Effects of Cognitive Sensory Motor Training Versus Repetitive Facilitation Exercises of Upper Limb in Hemiparetic Patients

Dr. Kartik Chhonker¹, Dr. Namrata Srivastava², Dr. Kalpana Jain³, Dr. Gunjan Shukla⁴

¹Assistant Professor, Career College, Bhopal, ²HOD, Career College, Bhopal ³,⁴Associate Professor, Career College, Bhopal

ABSTRACT

Stroke [CVA] is the sudden loss of neurological function caused by an interruption of blood flow to the brain. Large numbers of people who survive a stroke are left with permanent impairment of arm and hand function, even after completion of conventional rehabilitation programs. The standard neuro physiological facilitation technique use for hemiplegic upper limb have not been confirmed to promote functional recovery of hemiplegic limb. This promote that more research needs to be conducted for same.

Cognitive Sensory Motor Training Therapy & The repetitive facilitation exercises (RFEs) Both techniques will promote functional recovery of hemiparetic upper limb and hand by improving joint perception and realization of movement. Hence, this study aims to compare the effectiveness of cognitive sensory motor training versus repetitive facilitation exercises on quality of movement of upper limb, functional activity and Range of motion of upper limbin hemiparetic patients.

A blinded randomized clinical trial was conducted 30 patients were divided into 2 groups (GROUP A and GROUP B)- those who performed cognitive Sensory Motor exercises(GROUP A- experimental group) and those who performed repetitive facilitation exercises (GROUP B-control group) Data for measures quality of movement performance of the hemiparetic arm and hand on MESUPES scale, Barthel Index (BI) measures the extent to which somebody can function independently and has mobility in their &, goniometer measuring the joint ranges in each plane of the joint was collected on day 1 (pretreatment session), and on 190 day after the experiment.

This study produced a stastically significant increase in overall on quality of movement, functional activity and range of motion in both the group of upper limb in hemiplegic patients. This research also provides evidence that training exercise may be a valuable and important tool in clinical practice and is consistent with the current use by clinical physiotherapist in the treatment of upper limb in hemiplegic patients.

Keywords: Stroke, Barthel Index, MESUPES scale
INTRODUCTION
Stroke (cerebrovascular accident [CVA]) is the sudden loss of neurological function caused by an interruption of the blood flow to the brain. Ischemic stroke is the most common type, affecting about 80% of individuals with stroke, and results when a clot blocks or impairs blood flow, depriving the brain of essential oxygen and nutrients. Hemorrhagic stroke occurs when blood vessels rupture, causing leakage of blood in or around the brain. Clinically, a variety of focal deficits are possible, including changes in the level of consciousness and impairments of sensory, motor, cognitive, perceptual, and language functions. To be classified as stroke, neurological deficits must persist for at least 24 hours. Motor deficits are characterized by paralysis (hemiplegia) or weakness (hemiparesis), typically on the side of the body opposite the side of the lesion. The term hemiplegia is often used generically to refer to the wide variety of motor problems that result from stroke. Location and extent of brain injury, the amount of collateral blood flow, and early acute care management determine the severity of neurological deficits in an individual patient. Impairments may resolve spontaneously as brain swelling subsides (reversible ischemic neurological deficit), generally within 3 weeks. Residual neurological impairments are those that persist longer than 3 weeks and may lead to lasting disability. Strokes are classified by etiological categories (thrombosis, embolus, or hemorrhage), specific vascular territory (anterior cerebral artery syndrome, middle cerebral artery syndrome, and so forth), and management categories (transient ischemic attack, minor stroke, major stroke, deteriorating stroke, young stroke).

PREVALENCE AND INCIDENCE OF STROKE
Stroke is the fourth leading cause of death and the leading cause of long-term disability among adults in the United States. An estimated 7,000,000 Americans older than 20 years of age have experienced a stroke. Each year approximately 795,000 individuals experience a stroke; approximately 610,000 are first attacks and 185,000 are recurrent strokes. Women have a lower age-adjusted stroke incidence than men. However, this is reversed in older ages; women over 65 years of age have an elevated risk compared to men. Compared to whites, African Americans have twice the risk of first-ever stroke; rates are also higher in Mexican Americans, American Indians, and Alaska Natives. Incidence of stroke increases dramatically with age, doubling in the decade after 65 years of age. Twenty-eight percent of strokes occur in individuals younger than 65 years of age. Between 5% and 14% of persons who survive an initial stroke will experience another one within 1 year; within 5 years stroke will recur in 24% of women and 42% of men. Current data reveal that stroke incidence has been declining in recent years in a largely white adult cohort.1 He incidence of stroke deaths is greater than 143,000 annually, and strokes account for 1 of every 18 deaths in the United States. He type of stroke is significant in determining survival. Of patients with stroke, hemorrhagic stroke accounts for the largest number of deaths, with mortality rates of 37% to 38% at 1 month, whereas ischemic strokes have a mortality rate of only 8% to 12% at 1 month. Survival rates are dramatically lessened by increased age, hypertension, heart disease, and diabetes. Loss of consciousness at stroke onset, lesion size, persistent severe hemiplegia, multiple neurological deficits, and history of previous stroke are also important predictors of mortality.

Stroke is the most common cause of chronic disability. Of survivors, majority will experience difficulty with activities of daily living (ADLs), ambulation, speech, motor disturbance, sensory disturbance, perceptual disturbance, language disturbance, cognitive disorder, and urinary incontinence depending on
the area of the brain lesion. Hemiplegia is commonly associated with a decrease in balance ability 50% to 65% of stroke patients are left with functional impairments. Most patients are still significantly disabled beyond 6 months after stroke, and do not return to social activities within the community. Large numbers of people who survive a stroke are left with permanent impairment of arm and hand function, even after completion of conventional rehabilitation programs. It has been reported that only 5–20% of patients regain full arm and hand function with a number of prospective cohort studies suggesting that 33–66% of stroke patients with a paretic arm do not show any recovery of upper limb function six months after stroke.

The signs and symptoms of stroke area as follows:

- Hemiparesis and weakness of facial muscles
- Numbness
- Altered sensation
- Initial flaccidity of muscles (decreased tone of muscles) which is later replaced by spasticity (increase in tone of muscles), exaggerated reflexes and development of synergies.

Majority of the cases of stroke represent unilateral weakness that is weakness on one side of the body. Due to inter-crossing of the fibres of the brain the symptoms usually appear on the opposite side of the area of brain being affected. The human brain is divided into forebrain, midbrain and hindbrain. Forebrain consists of the cerebrum and hindbrain comprises of medulla oblongata, pons verolli and cerebellum. Depending on the severity and extent of damage occurred in the brain different signs and symptoms are seen which are explained as follows:

- Altered or disturbed sense of smell, taste, hearing or vision.
- Disturbed visual fields
- Weakness of ocular muscles, characterised by drooping of eyelids
- Decreased reflexes primarily - the gag reflex, swallow and reactivity of pupil towards light
- Altered sensation on extremities and weakness of the facial and axial musculature.
- Difficulty in balancing and development of nystagmus
- Difficulty in articulation
- Drooling of saliva

Large numbers of people who survive a stroke are left with permanent impairment of arm and hand function, even after completion of conventional rehabilitation programs. It has been reported that only 5–20% of patients regain full arm and hand function with a number of prospective cohort studies suggesting that 33–66% of stroke patients with a paretic arm do not show any recovery of upper limb function six months after stroke.

TREATMENT OF HEMIPLEGIC UPPER LIMB

Understanding upper limb impairment after stroke is essential to planning therapeutic efforts to restore function. However, determining which upper limb impairment to treat and how is complex for two reasons:

1) The impairments are not static, i.e., as motor recovery proceeds, the type and nature of the impairments may change; therefore, the treatment needs to

The International Journal for Multidisciplinary Research (IJFMR)
evolve to target the impairment contributing to dysfunction at a given point in time.

2) Multiple impairments may be present simultaneously, i.e., a patient may present with weakness of the arm and hand immediately after a stroke, which may not have resolved when spasticity sets in a few weeks or months later; hence there may be a layering of impairments over time making it difficult to decide what to treat first.

The most useful way to understand how impairments contribute to upper limb dysfunction may be to examine them from the perspective of their functional consequences.

There are three main functional consequences of impairments on upper limb function are: (1) learned nonuse, (2) learned bad-use, and (3) forgetting as determined by behavioral analysis of tasks. The impairments that contribute to each of these functional limitations are described. Cognitive Sensory Motor Training Therapy is a unique comprehensive rehabilitation programme incorporating systematic coaching and retraining of sensory guided motor control.

First proposed by Professor Carlo Perfetti, this rehabilitation programme is now known as Perfetti’s Method. Perfetti’s Cognitive Sensory Motor Training Therapy is that it focuses on sensory retraining, with particular emphasis on joint position perception.

The repetitive facilitation exercises (RFEs) using novel facilitation methods for the upper limb and fingers, give sufficient physical stimulation, such as by the stretch reflex or skin–muscle reflex that is elicited immediately before or at the same time as when the patient makes an effort to move his hemiplegic hand or finger, in order to elevate the level of excitation of the corresponding injured descending motor tracts and it allows the patient to initiate movements of the hemiplegic hand or finger in response to his intention.

Limitations in arm and hand function are a major problem after stroke and cause difficulties in patients’ daily lives. Recent research has demonstrated that the adult central nervous system retains a much higher capacity for plasticity and reorganization than earlier believed, therefore, an important goal of stroke rehabilitation is to substantially increase the functional use of the affected arm while minimizing compensatory strategies and avoiding learned disuse.

METHODOLOGY

AIM

To compare the effectiveness of cognitive sensory motor training versus repetitive facilitation exercises on quality of movement of upper limb, functional activity and Range of motion of upper limb in hemiparetic patients.

OBJECTIVE

To identify the effect of Cognitive Sensory Motor Training in individuals with Hemiparetic patients. To identify the effect of Repetitive Facilitation Exercise in individuals with Hemiparetic patients. To investigate the effect of Cognitive Sensory Motor Training versus Repetitive Facilitation exercises on quality of movement of upper limb, functional activity and Range of motion of upper limb in hemiparetic patients.
SAMPLING

Study Design
A comparative study Sample Method Experimental

Sample size
The sample size will consist of 30 hemiparesis patients with equal size of 15 patients in each of the two groups.

Sample setting
The study will be originated at career hospital bhopal.

Study Duration
3 month

Inclusion criteria
- Gender: Both male and female
- Age: 25-65 years
- Patient with stroke confirmed by MRI No previous history of stroke
- Mini Mental State Examination Score should be ≥ 21 OUTOF 30
- Brunnstrom Recovery Stage Score should be ≥ 4
- Stroke within less than 4 weeks before the study.
- Confirmed by clinical examination and magnetic resonance imaging (MRI).
- Ability to follow simple direction of commands.

Exclusion criteria
- Patient with severe sensory disturbance, pain and contracture.
- Patient with hemineglect pre-existing upper extremity impairment.
- Patient without motor deficits.
- Presence of any other musculoskeletal condition. e.g. (Frozen shoulder, any recent fractures of upper limb.
- Any accompanying diseases or disorders, other than stroke, that could interfere with upper extremity training.
- Uncontrolled health conditions for which exercise was contraindicated.
- Cerebellar lesion.

VARIABLES

Dependent variables
1. MESUPES scale
2. Modified Barthel Index (MBI)
3. Goniometer

Independent variables

1. Arm Function
2. Visual Analogue Scale
3. Muscle power

INSTRUMENTATION AND FUNCTIONAL SCALES USED

1. MESUPES Scale
2. Barthel index
3. Goniometer set
4. Chair
5. Table
6. Dice

PROCEDURE

Exercise protocols

A blinded randomized clinical trial was conducted 30 patients were divided into 2 groups (GROUP A and GROUP B) - those who performed cognitive Sensory Motor exercises (GROUP A - experimental group) and those who performed repetitive facilitation exercises (GROUP B - controlled group) Data for measures quality of movement performance of the hemiparetic arm and hand on MESUPES scale, Modified Barthel Index (MBI) measures the extent to which somebody can function independently and has mobility in their hand, Goniometer measures the joint range in each plane of the joint was collected on day 1 (pretreatment session), and on 90 day after the experiment. Both groups underwent their respective interventions for 30 min each in the morning and 30 min in the afternoon to minimize the physical fatigue.

Measurements

MESUPE S scale

This is approach has been used in the development of the new assessment tool, the Motor Evaluation Scale for Upper Extremity in Stroke Patients (MESUPES). A 17-items into two sub scales ; MESUPES-Arm function; 8items(score 0-5) MESUPES-Hand function;9items(score0-2) objective evaluation scale designed to assess quality of movement of arm and hand function after stroke.

Modified Barthel Index (MBI)

The MBI, which consists of 10 items describing activities of daily living (ADL) and mobility, was scored to measure the degree of assistance required by an individual and was used to assess ADL in patients with stroke. Each item is rated 5-Likert scale, with weights added according to the item. The higher the total score, the more independent on performing ADLs.

Goniometer

The range of motion is the measurement of movement around a specific joint range of motion. A universal goniometer has three parts. A body- It is designed like a protractor and may form a full or a
half-circle. It has a scale for the measurement of the angle. The scale can extend either from 0 to 180 degrees or 180 to 0 degrees for half circle models or 0 to 360 degrees on full circle models. The moving arm is the arm of the goniometer, which aligns with the mobile part of the joint measured.

Intervention

Group A (experimental Group) Cognitive Exercise Therapy

PRE

Day 1

20 reps x 2 set

1. Shoulder joint recognition training by motor imagery
2. Shoulder and elbow joint recognition training using a circular track plate.
3. Training on awareness of elbow and wrist joint angles using a Bogen. Training on pressure awareness of the elbow and wrist using a sponge.
4. Finger tactile recognition training using a tactile plate.

Group A (experimental Group) Cognitive Exercise Therapy

POST

Day 90

20 reps x 2 set

1. Shoulder joint recognition training by motor imagery
2. Shoulder and elbow joint recognition training using a circular track plate.
3. Training on awareness of elbow and wrist joint angles using a Bogen.
4. Training on pressure awareness of the elbow and wrist using a sponge.
5. Finger tactile recognition training using a tactile plate.

GROUP B (control group) Repetitive Facilitation Exercises

Each RFE session includes eight specific exercise patterns. **PRE**

DAY 1

20 reps x 2 set

1. Shoulder flexion with 90° elbow flexion.
2. Shoulder horizontal extension/ flexion with elbow flexion.
3. Shoulder flexion/ adduction/ external rotation with flexion of the elbow and forearm supination with wrist flexion, finger flexion followed by shoulder extension/ abduction/ internal rotation while extending the elbow and pronating the forearm accompanied by wrist dorsiflexion and finger extension in the supine position.
4. Shoulder flexion/ abduction/ external rotation with elbow extension accompanied by wrist extension and finger extension (modified PNF).
5. Forearm supination/ pronation with 90° elbow flexion in the sitting position. When the therapist will give commands, “Turn your hand (palm) upward”, the patient attempts to perform forearm supination and then ask to „Turn your hand (palm) down-ward”, the patient attempts to perform forearm pronation.

1. Wrist extension and forearm pronation with extension of the fingers in the supine position.
2. Finger extension with wrist flexion in the supine position.
3. Finger extension/flexion with wrist flexion in the sitting position.

GROUP B (control group)

Repetitive Facilitation Exercises

POST DAY 90

1. Shoulder flexion with the elbow bent at 90° in the supine position
2. Shoulder horizontal extension/flexion in the supine position with the elbow ranging in flexion from about 70° to 110°
3. Shoulder flexion/adduction/external rotation with flexion of the elbow and forearm supination accompanied by wrist flexion, finger flexion, and shoulder extension/abduction/internal rotation while extending the elbow and pronating the forearm accompanied by wrist dorsiflexion and finger extension in the supine position
4. Shoulder flexion/abduction/external rotation with elbow extension accompanied by wrist dorsiflexion and finger extension
5. Forearm supination/pronation with 90° elbow flexion in the sitting position
6. Wrist dorsiflexion and forearm pronation with extension of the fingers in the supine position
7. Finger extension with wrist flexion in the supine position
8. Finger extension/flexion with wrist flexion in the sitting position

Conventional therapy

Control activities consisted of self-range of motion (SROM) stretches and active range of motion (AROM) strengthening exercises throughout the hemiparetic upper extremity. During SROM stretches, participants clasped the hands or arms together and used the strength of the less-affected arm to move the affected arm through the available ROM at each joint. During AROM exercises, the hemiparetic arm was supported against gravity by a tabletop, and a towel was placed under the arm.

POST INTERVENTION DATA COLLECTION

Data was collected in a quiet room in the data collection form, along with other details of the subject by the same investigator. Two readings were taken on 1st and 90th day.

3.7 STATISTICAL AND DATA ANALYSIS

Analysis of the data collected of the MESUPES Scale, Modified Barthel Index and ROM by Goniometer of 30 subjects was done by several suitable statistical analysis tests by using MS Office Excel software 10.0 version in order to verify the investigation of the study. The results were considered statistically significant if the p-value ≤ 0.01. The characteristics of the data were presented through tables and graphs.

WITHIN GROUP ANALYSIS OF MESUPES SCORE OF GROUP A (EXPERIMENTAL GROUP)

<table>
<thead>
<tr>
<th>GROUP A</th>
<th>MEAN±SD</th>
<th>tvalue</th>
<th>pvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>8.33±1.112</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WITHIN GROUP ANALYSIS OF MESUPES SCORE OF GROUP B (CONTROL GROUP)

<table>
<thead>
<tr>
<th>GROUP B CONTROL</th>
<th>MEAN±SD</th>
<th>t_value</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>7.266±1.03</td>
<td>-5.517</td>
<td>0.001</td>
</tr>
<tr>
<td>Day 90</td>
<td>43.733±2.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Day 90 45.8±1.78 -7.24 0.0001
COMPARISON OF MESUPES SCORE BETWEEN GROUP A (EXPERIMENTAL GROUP) AND GROUP B (CONTROLLED GROUP)

<table>
<thead>
<tr>
<th></th>
<th>GROUP A M+SDN=15</th>
<th>GROUP B M+SDN=15</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY1</td>
<td>8.33±1.112</td>
<td>7.266±1.03</td>
<td>2.46</td>
<td>0.02</td>
</tr>
<tr>
<td>DAY 90</td>
<td>45.8±1.78</td>
<td>43.733±2.25</td>
<td>2.78</td>
<td>0.004</td>
</tr>
</tbody>
</table>

WITHINGROUP ANALYSIS OF MODIFIED BARTHAL INDEX SCORE OF GROUP A (EXPERIMENTAL GROUP)

<table>
<thead>
<tr>
<th>GROUP A EXPERIMENTAL</th>
<th>MEAN±SD</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY1</td>
<td>18.8±4.64</td>
<td>-4.25</td>
<td>0.0001</td>
</tr>
<tr>
<td>DAY 90</td>
<td>85.33±3.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WITHINGROUP ANALYSIS OF MODIFIED BARTHAL INDEX SCORE OF GROUP B (CONTROL GROUP)

<table>
<thead>
<tr>
<th>GROUP B CONTROL</th>
<th>MEAN±SD</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY1</td>
<td>20±0</td>
<td>-3.13</td>
<td>0.574</td>
</tr>
<tr>
<td>DAY 90</td>
<td>78±6.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPARISON OF MODIFIED BARTHAL INDEX BETWEEN GROUP A (EXPERIMENTAL GROUP) AND GROUP B (CONTROLLED GROUP)

<table>
<thead>
<tr>
<th></th>
<th>GROUP A M+SDN=15</th>
<th>GROUPB M + SDN=15</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY1</td>
<td>18.8+4.64</td>
<td>20+0</td>
<td>6.55</td>
<td>0.003</td>
</tr>
<tr>
<td>DAY 90</td>
<td>85.33+3.99</td>
<td>78+6.21</td>
<td>3.85</td>
<td>0.000</td>
</tr>
</tbody>
</table>

WITHIN GROUP ANALYSIS OF FLEXION RANGE ON...
<table>
<thead>
<tr>
<th>GROUP (EXPERIMENTAL)</th>
<th>MEAN±SD</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY 1</td>
<td>2.13±1.76</td>
<td>-10.8</td>
<td>0.021</td>
</tr>
<tr>
<td>DAY 90</td>
<td>95.46±3.52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WITHINGROUPANALYSISOFFLEXIONRANGEON GONIOMETER OF GROUP B (CONTROL GROUP)

<table>
<thead>
<tr>
<th>GROUP B CONTROL</th>
<th>MEAN±SD</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY1</td>
<td>1.8±1.47</td>
<td>2.07</td>
<td>0.1005</td>
</tr>
<tr>
<td>DAY 90</td>
<td>80±4.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPARISON OF FLEXION RANGE ON GONIOMETER BETWEEN GROUPA (EXPERIMENTALGROUP) AND GROUPB (CONTROLLED GROUP)

<table>
<thead>
<tr>
<th></th>
<th>GROUP A M+SDN=15</th>
<th>GROUP BM+ SDN=15</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY1</td>
<td>2.13±1.76</td>
<td>1.8±1.47</td>
<td>0.566</td>
<td>0.02</td>
</tr>
<tr>
<td>DAY 90</td>
<td>95.46±3.52</td>
<td>80±4.05</td>
<td>11.05</td>
<td>0.005</td>
</tr>
</tbody>
</table>

![Graph showing comparison between GROUP A and GROUP B](image-url)
WITHINGROUPANALYSISOFABDUCTIONRANGEON
GONIOMETEROFGROUPA(EXPERIMENTALGROUP)

<table>
<thead>
<tr>
<th>GROUP A</th>
<th>MEAN±SD</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY1</td>
<td>1.86±1.30</td>
<td>-17.22</td>
<td>0.0001</td>
</tr>
<tr>
<td>DAY 90</td>
<td>93.13±2.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WITHINGROUPANALYSISOFABDUCTIONRANGEON GONIOMETER OF GROUP B
(CONTROL GROUP)

<table>
<thead>
<tr>
<th>GROUP B CONTROL</th>
<th>MEAN±SD</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY1</td>
<td>1.20±1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAY 90</td>
<td>78.86±4.24</td>
<td>-2.13</td>
<td>0.022</td>
</tr>
</tbody>
</table>
COMPARISON OF ABDUCTION RANGE ON GONIOMETER BETWEEN GROUP A (EXPERIMENTAL GROUP) AND GROUP B (CONTROLLED GROUP)

<table>
<thead>
<tr>
<th></th>
<th>GROUP A M+SDN=15</th>
<th>GROUP B M+SDN=15</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY 1</td>
<td>1.86+1.30</td>
<td>1.20+1.24</td>
<td>1.45</td>
<td>0.07</td>
</tr>
<tr>
<td>DAY 90</td>
<td>93.13+2.13</td>
<td>1.78.86+4.24</td>
<td>1.64</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

RESULTS
This study was done on 30 subjects, 15 subjects grouped for cognitive sensory motor exercise and 15 subjects grouped for repetitive facilitation exercise. Efforts were made in this study to examine the efficacy of cognitive sensory motor exercise versus repetitive facilitation using parameters like MESUPES score, modified barthel index, goniometer and compare their results.

Research hypothesis has been accepted that cognitive sensory motor exercise is more significant than repetitive facilitation exercise in Quality of movement of upper limb, functional activity and ROM in Hemiparetic patients.

Null hypothesis is rejected that there is no significant difference between the cognitive sensory motor exercise and repetitive facilitation exercise in Quality of movement of upper limb, functional activity and ROM in Hemiparetic patients. To perform statistical analysis of data thus collected within group analysis of all the parameters namely MESUPES score, modified barthel index, goniometer will be performed. Moreover, between groups analysis of all the above-mentioned four parameters will also be performed to obtain the results.
graphs between the experimental and control groups. It has been deduced that there has been a significant increase in quality of movement of upper limb, functional activity, and ROM in Hemiparetic patients of the experimental group as compared to that of the control group within the period of three months. This therefore, indicates that the cognitive sensory motor exercise is effective than repetitive facilitation exercise on quality of movement of upper limb, functional activity, and ROM in Hemiparetic patients. Hence, the experimental hypothesis is being proved by this.

DISCUSSION
The present study was undertaken with the intention to see the effectiveness of Cognitive Sensory Motor Training Versus Repetitive Facilitation Exercise for Quality of movement, ADL, and ROM in Subjects with Hemiparesis (age 25 to 65 years) using MESUPES and BI scales. The MESUPES is a tool used to check quality of movement in hemiparetic upper limb, while the BI provides guidelines for determining daily living activities and functional levels and treatment. A total of 30 subjects both males and females aged 25 to 65 years with stroke (Hemiparesis) were included with 15 participants in each group out of which a total of 15 subjects in group A and 15 subjects in group B completed the 12 weeks of program.

In this study, we found that Cognitive Sensory Motor Training is effective in improving quality of movement of upper limb, functional activity, and ROM (p < 0.0001) in Hemiparetic patients. Similarly, Repetitive Facilitation Exercise for is also effective but not more than cognitive sensory motor exercise in improving quality of movement of upper limb, functional activity, and ROM (p < 0.0001) in Hemiparetic patients.

The results of the present study are in agreement with the study conducted by Ratanapat Chanubolet al. (2012) studied the effectiveness of Cognitive Sensory Motor Training Therapy (Perfetti’s method) vis-à-vis conventional occupational therapy in the recovery of arm function after acute stroke by Prospective randomized controlled trial in rehabilitation centers in Bangkok, Thailand.

The better improvement in cognitive sensory motor training is because it focuses on sensory retraining, with particular emphasis on joint position perception, incorporating systematic coaching and retraining of sensory guided motor control. And The repetitive facilitation exercises (RFEs) using novel facilitation methods for the upper limb and fingers, give sufficient physical stimulation, such as by the stretch reflex or skin–muscle reflex that is elicited immediately before or at the same time as when the patient makes an effort to move his hemiplegic hand or finger, in order to elevate the level of excitation of the corresponding injured descending motor tracts and it allows the patient to initiate movements of the hemiplegic hand or finger in response to his intention.

CONCLUSION
The common trend of the treatment of functional activity in hemiparetic upper limb. Exercises for hemiparetic upper limb concentrate on increasing range of motion with the assumption that functional improvement will follow. In this study, the cognitive sensory motor group demonstrated a significant increase in quality of movement level by (75%) when compared to the repetitive facilitation exercise group (50%), which thus could account for the functional ability differences seen between groups. In addition to this, the observed group effect for functional activity and ROM in favor of the cognitive sensory motor exercise may have been key in improving functional stability.
It is necessary to recognize if deficits at the impairment level are causative in limiting activities, so that if strength is an issue, dealing with the impairment at a more functional level may be more effective in the long term. Effectiveness of strengthening exercises can be maximized by introducing flexibility, coordination, balance, and mobility, which may transfer to an overall improvement in function. Repetition and task practice not only improves strength but reduces activity limitations associated with the impairment of decreased muscle strength. Ultimately, the inability to participate in activities at a social level has an impact on the quality of life in individuals with hemiplegic patients. Addressing the impairments and activity limitations associated with this disease in middle-aged individuals may delay and/or prevent the disabilities encountered in the elderly. One can also suggest that the repetition of the star exercise contributed to proprioceptive acuity and increased balance and stability in the cognitive sensory motor group as it involves balancing on upper limb while reaching out with the other upper limb to touch all points of an outlined star. The data from this study support that cognitive sensory motor exercise is a better option in improving quality of movement of upper limb, functional activity and ROM in this 25-65 year old population with Hemiparetic patients.

REFERENCES
2. Pandian JD, Sudhan P. Stroke epidemiology and stroke care services in India. Journal of stroke 2013
5. N. Effects of intensive repetition of a new facilitation technique on motor functional recovery of the hemiplegic upper limb and hand. Brain Injury 2010
of a caseseries. Journal of the Medical Association of Thailand= Chotmaihet thangphaet 2003
and arm movements beneficial for motor recovery in stroke patients? Clinical Rehabilitation. 2003;17:723–730
