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Abstract: 

Utilizing a comprehensive dataset featuring daily information such as sunrise time, sunset time, 

minimum and maximum temperatures, this study's primary aim is to ascertain the duration necessary for 

a solar panel installation to become profitable and reach the breakeven point. Users provide input 

parameters, including the solar panel area to be installed, location, cost per unit of current, and 

installation charges. Employing time series analysis and forecasting techniques, the system takes into 

account various environmental factors, energy generation potential, and local energy prices. The 

ultimate goal is to predict when the cumulative income from the solar panel installation will surpass the 

initial installation costs, facilitating an estimation of the point at which the solar panel system will break 

even and commence generating a net profit. 

This solar panel profitability analysis holds considerable significance for individuals and organizations 

contemplating investments in renewable energy. It equips stakeholders with the information required to 

make informed decisions regarding the feasibility and financial viability of solar panel installations at 

specific locations. This, in turn, promotes a sustainable and cost-effective transition to renewable energy 

sources, aligning with the broader goal of  reducing our reliance on non-renewable energy and fostering 

environmentally responsible practices.0 

 

Keywords: Solar radiation, daily energy generation estimation, machine learning, random forest, time 

series analysis, ARIMA, SARIMA, renewable energy, energy price forecasting 

 

1. 1.INTRODUCTION 

In today's world, fundamental necessities for human survival include food, clothing, housing, and even 

power. It is evident from examining. the process of producing power that non-renewable resources are 

used to produce the vast bulk of our energy. But because of the pressing environmental problems of our 

day, these non-renewable fuels are running out very quickly. Therefore, reliable and ecologically 

beneficial alternatives are desperately needed to meet our energy needs [1]. It is generally accepted that 

using solar energy is a healthy and sustainable form of energy. One of its most obvious features is its 

widespread availability. The sun is like a massive nuclear fusion reactor, constantly producing large 

amounts of radiation. This light energy is carried by photons. 
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The precise evaluation of a solar power plant's energy output is the primary focus of this work. With its 

vast potential, solar energy is an important area of study that has gained popularity recently. In this 

context, machine learning emerges as a very helpful technique for creating time series forecasts [2]. This 

research investigates the modeling and computational strategies employed in the simulation and 

evaluation of irregular and variable shadows, including those caused by moving clouds, on solar 

photovoltaic (PV) array energy. 

Researchers most likely employ sophisticated mathematical models and computer simulations to 

accurately predict how these occasional shadows would impact the performance of solar photovoltaic 

systems. Understanding the dynamic behavior of shadows on solar panels is necessary to maximize the 

efficiency and energy production of these renewable energy sources. 

By using complex algorithms and simulations, this research aims to shed light on how to lessen power 

variations caused by shadowing occurrences. This knowledge can help with the design and 

administration of solar PV systems, improving their overall reliability and energy production. [3] 

discusses the output power of solar PV arrays. This paper proposes a new technique for one-day 

forecasting photovoltaic (PV) power generation. This model makes use of the unique features of weather 

classification to enhance its prediction abilities. It is based on the Support Vector Machine (SVM) 

theory. The integration of machine learning and weather classification criteria offers a promising 

approach to address the problems associated with renewable energy production and grid stability [4]. 

Previous research, as noted in [16], investigated machine learning methods in great detail to forecast the 

output power of photovoltaic (PV) systems. These methods included Support Vector Machines (SVM), 

Artificial Neural Networks (ANN), and Multiple Linear Regression. Although PV system performance 

predictions has received interest, energy management has received the majority of the attention. It's 

interesting to note that insufficient focus has been placed on PV system performance ratio prediction, 

despite its critical role in guaranteeing energy reliability. In order to close this gap, this study uses SVM 

and Multiple Linear Regression to predict performance ratios over a range of time horizons, including 

one day, one week, two weeks, three weeks, and one month. The goal of the research is to improve and 

maintain PV systems' energy dependability while offering insightful information that can be used to 

forecast and manage energy more efficiently. 

The world urgently needs to switch to sustainable energy sources in order to fight climate change and cut 

greenhouse gas emissions. Given the circumstances, solar energy has demonstrated potential as an 

environmentally responsible way to meet the growing need for electricity. By anticipating solar radiation 

and estimating daily energy generation using weather data and machine learning techniques, this study 

aims to boost solar energy consumption and optimization. 

 

1.1 MOTIVATION 

Apart from being intriguing, it can also have significant practical uses in estimating daily energy 

production and forecasting solar radiation. The following are some justifications for initiating this kind 

of research:  

Sunlight energy is a clean and renewable energy source. Accurately projecting solar radiation and 

energy production helps improve the development of environmentally friendly and sustainable energy 

solutions. With precise estimates of solar radiation, energy output can be maximized for individuals, 

businesses, and utilities, with potentially large financial gains. It provides cost-effective energy 
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requirements solutions and helps reduce energy costs. As a teaching tool, this research study might be 

employed. Increasing people's awareness of the benefits of solar energy could prompt them to 

investigate other sources.. 

     

1.2 CONTRIBUTION 

A crucial component of managing and planning solar energy is predicting solar radiation and estimating 

daily energy production from solar panels. There are various significant contributions and factors in this 

process, including: 

• Gathering comprehensive and trustworthy weather data is essential. This includes specifics regarding 

temperature, humidity, cloud cover, and sun irradiance. With historical data, patterns and trends can 

be found. 

• Gathering accurate and comprehensive weather data is essential. This contains information on 

temperature, humidity, cloud cover, and sun irradiance. Historical data can be used to identify 

patterns and trends. 

• Real-time weather data integration is essential for accurate daily forecasts. This requires access to 

weather APIs or other data sources. 

• Accounting for the cost of the solar array installation and the revenue generated by electricity 

generation. Return on investment (ROI) and payback time calculations are necessary. 

• To forecast solar radiation and calculate daily energy generation, a combination of data science, 

engineering, and domain-specific expertise in the field of solar energy is required. For solar energy to 

be managed efficiently and economically, these forecasts must be accurate. 

 

2. Literature Survey 

It is observed that precise projections lead to large savings by preventing needless fuel purchases and 

emergency electricity purchases, and by promoting energy storage, electricity trading, maintenance, and 

other activities. In addition to outlining a novel mathematical technique for precise hourly electricity 

generation estimation from rooftop solar plants, the work highlights the significance of solar energy in 

industrial settings. In order to satisfy the evolving energy needs in a sustainable manner, it emphasizes the 

significance of different estimation approaches used to anticipate global solar irradiance. When compared 

to PV Syst software and actual data, this method shows potential for accurate and extensive integration of 

solar electricity.[6] uses a range of methods, including the Hammerstein-winner, Transfer function, and 

non-linear ARX models, to estimate the output power of solar PV systems in comparison to the Kalman 

filter. By contrasting various approaches, it provides insights into effective methods for estimating solar 

power.[7] The model computes the mean and standard deviation parameters (95% confidence interval) 

using a normal distribution based on historical data. By guiding the design of photovoltaic systems and 

energy policy decisions, this technique supports the assessment of solar energy potential. [8] This study 

looks into how hard it is to get the most electrical energy out of solar panels, which are usually fixed in 

place. An array of solar cells with a 50 m2 roof area and a 6 kWp output may produce around 10,006.7 

kWh annually. This grid-connected system costs Rp 445,453,328 without batteries and will cost you 

maintenance costs for 25 years.[9] 

Artificial intelligence approaches like as artificial neural networks (ANN) and adaptive neuro-fuzzy 

inference systems (ANFIS) are used to precisely anticipate ground observations through software models. 

Based on the study, ANFIS outperforms ANN in terms of accuracy. Using atmospheric data and surface 
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solar radiation values, this study provides significant insights for the design and optimization of solar 

energy systems.[10] In addition to providing significant new information about the techniques employed 

for accurate solar radiation estimation, it highlights the improved performance of models based on 

Artificial Neural Networks (ANNs). The study addresses the main concerns and difficulties associated 

with Turkey's feed-in tariff system, as well as the financial implications of it. In order to estimate global 

solar radiation (GSR), solar radiation estimating models are created, taking into account geographical and 

climatic parameters due to the constraints of current monitoring sites.[11] Turkey's growing solar energy 

potential was demonstrated in 2011 when the country's solar installations reached 442.13 MW thanks to a 

government support program. For industrial applications, the study calculates costs, payback times, and 

scenarios. Using the PVGIS tool and testing against data from 1985 to 2006, it evaluates daily power 

generation and global irradiation per square meter.[12] batteries to guarantee best possible energy 

consumption. The main goal of this work is to forecast off-grid solar PV system reliability, which is 

crucial given concerns about climate change. When there is a scarcity of grid electricity, excess power 

produced during the day is stored in batteries for use during peak load hours.[13] [A model that might be 

used to comparable systems with climate-related changes is produced by analysis using mathematical and 

computational techniques.[14] This study examines the solar and wind energy capacities of Maharashtra, 

India. The study compares and contrasts the use of solar and wind energy across multiple districts. This 

work estimates and predicts the solar cell performance ratio using Principal Component Analysis - 

Support Vector Machine (PCA-SVM) using three years of meteorological data (2015-2018). The findings 

shed light on how renewable energy sources might alleviate the burden on traditional power plants at the 

state and district levels.[15] SVM parameters are optimized via grid search, and data trend analysis 

improves prediction precision. [16] Grid search is used to optimize SVM parameters, and data trend 

analysis enhances prediction accuracy. [16] This study integrates temperature and sun energy data to 

examine solar power estimation in Goa. PCA-SVM achieves a dependable performance ratio estimation 

with an RMSE of 0.11 and an R2 of 0.44, according to the results. With a focus on inverter design using 

PVsyst and MATLAB/Simulink and estimation at specific sites, this work explores solar power 

integration at the distribution level. The study demonstrates a direct correlation between solar power 

output and ambient temperature, with April and November showing the highest results.[17] It addresses 

challenges in integrating solar electricity with conventional grids by offering insights through loss 

diagrams for grid-connected situations and supporting the design of active network protection.[18] This 

study used a Seasonal Autoregressive Integrated Moving Average model to anticipate solar radiation 

values in different locations across India. By projecting prospective cost savings based on current 

electricity bills, users might save over 70% on electricity expenditures, providing insights into the 

financial benefits and breakeven lines for switching to solar energy.[19] The Dirashe Woreda solar 

photovoltaic power systems in Ethiopia are assessed in this study. Using empirical models and NASA 

data, it assesses solar radiation and offers information on the region's solar energy potential. The study's 

contribution of an Angstrom-Prescott Model equation customized for the research location advances our 

understanding of the solar energy resources in this region.[20] The ]. In order to estimate solar power, this 

study proposes an approach that makes use of algebraic combinators and ensemble learning, analyzing 

models such as the Nearest Centroid Classifier, Support Vector Machine, and Decision Tree Classifier. 

When assessing solar output in relation to the construction of new power plants, the recommended 

methodology—which uses the Weighted Sum Rule—achieves exceptional accuracy (99.915%).[21] 
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3. Proposed System 

By using state-of-the-art approaches and techniques, the proposed plan aims to address the deficiencies of 

the existing systems and make them better. Our approach is underpinned by our commitment to use state-

of-the-art techniques and protocols to enhance the accuracy and efficacy of weather-related forecasts. To 

do this, we use a vast array of specific weather data, including temperature, humidity, wind speed, and 

other relevant variables, to train machine learning models. Because it can handle complex interactions 

and identify nonlinear patterns in the data, the random forest technique is the one we specifically chose. 

We also employ time series analysis techniques to improve the accuracy even more. the capacity to 

record regional differences in solar radiation patterns and the resilience in handling missing data and 

outliers. 

All things considered; our recommended method represents a significant advancement in the field of 

weather prediction systems. By adopting cutting-edge approaches, making use of copious amounts of 

data, and building a robust and adaptable framework, we are ready to surmount the challenges that have 

historically made accurate weather prediction challenging. This method not only promises to increase the 

accuracy of weather forecasts, but it also offers an invaluable tool for a variety of applications that depend 

on accurate weather data, such as agriculture, energy management, disaster preparation, and more. 

 

3.1 Methodology 

This section outlines the methodology we employed in our study, which covers time series analysis, 

dataset construction, model training and selection, and data preparation. 

 

3.2 Data Preprocessing 

Preparing the data is an essential step in assuring the accuracy and dependability of the dataset. We 

describe the steps involved in data preprocessing in this subtopic, which include: 

• We extract relevant columns from the gathered dataset, including those related to temperature, 

humidity, wind direction, speed, and sun radiation. These columns provide the input features for our 

models. 

• Extra columns and parameters that aren't truly useful for forecasting solar radiation or estimating 

energy production are eliminated. 

• To deal with missing data, we employ techniques like imputation or the removal of incomplete 

entries. This ensures the completeness and integrity of the dataset. 

 

3.3 Dataset Construction: 

For accurate modeling and prediction, a large dataset must be created. We describe the dataset 

construction procedure in this subtopic, which entails: 

• We search for reliable data sources that provide past weather data for the top eight cities in India. We 

import data back at least four years for each location. 

 

3.4 Model Training Selection: 

For accurate solar radiation prediction, model selection and training are essential. We outline the steps 

involved in model training and selection in this subtopic, which include: 

• To provide the models enough data to train on while also leaving enough for analysis and validation, 

we divided the dataset into training and testing sets. 
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• We use a range of approaches, including random forest, linear regression, SVR, and XG Boost, to 

train prediction models. We adjust the hyperparameters of each algorithm to maximize its 

performance. 

• Using pertinent evaluation metrics, such as root mean square error (RMSE) or coefficient of 

determination (R-squared), we evaluate the trained models. Through this study, we are able to assess 

the accuracy and reliability of each model. 

• •In light of the evaluation's results, we select the model that performs best and has the best accuracy. 

For predicting solar radiation, we utilized the random forest model since it was the most accurate for 

our circumstances. 

 

3.5 Time Series Analysis: 

We may examine temporal patterns, trends, and seasonality in the data on energy generation by using 

time series analysis.  

 

3.5.1 Auto Regression Model: 

The autoregressive (AR) model is a crucial time series forecasting tool that illustrates the correlation 

between a variable and its previous values. In cases where the data exhibit temporal dependency, this is 

quite beneficial. Here are a few mathematical formulas related to the AR model: 

An Auto Regressive model of order p has the following generic form: 

 

 
Where: 

• is the value of the time series at time  

•  is a constant term. 

• , , …,  are the autoregressive coefficients. 

•  are the lagged values of the time series at earlier time points (lagged 

terms). 

•  is the white noise error term at time . 

The effect of earlier values on the current value is described by the autoregressive coefficients in this 

equation. The order of the AR model determines how many previous values are considered (p). 

• For the AR model, selecting the right order (p) is crucial. This can be achieved by utilizing 

information criteria such as the Akaike Information Criterion (AIC) or the Bayesian Information 

Criterion (BIC) to balance the goodness of fit and model complexity. 

• Readers will have a strong foundation for understanding and applying autoregressive time series 

models to forecast solar energy generation thanks to our research paper's application of the AR model. 

 

3.5.2 ARIMA Model 

The Auto Regressive (AR), Integration (I), and Moving Average (MA) components are combined in the 

ARIMA model, a potent time series forecasting method. In time series data, it effectively captures both 

autoregressive behavior and short-term dependence. 

The following are some mathematical representations of the ARIMA model, 

An ARIMA model's general form, designated as ARIMA (p, d, q), is as follows: 
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Where: 

•  is the value of the time series at time t. 

•  is a constant term. 

• p represents the order of the Auto Regressive component. 

• d represents the degree of differencing required to make the series stationary. 

• q represents the order of the Moving Average component. 

• …, are the autoregressive coefficients. 

• …,  are the moving average coefficients. 

• …,  are the lagged values of the time series. 

• …,  are the lagged white noise error terms. 

•  is the white noise error term at time t. 

 

The components of the ARIMA model can be briefly explained as: 

AR (Auto Regressive): indicates the relationship between the current value and its previous values. 

I (Integration): To make the time series data steady, this component includes differencing it d times. In 

ARIMA modeling, stationarity is a key premise. 

MA (Moving Average): The order q specifies how many lag error terms to include in the MA (Moving 

Average), which takes into consideration the short-term dependencies in the time series data. 

Selecting the right numbers for p, d, and q is a crucial stage in ARIMA modeling. This can be achieved 

by considering the stationarity of the data and visually analyzing the autocorrelation and partial 

autocorrelation plots. 

The SARIMA model complements the ARIMA model by taking seasonality in time series data into 

consideration. It helps significantly when the data shows periodic patterns, such daily, weekly, or annual 

seasonality. The SARIMA model is composed of four basic components: Seasonal Moving Average 

(SMA), Seasonal Auto Regressive (SAR), Seasonal Integration (I), and Non-Seasonal ARIMA 

 

The numerical expression for the SARIMA model is as follows: 

 
Where: 

•  is the value of the time series at time t. 

•  is a constant term. 

•  represents the order of the non-seasonal Auto Regressive component. 

• d represents the degree of non-seasonal differencing required. 

•  represents the order of the non-seasonal Moving Average component. 

•  represents the order of the seasonal Auto Regressive component. 

• D represents the degree of seasonal differencing required. 

•  represents the order of the seasonal Moving Average component. 

• s is the seasonality, specifying the number of time points in each seasonal cycle. 
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• …,  are the non-seasonal autoregressive coefficients. 

• …,  are the non-seasonal moving average coefficients. 

• …, are the seasonal autoregressive coefficients. 

• …,  are the seasonal moving average coefficients. 

 

The components of the SARIMA model can be briefly explained as: 

SAR (Seasonal Auto Regressive): SAR models the link between the current value and prior values at a 

seasonal level, much like the non-seasonal AR component. 

SI (Seasonal Integration): Seasonal differencing is used in the SI component to eliminate seasonal 

patterns in the data. 

SMA (Seasonal Moving Average): It takes into account the time series data's seasonal dependencies. 

In SARIMA modeling, picking the right values for p, d, q, P, D, Q, and s is essential. This can be 

accomplished by visually examining the data for seasonal trends and by taking into account the 

stationarity of the seasonal differences. 

 

3.6 Architecture 

3.6.1 Software Architecture 

An application's software architecture includes a client, or user, who submits data into the user interface. 

Following consideration of the inputs, the output is generated in line with them. 

                                                 
 

3.6.2 Technical Architecture 

As part of the app's technological architecture, the web page is rendered using the Flask framework. The 

data in the database is accessed by the intermediate flask framework for the algorithm. The algorithm 

then generates the necessary output.  

 

3.6.3 UML Diagrams 

The Unified Modeling Language (UML) is a general-purpose modeling language. UML's main objective 

is to provide a standard approach for visualizing the design process of a system. It has a lot in common 

with plans from other engineering specialties. 
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Use Case Diagram: 

 
Flow Chart: 

 
4 Results and Evaluation 

We share the findings of our research effort and assess its effectiveness in this part. We evaluate the 

solar radiation forecast model's precision, contrast the effectiveness of various models, and take into 

account customer satisfaction and feedback. 

 

4.1 Evaluation Metrics: 

We measure the performance of our model in predicting solar radiation using multiple evaluation metrics. 

These metrics provide numerical assessments of the model's solar radiation calculation efficiency. The 

following are a few of the commonly used evaluation metrics: 

Error Squared Root Mean (RMSE): Error Squared Root Mean (RMSE): The average size of the 

prediction mistakes is measured by RMSE. That is the MSE squared. It is a commonly used metric to 

evaluate the performance of different models. 
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Where: 

• RMSE is the Root Mean Square Error. 

• n is the number of data points in your dataset. 

•  represents the actual (observed) value for the i-th data point. 

• represents the predicted value for the i-th data point. 

• The summation (∑) is taken over all data points in your dataset. 

R-squared (R2): R2 gauges how much of the variation in solar radiation levels the model can explain. 

When comparing the model's fit to the data, a higher R2 value indicates a better fit. 

 

4.2 Performance Comparison: 

In this subtopic, we contrast the effectiveness of various solar radiation forecast models. We evaluate 

their accuracy by taking measures like MSE, RMSE, and R2 into account. This enables us to pinpoint 

the model that offers the most precise forecasts. The random forest model, which had the lowest MSE, 

RMSE, and greatest R2 value based on our examination, was deemed to have the maximum accuracy. 

For the data, we have taken into account four machine learning models.  

 

4.2.1    Linear Regression : 

uses correlation analyses to provide predictions about continuous outcomes, which are frequently 

employed for tasks like trend or price forecasting. 

 

4.2.2 Support Vector Regression:  

A regression algorithm is SVR. It locates a hyperplane that best fits the continuous target variable within 

a given range of error. SVR can handle non-linear interactions by utilizing support vectors and different 

kernel functions, making it advantageous for forecasting continuous outcomes in complex datasets. 

 

4.2.3    XG Boost: 

An ensemble method that builds subsequent decision trees while fixing the errors of prior trees to 

improve accuracy, which is often used in classification and regression applications, especially in data 

competitions. 

 

4.2.3 Random Forest: 

In order to generate accurate results in both classification and regression tasks, handling both categorical 

and numerical features, Random Forest employs a number of decision trees, each constructed on a 

distinct random subset of data, and combining their predictions. 
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Here is a summary of the accuracies of the four ML models: 

• Random forest has the highest accuracy, followed by XGBoost, SVR, and Regression. 

• XGBoost: 80% 

• Random Forest: 75% 

• SVR: 70% 

• Regression: 60% 

Random Forest is the best performing model on this dataset. 

                                                 
The R2 scores for four distinct machine learning models—Regression, Random Forest, SVR, and 

XGBoost—are displayed as a bar graph in the picture. A model's R2 score quantifies how well it fits the 

data; a higher value denotes a better fit. 

The Random Forest model, XGBoost, Regression, and SVR are the models with the greatest R2 scores, 

as seen by the graph. Because of this, the Random Forest model's performance in predicting the target 

values in the dataset is inferior to that of other models. 

Here is the table for model selection for prediction of Solar energy generated: 
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In the picture, there is a bar graph showing the root mean square error (RMSE) for four distinct time 

series models: auto regression, ARIMA, SARIMA, and ARIMA with features. The RMSE calculates the 

variation between the values that a model predicts and the actual values. This suggests that the SARIMA 

model is the most accurate at predicting future values of the time series, followed by the ARIMA with 

Features model. The auto regression and ARIMA models have higher RMSEs when compared to other 

models. 

 

5 Conclusion and Future Scope 

In conclusion, by fusing time series analysis, machine learning, and the random forest method, our 

research was able to successfully construct a solar energy forecast model. When calculating solar 

radiation quantities using historical meteorological data, the model showed impressive accuracy. 

Computed energy generation values provided useful information regarding solar panel potential energy 

output, enabling better energy planning and management. The user-friendly estimates of energy 

production were generated using the Flask-based user interface, which also made it easy to input 

information about solar panels. There are several possible directions in which to take the solar radiation 

forecast and energy generation estimation system. Firstly, using more advanced machine learning 

methods, like neural networks or gradient boosting, could enhance solar radiation predictions even 

further. Estimates of energy generation from the prediction model would also be more dynamic and up to 

date with real-time weather data. To increase the precision of estimations of solar radiation and energy 

generation, the approach might be developed to incorporate additional variables such as cloud cover, air 

quality, and geographical variations. Furthermore, integrating predictive maintenance capabilities into the 

system would help identify any issues or malfunctions with the solar panels, improving the system's 

longevity and performance. Extending the system's coverage outside India's eight most populous cities 

could benefit a broader user base by providing accurate estimations of solar energy. This can be achieved 

by aggregating meteorological data from other sources. To enable more efficient energy distribution and 

consumption, it might also be looked into integrating smart grid technology or energy management 

systems. In conclusion, our research has successfully produced a system that provides accurate 

estimations and informative data for the generation of solar energy. In the future, the research project will 

concentrate on incorporating state-of-the-art algorithms, real-time data, additional variables, predictive 

maintenance, extending its geographic scope, and iteratively improving through user feedback. Through 

investigating these domains, we could enhance the precision and efficacy of the system, transforming it 

into a valuable instrument for individuals, corporations, and policymakers seeking to optimize solar 

power. 
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