC, aiming to identify the optimal DRL solution for 

different types of TSC problems. To effectively tackle the challenges of TSC, a well-defined DL architec-

ture for DRL is necessary. The 3DQN architecture with its convolutional and FC layers provides a means 

to capture vehicle location and velocity in the form of visuals. Moreover, careful consideration of the 

number of layers and neurons is vital for optimal system performance. 
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