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Abstract 

In the evolving landscape of technology and smart devices, the focus on modeling spatial correlations, 

temporal dynamics, and friendship influence in point-of-interest (POI) check-ins has intensified. Existing 

works center on capturing user check-in behavior, emphasizing spatial and temporal dependencies of 

POIs. Markov chain-based methods address instance-level interactions, while recurrent neural network 

(RNN) approaches excel in handling variable-length check-in sequences. However, the former struggles 

with high-order POI transition dependency, and the latter cannot discern individual POI contributions in 

a historical check-in sequence. Additionally, RNNs propagate local and global information through a 

single bottleneck—hidden states. To address these limitations, a novel model is presented, enforcing 

contextual constraints on sequential data. The design incorporates spatial and temporal attention 

mechanisms over an RNN, highlighting the significance of POIs visited by users within specific time 

intervals and geographical distances during successive check-ins. The attention mechanism aids in 

identifying crucial POIs based on time difference and spatial distance in user check-in history for 

predicting the next POI. Periodicity and friendship influence are also considered in the model design. 

Experimental results on the BrightKite location-based social network demonstrate the proposed method's 

outperformance over existing state-of-the-art deep neural network methods for the next POI prediction 

and understanding of user transition behavior. Sensitivity analyses of parameters, including context 

windows for capturing sequential effects and estimating temporal and spatial attention, further validate 

the model's effectiveness. In parallel, this paper introduces a Space-Time Features-based Recurrent Neural 

Network (STF-RNN) for predicting individuals' next movements using mobility patterns from GPS device 

logs. Unlike traditional approaches, the STF-RNN automatically extracts internal representations of space 

and time features, enhancing efficiency in uncovering valuable insights into human behavior. Leveraging 

the sequence-representing ability of RNN structures, the model keeps track of user movement history, 

enabling the discovery of more meaningful dependencies and, consequently, improving performance. 

Collectively, these contributions advance the understanding and prediction capabilities in the realms of 

spatial dynamics, temporal dependencies, and human mobility patterns. 
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1. INTRODUCTION 

In the era of ubiquitous smart devices, individuals commonly share their point of interest (POI) on social 

networks through check-in activities. The temporal and spatial contexts inherent in users' check-in 

behaviors present a valuable resource for constructing personalized recommendation systems. These 

systems leverage sequential check-in histories to assist users in navigating to POIs at subsequent time 

points. The modeling of user transition preferences holds significance not only in the realm of personalized 

POI prediction but also extends its utility to resource allocation, budgeting, service enhancement, and 

transportation planning. 

The recommendation of Point of Interest (POI) check-ins is influenced by various factors, encompassing 

spatial, temporal, social, and chronological dimensions [1]. Users typically exhibit a preference for check-

ins at proximate POIs, exemplified by the inclination to choose a closer grocery store (d1) over a more 

distant one (d2) when faced with alternatives. This introduces a spatial constraint in the modeling of check-

in sequences. Similarly, check-ins occurring in close temporal proximity exert a notable influence on 

subsequent POI choices, such as the tendency to visit a coffee shop immediately after lunch or a bar 

following dinner. Additionally, the social dimension plays a significant role, as the behavior of user u1 

may be influenced by the places previously visited or recommended by a friend (u2). Figure 1(a) visually 

represents the inverse correlation between distance and check-in frequency, elucidating users' propensity 

to check in at nearby locations. This depiction is derived from plotting the density of distances between 

chronologically sorted consecutive check-ins for each user. To further elucidate the impact of social 

influence on a user's POI check-in behavior, we quantify, for each user, the fraction of check-ins at POIs 

shared with friends. The cumulative distribution function curve in Figure 1(b) exhibits a steep slope, 

providing empirical evidence of the substantial influence exerted by friends on user check-in behavior. 

This analysis contributes to a nuanced understanding of the multifaceted dynamics that shape user 

preferences in POI check-ins. 

 

 
Fig. 1. Induce of distance and friendship on user check-in behavior 

 

In contemporary research, the prediction of individuals' forthcoming locations has garnered considerable 

attention. Notably, the Markov Chain (MC) model, elucidated in [16] and [17], has been instrumental in 
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inferring users' subsequent destinations by computing transition probabilities derived from mobility data 

logs. Moreover, the hidden Markov model has found application in predicting trip destinations, as 

exemplified in [18] and [19], where location characteristics or user activity transitions are considered as 

latent parameters. Another approach, articulated in [20]– [22], adopts a rule-based methodology to 

discover associations from movement transaction databases. In the domain of location prediction within 

cellular communication networks, Neural Networks (NN) have been extensively employed, aiming to 

mitigate traffic loads through the automatic updating of mobile user location information [23]– [27]. 

Notably, Recurrent Neural Networks (RNN) have emerged as a prominent method, showcasing successful 

applications in various domains, including sequential click prediction [28], word embedding [29], and 

time series prediction [30], [31]. Recent studies, exemplified by [32] and [33], leverage RNNs to model 

individuals' mobility patterns. Noteworthy findings from these investigations underscore the superior 

performance of RNNs compared to traditional NN models in the context of predicting people's future 

locations. 

In this research endeavor, we advocate for the comprehensive consideration of both geographical and 

temporal dependencies within the context of predicting individuals' next locations. Our proposed approach 

entails the development of a novel ranking model, grounded in attention mechanisms applied over a 

recurrent neural network (RNN). To achieve this, a spatial attention layer is instantiated to systematically 

capture the geographical correlation between past and future Points of Interest (POIs), drawing insights 

from their spatial proximities. Simultaneously, temporal dynamics inherent in the existing POI sequences 

are addressed through the implementation of a temporal attention layer. This layer focuses on discerning 

the correlation and significance of POIs checked in short durations, complemented by the contextual 

dependency captured by the recurrent neural network. Furthermore, we incorporate the modeling of user 

friendships and POI co-occurrence by employing word2vec pre-trained embeddings. Specifically, these 

embeddings are applied to users and POIs on friendship edges and POI sequences, respectively. To 

account for periodicity, the time of visit for each POI is systematically integrated into our model. Finally, 

we advocate for the joint optimization of the next POI prediction task by using back-propagation through 

time (BPTT). The Bayesian pairwise ranking (BPR) algorithm is concurrently employed for effective 

ranking optimization, enhancing the overall predictive capabilities of the proposed model. 

This study proposes the utilization of Recurrent Neural Networks (RNN) to model individuals' movement 

behavior, facilitating the prediction of their subsequent locations. Spatial and temporal dimensions are 

integrated into the network as features, with their internal representations autonomously learned by the 

network, eliminating the reliance on manually crafted representations. The spatial feature signifies specific 

locations visited by the user, while the temporal feature denotes the corresponding visiting times. Before 

constructing the prediction model, the previously gathered GPS points transform a sequence of interest 

points, encapsulating the series of locations visited by the user. During the training phase, trainable input 

features are forward-propagated into the hidden layer, concomitant with the incorporation of the 

previously accumulated hidden state. Empirical evaluations on a substantial real-life mobility dataset from 

the Geolife project demonstrate that the employed RNN structure enhances model effectiveness compared 

to contemporary methodologies such as Neural Networks (NN) and Markov-based approaches. 

 

2. RELATED WORK 

In contemporary research, recurrent neural networks (RNNs) have emerged as a focal point for modeling 

the sequence history and transitional patterns of user movements, achieving notable acclaim as a state-of-
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the-art methodology. In the context of predicting a user's next location at a specific time (t) based on their 

check-in history, the ST-RNN framework, as described in [2], integrates the consideration of time and 

spatial differences between consecutive check-ins. This is accomplished by partitioning both space and 

time into bins and subsequently learning a transition matrix for each temporal and spatial bin. However, a 

limitation of this approach lies in its consideration of only a fixed number of previous inputs, thereby 

neglecting the incorporation of long-range dependencies. Furthermore, the necessity to manually define 

the bounds of transition matrices renders the model impractical for deployment across diverse datasets. 

An alternative model, SERM [3], focuses on learning the dynamics of Points of Interest (POIs) through 

the embedding of different elements such as locations, users, time-bins, and textual information. Despite 

these advancements, SERM does not explore the spatial or temporal influences on user check-ins and 

inadvertently overlooks long-range dependencies by segmenting a user's check-in sequence into multiple 

segments, treating them as independent entities. This limitation hampers the comprehensive understanding 

of the intricate spatial and temporal dynamics influencing user movement behaviors. 

Numerous models for Point of Interest (POI) recommendation have been constructed based on matrix 

factorization, concentrating on distinct facets such as geographical influence [4], temporal influence [5], 

and semantic influence [6]. However, a common limitation in these approaches is the oversight of 

sequential dependencies. Tensor Factorization (TF) has demonstrated success in time-aware 

recommendation and modeling spatial and temporal information [7]. TF incorporates both time bins and 

locations as additional dimensions in the factorized tensor. Nevertheless, this inclusion poses a challenge 

known as the cold start problem, particularly in predicting user behavior with new time bins. Within the 

realm of recommendation systems, ranking techniques play a pivotal role in predicting user preferences 

for various entities, including books, items, and locations. Rende et al. [8] introduced a Bayesian pairwise 

ranking (BPR) approach, wherein the relative preference of implicit items over non-observed items for 

each user is leveraged to enhance predictive accuracy. This approach contributes to the nuanced 

understanding of user preferences within the recommendation domain. 

A recent contribution in the domain, as detailed in [34], introduces the utilization of Recurrent Neural 

Networks (RNN) in the form of a global prediction model termed Spatial Temporal Recurrent Neural 

Network (ST-RNN). This model is designed to predict the subsequent locations users are likely to visit. 

The efficacy of the ST-RNN model is evaluated using two distinct datasets, namely the Global Terrorism 

Database (GTD) and the Gowalla dataset. The recurrent structure embedded in ST-RNN is adept at 

capturing both local temporal contexts and periodic temporal patterns. To facilitate the modeling of 

temporal and spatial dependencies, the values are discretized into bins, allowing for the generation of time-

specific and distance-specific transition matrices. Each specific temporal value within a time bin and each 

specific spatial value contribute to the calculation of the corresponding transition matrix. It is noteworthy 

that, in contrast to ST-RNN, our proposed model adopts a distinct approach wherein space and time 

features are directly fed into the network. The network, in turn, autonomously learns its internal 

representations, distinguishing itself from the discretization-based approach employed by ST-RNN. 

The research presented in [27] proposes the development of local and global predictors utilizing Neural 

Networks (NN) to forecast an individual's subsequent movements. The evaluation of the neural predictor 

is conducted using the movement histories of four individuals within the research group at the University 

of Augsburg. The model employs a straightforward multi-layer perceptron with a single hidden layer, 

trained using the Backpropagation algorithm. A bit encoding mechanism is employed to represent both 

rooms and individuals. In the local predictor, each NN is individually trained with the movement patterns 
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of a single person. Consequently, the input to the network comprises solely the codes corresponding to the 

last visited rooms. Conversely, in the global predictor, a single NN is trained using the collective 

movement data of all individuals. In this case, both the codes representing individuals and the codes for 

the last visited rooms serve as inputs to the network. Following a series of experiments, the optimal 

configuration for the NN is determined, featuring two and three neurons in the input and hidden layers, 

respectively. The evaluations conducted reveal that the local predictor outperforms the global predictor, 

achieving accuracy rates of 92.32% and 87.3%, respectively. This comparative analysis underscores the 

effectiveness of the local predictor in accurately forecasting an individual's next movements. 

 

3. RESEARCH METHODOLOGY 

In STF-RNN, the trajectory is represented as a sequence of tuple (𝑥𝑡, ℎ𝑡) where 𝑥 is the centroid ID of the 

interest point visited at time 𝑡 and ℎ is the time unit part in hours of the leaving time from the interest 

point, 𝑡 =  1, 2, . . . , 𝑛, and 𝑛 is the length of the trajectory. The task is to predict the future location of the 

mobile user at a specific time 𝑡 based on historical mobility records. The architecture of the STF-RNN 

model is shown in Figure 1. It consists of four layers: input layer, lookup table layer, hidden layer (with 

recurrent connection), and output layer. The input layer consists of two vectors. The first one is 𝑥𝑡 ∈  𝑅𝑁 

which represents the centroid ID of the interest point at timestamp 𝑡. This vector is encoded using 1- of-

𝑁 (or one-hot encoding) where 𝑁 is the number of interest points. The second vector represents the time 

unit part in hours of leaving time from the interest point at timestamp 𝑡. We denote this vector by ℎ𝑡 ∈

 𝑅𝑀 and it is encoded also using a 1-of-M encoding technique where 𝑀 is the number of different time 

intervals. The time intervals represent the number of hours per day in which there are 24-time intervals 

(hour). In the one-hot vector representation, the interest points (or leaving times) are equidistant from each 

other without preserving any relationship among them. The lookup table layer maps the vectors of the 

centroid IDs and leaving times into real value vectors. The lookup table layer aims to learn a meaningful 

representation of the interest points and the leaving time's input features. This representation enables the 

model to capture the embedded semantic information about user behavior and consequently improve the 

prediction performance. Therefore, the trainable features will be used as input to further layers in the 

network rather than using one-hot vectors. More formally, let 𝑋 ∈  𝑅𝑁∗𝑑be the embedded matrix that 

represents a set of interest points, where 𝑑 is the dimensionality of the embedded vector of the interest 

point. 

 
Fig. 2. STA-STF-RNN architecture. 
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Embedding: 

This layer serves the purpose of mapping object identifiers to vectors of real numbers, establishing 

semantic similarity among entities, namely users, time bins, and Points of Interest (POIs), within a vector 

space. To initialize the user and POI embedding layer, we employ pre-trained embeddings obtained 

through word2vec [9], as introduced by Mikolov. Specifically, these embeddings are derived from the 

user's social links graph and the user's POI sequences, respectively. Within our model architecture, four 

distinct embedding layers are employed: one for user identification, one for the target POI identification, 

one for the contextual embedding of the sequence of POIs, and one for the time bins associated with the 

sequence of POIs. Subsequently, we concatenate the representations of time bins and POIs within the 

check-in sequence. This concatenation is performed to facilitate the learning of a compact representation 

encapsulating the user's check-in behavior. 

 

Recurrent Neural Networks: 

Gated Recurrent Units (GRUs) are used in this experiment which is a more robust variant of recurrent 

neural networks (RNN) and works better in capturing long-term dependencies. A GRU has two gates, a 

reset gate (𝑟) to determine how to combine the current input 𝑥𝑡 and previous memory ℎ𝑡−1, while an 

update gate (𝑧) to define how much of the previous information to keep. 

The Attention Mechanism RNN operates by compressing all visited Points of Interest (POIs) within a 

check-in sequence into a fixed-length vector, represented by the last hidden state. This vector serves as 

the determinant for predicting the next POI at each time step. In contrast, the attention mechanism is 

designed to comprehend the sequence of POI check-ins, selectively focusing on crucial and relevant POIs 

for the subsequent POI prediction at each time step. In this mechanism, all preceding hidden states are 

utilized as input to compute the probability distribution of previously checked-in POIs. Subsequently, a 

context vector is generated as a weighted sum of visited POIs, offering a nuanced representation for the 

prediction of the next POI. This approach enables the model to capture global information from the entire 

sequence, as opposed to relying solely on a single hidden state, thereby enhancing its capacity to infer and 

understand intricate patterns within the data. 

In the proposed architecture as shown in Fig 2, two modes of attention mechanism are used namely 

Temporal Attention and Spatial Attention, respectively. In both modes, the attention component takes 𝑡 −

 1 hidden states of GRU as arguments {ℎ1, ℎ2, . . . , ℎ𝑡 − 1} and a context vector ℎ𝑡 and context window 

𝜏 in our case. It returns a vector 𝑧, which is the summary of all the previous hidden states focusing on the 

information linked to context ht and context window 𝜏. More formally, it returns a weighted arithmetic 

mean of the hidden states of GRU {ℎ𝑖} 𝑡 − 1 𝑖 = 1 and the weights are chosen according to the relevance 

of each ℎ𝑖 given the context ℎ𝑡. 

Given a collection of user-POI check-ins Q, the objective is to represent users, time-bins and POIs in a 

new unified embedding space, where the new space captures the latent mobility patterns in the raw data. 

We jointly learn the embeddings for users and POIs using a Bayesian pairwise ranking (BPR) loss and 

backpropagation through time (BPTT) and formulate the training objective function as  

𝐽𝑡 =  ∑

𝑄

(1 − 𝜎(𝑜𝑢,𝑡,𝑞 − 𝑜𝑢,𝑡,𝑞′)) + 𝜆‖(𝜃)‖2 

where 𝑞’ is a negative location sample, 𝜆 is the regularization parameter and 𝜃 indicates all the parameters. 

As per the STF-RNN, the values of the hidden layer and the output layer are computed as below:  
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𝑟𝑡 = 𝑓(𝑥𝑒𝑡𝑈 + ℎ𝑒𝑡𝑆 + 𝑟𝑡−1𝑊 + 𝑏𝑟) 

 

4. RESULTS & DISCUSSION 

Comparison Methods: 

To benchmark the efficacy of our proposed model, we conduct comparative evaluations with the following 

methodologies: 

▪ Factorizing Personalized Markov Chains (FPMC) [10]. introduces a personalized transition matrix and 

factorizes the transition cube using tensor decomposition.  

▪ Bayesian Pairwise Ranking (BPR) [11]. an implicit feedback method by using pairwise item 

preferences  

▪ Gated Recurrent Unit (GRU) [12]. a robust variant of RNN and has an in-built memory along with 

gates to determine what information should be passed to the output.  

▪ Spatio Temporal Recurrent Network (ST-RNN) [13]. models the user sequence of check-ins by 

considering the spatial and temporal contexts using transition matrices of spatial and time differences 

between successive check-ins.  

▪ Semantics Enriched Recurrent Model (SERM) [14]. a variant of SERM, which only models’ location, 

time, and user factors without using textual information.  

▪ Attentional Recurrent Networks (DeepMove) [15]. learns the periodic contribution of user check-in 

history by attention mechanism, on sequence-level. 

In Table 1, we show the results of models based on GRU networks with different attention mechanisms. 

GRU+SA considers only spatial attention while GRU+TA considers only temporal attention. GRU+STA 

combines both spatial and temporal attention. From the results, we can observe that GRU+STA 

outperforms the other three methods, which proves the effectiveness of the spatio-temporal attention 

mechanism. Besides, temporal attention shows better performance than spatial-level attention and basic 

GRU.  

Table 1: Comparison of Different Attention Mechanisms using BK datasets 

METHO

D 

AUC  MRR  recall 

GRU 0.92 0.42 0.81 

GRU+SA 0.95 0.45 0.86 

GRU+TA 0.97 0.47 0.87 

GRU+ST

A 

0.98 0.49 0.89 

STA+STF 

RNN  

0.99 0.50 0.90 

 

The table provides a comprehensive comparison of different attention mechanisms applied to the BK 

dataset, utilizing three key evaluation metrics: Area Under the Curve (AUC), Mean Reciprocal Rank 

(MRR), and recall. The baseline model, GRU (Gated Recurrent Unit), serves as a reference point, while 

subsequent enhancements include GRU with Spatial Attention (GRU+SA), GRU with Temporal Attention 

(GRU+TA), GRU with Spatio-Temporal Attention (GRU+STA), and the more sophisticated STA+STF 

RNN (Spatio-Temporal Attention + Space Time Features-based Recurrent Neural Network). Across the 

board, the metrics demonstrate a consistent performance improvement with the incorporation of attention 
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mechanisms. Specifically, the STA+STF RNN model emerges as the top performer, achieving the highest 

AUC, MRR, and recall values. This underscores the effectiveness of integrating spatio-temporal attention 

and the STF-RNN architecture in capturing intricate spatial and temporal patterns, leading to superior 

predictive capabilities in the context of point-of-interest sequence modeling. 

Within the STF-RNN framework, the parameters 𝑑, 𝑘, and 𝑑𝑟 assume critical roles in determining the 

dimensionality of the embedded vectors corresponding to location, time, and hidden layers, respectively. 

These parameters significantly influence the model's efficiency. To comprehensively investigate the 

impact of these parameters and identify optimal settings, we conduct a series of experiments, as illustrated 

in Figure 3. The experimentation involves systematically varying the value of one parameter while keeping 

the others fixed, allowing for an examination of how alterations in each parameter influence the model's 

performance. This procedure is iteratively applied to all three parameters, providing a nuanced 

understanding of their individual contributions to the overall efficiency of the STF-RNN model. 

 

 
Fig. 3. Parameters impact. 

 

As depicted in the figures, the optimal performance for STF-RNN is achieved when the parameter 𝑘 is set 

to 6, and the peak performance is observed under the parameter 𝑑𝑟 with a value of 40. This observation 

suggests that the model attains its highest accuracy with a relatively small 𝑘 value, indicating that a limited 

amount of time information suffices in capturing the model dependencies. In contrast, the requirement for 

a larger dimensionality (𝑑𝑟) underlines the significance of more detailed location features. These results 

affirm the crucial role played by the parameters 𝑘 and 𝑑𝑟 in the construction of an accurate location 

prediction model based on the Recurrent Neural Network (RNN). The findings provide insights into the 

optimal configurations of these parameters, shedding light on the nuanced balance needed to enhance the 

performance of the STF-RNN model. 

 

TABLE 2: Performance of STF-RNN evaluated by Recall@N with varying window size. 

Parameter  Recall@1  Recall@2  Recall@3  

d 0.729 0.884 0.939 

k 0.734 0.878 0.932 

dr 0.687 0.854 0.897 

 

Each row in the table represents the performance of the STF-RNN model for different recall values 

(Recall@1, Recall@2, and Recall@3) corresponding to specific window sizes. The values in each cell 

indicate the recall rate, which is the proportion of relevant items (correctly predicted next POIs) retrieved 

by the model among the top N predictions. The results provide insights into the model's effectiveness 
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under different parameter configurations and help identify the optimal settings for achieving higher recall 

rates. 

 

5. CONCLUSION 

This study introduces the Spatio-Temporal Attention over Gated Recurrent Units (STA-GRU) for 

modeling Point of Interest (POI) sequences, presenting a novel neural network architecture leveraging 

self-attention mechanisms. This architecture is designed to effectively capture user transition behavior and 

improve the next POI prediction. Experimental results demonstrate the superior performance of STA-

GRU compared to existing state-of-the-art models, particularly on the BrightKite benchmarks. 

Recognizing the challenges associated with long-range dependencies in recurrent neural networks, even 

with gating mechanisms, we further propose the integration of spatial and temporal attention over recurrent 

neural networks. Additionally, a Space-Time Features-based Recurrent Neural Network (STF-RNN) is 

proposed in this paper for predicting the future states of individuals' movements. A lookup table layer is 

employed to efficiently discover internal representations of space and time input features, enhancing the 

model's ability to capture embedded semantic information about user behavior. This STA-STF RNN 

proposed approach works better as compared to existing research. The recurrent structure is integrated 

with space and time interval sequences to uncover long-term dependencies, thereby increasing the 

efficiency of the proposed model. Performance evaluations conducted on a large real-life mobility dataset 

from the project substantiate that the STF-RNN model significantly improves prediction effectiveness 

compared to state-of-the-art models.  
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