

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Identification of Promising Sugarcane Clones Based on Cane Yield and Quality Traits in First Clonal Selection Stage

Mallikarjun P.K.¹, Sanjay B. Patil², Hanamaratti N.G.³, C.R. Patil⁴, P.V. Patil⁵

 ¹Ph.D. Scholar (GPB), Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad, Karnataka, India.
 ²Professor (GPB), Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad, Karnataka, India.
 ³Principal Scientist (GPB), Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad, Karnataka, India.
 ⁴Professor (Agricultural Microbiology), Department of Agricultural Microbiology, University of Agricultural Sciences, Dharwad, Karnataka, India.
 ⁵Professor (Plant Pathology), Department of Plant Pathology, University of Agricultural Sciences, Dharwad, Karnataka, India.

ABSTRACT

Sugarcane is a major source of sugar, facing constant pressure to enhance productivity due to the increased cost of cultivation and fluctuating global market prices. Identification of productive hybrid progenies for varietal development plays a crucial role in enhancing productivity, which is a cost-effective approach. In this context, an investigation was conducted to identify promising clones for cane yield and quality traits. Significantly higher estimates of genetic variability, heritability and genetic advance were evident for all the traits except cane girth, Brix per cent in juice and sucrose content in juice. Correlation and path analysis revealed that the traits such as the number of millable canes per plot, single cane weight, sucrose content in juice and commercial cane sugar yield showed a significant positive association with cane yield. Among the 150 hybrid progenies studied, the clones SNK 180011, SNK 180028, SNK 180070, SNK 180662 and SNK 181126 are the most promising clones with high cane yield and sugar productivity features. These results hold significant importance for identifying promising clones to enhance cane and sugar productivity.

Keywords: Augmented design, Cane yield, Promising clones, Sugarcane

1. INTRODUCTION

Sugarcane is a perennial, multipurpose crop that provides food, energy and economic security to the farmers. One of its distinctive and valuable characteristics is the high concentration of sugar accumulation in the internodes, making it a key crop for sugar production. Globally, sugarcane is responsible for nearly 75% raw table sugar production. India occupies the second position with

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

sugarcane production of 431.81 million tonnes after Brazil with a productivity of 83.89 tonnes per hectare. Sugarcane cultivation is widespread across most Indian states, primarily in tropical regions like Karnataka, Tamil Nadu, Maharashtra, Andhra Pradesh, Gujarat, Madhya Pradesh and sub-tropical regions such as Uttar Pradesh, Uttarakhand, Haryana, Punjab and Bihar. Among these states, Uttar Pradesh leads with an area of 2.18 million hectares and a production of 177.43 million tonnes, followed by Maharashtra and Karnataka during the 2021-22 (Mallikarjun and Patil, 2023).

In sugarcane varietal improvement, the primary goal of breeders is to identify potential sugarcane clones with high yield and sugar content by screening existing germplasm and breeding materials. Current sugarcane varieties are inter-specific hybrids of Saccharum officinarum L. (2n = 80) and Saccharum spontaneum L. (2n = 40-128), resulting in significant variations in commercially important traits such as commercial cane sugar per cent (CCS%), cane yield and commercial cane sugar yield among cultivated varieties and species clones (Govindaraj and Amalraj, 2022). Sustainable sugar productivity becomes a major concern due to adverse climatic conditions and the increasing cost of sugarcane cultivation. The cane industry demands high sugar producing varieties with other desirable agronomic traits (Pal et al., 2021). However, breeders face numerous challenges, including high polyploidy, aneuploids, poor fertility, lengthy breeding selection cycles and limited genetic diversity in germplasm (Patil et al., 2015; Dinesh Babu et al., 2022; Hemaprabha et al., 2022). Broadening the genetic base of sugarcane involves selecting suitable parental combinations during hybridization based on their phenotypic traits, pedigree history and genetic distance between parents, contributing to better recombinants and promising clones after the selection cycle (Creste et al., 2010). The screening of a large number of clones in replicated trails is highly laborious and resource demanding, which is practically not feasible. Typically, the seed of new entries are not enough for conducting replicated trials. In such conditions, the augmented design-II could be better option. It saves time and money without compromising on the precision of critical comparisons among treatments (Federer, 1956; Cyrilus et al., 2014).

The knowledge of trait associations in the breeding programme is essential for number of reasons. It enables the breeders to better understand genetic diversity in the breeding material by identifying traits with little or no breeding value (Kumar et al., 2018). The major challenge in sugarcane breeding is the use of yield per se as selection criteria for crop improvement, which is difficult due to the complexity of its nature as well as low heritability. As a result, realised gains for yield have not been very encouraging by direct selection for cane yield (Sanghera and Jamwal, 2019). Therefore, the great emphasis across all breeding programmes is to study the nature of relationships and trait associations between yield and other traits which are relatively less complex and have comparatively better heritability for use as indirect selection criteria for seeking improvement in yield (Sabitha et al., 2007). The success of a sugarcane breeding program highly depends on these genetic aspects, which rely partly on the recognition of several characters considered important in the selection. The identification of promising and productive segregants from diverse clones of sugarcane derived from different crosses is a cost effective and efficient approach. Therefore, the present study aims to identify promising sugarcane clones for various cane yield and its component traits in first clonal generations, with the goal of accelerating the varietal development programme.

2. MATERIALS AND METHODS

2.1 Planting material and Experimental design

The experimental material for the present study consisted of 150 diverse clones of sugarcane derived from twenty different crosses. These clones were selected in the seedling generation based on the productivity traits and the overall appearance of the cane type, including features like colour, detrashability and clump stand etc., compared to the popular commercial standards, during the 2020-21 cropping season and advanced to the first clonal generation. During the 2021-22 cropping season, the selected progenies underwent evaluation for cane yield and its component traits at the University of Agricultural Sciences, Dharwad, and the Agricultural Research Station, Sankeshwar (Peninsular Zone, 16°14′N/74°30′E), India in an augmented design-II (Federer and Searle, 1976), with a row spacing of 1.20 m apart. Each genotype was planted with seed rate of ten eye buds per meter in one row of 3.00 m length. The selected progenies were distributed across three blocks, and each blocks included 13 commercial checks, such as CoC 671, Co 09004, SNK 09211, Co 86032, Co 09232, SNK 09227, Co 09268, Co 088789, Co 07680, Co 08005, CoM 0265, SNK 09293 and MS 13081. The crop cultivation followed the recommended package of practices for the region. The details of the sugarcane clones derived from 20 different crosses in seedling nursery and checks are furnished in Table 1.

Sl. No.	FC	Family name (Parentage)	NSE	NCS
1	18F01	CoVC 14062 × Co 89003	38	3
2	18F02	Co 86032 × CoVC 14061	117	37
3	18F03	CoH 119 × CoC 8001	1	1
4	18F04	Co 2000-10 × CoVC 14061	3	1
5	18F08	ISH 100 (GC)	4	1
6	18F09	CoM 6806 (GC)	389	25
7	18F10	Co 98006 (GC)	29	2
8	18F11	Co 99004 (GC)	63	3
9	18F12	CoJn 862072 (GC)	70	3
10	18F14	CoVC 14062 (GC)	257	19
11	18F15	CoC 90063 (PC)	2	1
12	18F18	Co 8371 (PC)	64	6
13	18F19	ISH 20 (GC)	25	3
14	18F20	Co 06034 (GC)	25	1
15	18F24	CP 52-1 (GC)	2	1
16	18F26	CoSnk 03632 (GC)	29	1
17	18F27	Co 11015 (GC)	118	21
18	18F41	Co 87015 (GC)	198	19
19	18F42	Co 95021 (GC)	28	1
20	18F44	SNK 049 (GC)	55	1
Total			1517	150

 Table 1: List of number of selected clones from different cross combinations used under study

 with their parentage in the first clonal stage of sugarcane

FC: Family code, NSE: Number of seedlings evaluated in seedling generation, NCE: Number of clones evaluated in clonal-I generation, PC: Poly cross, GC: General Collection (open pollinated cross)

2.2 Observations recorded

Data were recorded for the number of millable canes per plot (NMC/ plot) of each genotype at harvest. From each plot, three mother canes were randomly sampled, and their average measurements for cane girth (cm), millable cane height (cm) and single cane weight (kg) were recorded. Following the cane crushing process, juice was collected separately from each genotype and analysed for Brix per cent in juice (Brix%) and sucrose content in juice (Pol%) using a Brix hygrometer and a polariscope, respectively. The commercial cane sugar per cent (CCS%) was worked out from Pol% and Brix%, as per Meade and Chen (1977). Cane yield (CY) and commercial cane sugar yield (CCSY) were calculated following the method outlined by Silveira et al., (2016). Similarly, three mother canes of all the checks were assessed from each block at harvest for comparison.

2.3 Statistical analysis

The data were statistically analyzed, including analysis of variance (ANOVA), estimates of genetic variability parameters and the correlation coefficient matrix for cane yield and its component traits were statistically analyzed using the augmentedRCBD package in 'R' software (version R-4.2.1). Path coefficient analysis among the 150 clones of sugarcane was employed to determine the direct and indirect effects of different cane yield and its contributing traits using OPSTAT software. Further, mean values of different traits were compared with commercial standards at a 5% significance level (p=5%) using Microsoft Excel.

3. RESULTS AND DISCUSSION

3.1 Analysis of variance

The analysis of variance revealed significant mean sum of squares for all traits across different sources of variation. The block effect (ignoring treatments) and the treatment effects (ignoring as well as eliminating blocks) were significant for all traits except for single cane weight (Table 2). Similarly, the effects due to checks and varieties were also significant for all traits. However, the block effects (eliminating treatments) were non-significant for all traits, indicating homogeneity of evaluation blocks. Similarly, the mean square due to checks v/s varieties was significant for all traits, indicating that the test entries were significantly different from checks. This effect has been widely studied by Sanghera and Jamwal, (2019); Somu and Nagaraj (2020); Khokhar et al., (2022), and it was reported that the augmented design is efficient in conducting large-scale sugarcane breeding experiments.

In the present study, 150 hybrid progenies along with 13 commercial standards were evaluated in an augmented design-II for cane yield and its component traits in first clonal generation. The mean values of number of millable canes per plot, cane girth (cm), millable cane height (cm), single cane weight, Brix%, Pol%, CCS%, CCS yield and cane yield were 28.85, 2.52 cm, 293.00 cm, 1.63 kg, 22.61%, 20.36%, 14.59%, 18.71 t/ha and 129.00 t/ha, with their respective range lied between 7.96 to 56.96, 1.97 to 3.44 cm, 195.53 to 369.27 cm, 0.72 to 2.74 kg, 17.58 to 26.06%, 13.45 to 24.09%, 9.09 to 17.79%, 4.46 to 32.78 t/ha and 33.13 to 226.63 t/ha (Table 3). To decipher the amount of existing variability in

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

the present clones, range, mean, standard deviation, standard error and coefficient variation (CV) were calculated (Table 3). However, range is the crude method of estimation of variability, which indicates observed phenotypic variability only. It also showed the advisable range of co-efficient of variation for all the traits. Among the traits studied, the highest co-efficient of variation was observed for CCS yield (30.11%) and cane yield (29.15%). While low level of variation was observed for cane girth (8.10%), Brix% (5.84%) and Pol% (8.87%). The results are in accordance with the findings of Anna Durai et al., (2015); Somu and Nagaraj (2020).

Sour ce of vari ance	Treat ment (ignor ing Block s)	Treat ment: Check	Treat ment: Clones	Treat ment: Clones vs. Check	Block (elimin ating Treat ments)	Er ror	Block (ignori ng Treat ments)	Treat ment (elimin ating Blocks)	Treat ment: Check	Treat ment: Test and Test vs. Check	Er ror
d.f.	162	12	149	1	2	24	2	162	12	150	24
NM C/ plot	66.43 **	83.76* *	65.22* *	38.54* *	0.02 ^{NS}	1.9 1	430.87 **	61.11* *	83.76* *	59.30* *	1.9 1
CG (cm)	0.07* *	0.15**	0.06**	0.31**	0.01 ^{NS}	0.0 1	0.11**	0.07**	0.15**	0.06**	0.0 1
CH (cm)	1798. 37**	2860.0 2**	1260.3 2**	69228. 43**	252.73 NS	91. 05	1488.1 6**	1783.1 2**	2860.0 2**	1696.9 7**	91. 05
SC W (kg)	0.13* *	0.24**	0.12**	0.20*	0.10 ^{NS}	0.0 3	0.03 ^{NS}	0.13**	0.24**	0.12**	0.0 3
Brix %	2.51* *	7.51**	2.06**	9.79**	0.47 ^{NS}	0.1 5	5.93**	2.44**	7.50**	2.04**	0.1 5
Pol %	3.71* *	4.88**	3.62**	2.64**	0.17 ^{NS}	0.1 7	28.63* *	3.36**	4.88**	3.23**	0.1 7
CCS %	2.55* *	3.55**	2.49**	0.63**	0.03 ^{NS}	0.0 5	24.87* *	2.25**	3.55**	2.14**	0.0 5
CY (t/ha)	1722. 87**	3638.9 3**	1564.8 5**	2274.5 5**	7.25 ^{NS}	80. 32	6617.6 1**	1641.2 6**	3638.9 3**	1481.4 4**	80. 32
CCS Y (t/ha)	38.62 **	105.36 **	33.31* *	28.58* *	1.01 ^{NS}	0.7 9	23.42* *	38.34* *	105.36 **	32.98* *	0.7 9

Table 2: Analysis of variance for different cane yield and its component traits in first clonal generation of sugarcane

^{NS} P > 0.05; * P < = 0.05; ** P < = 0.01

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

NMC/ plot – Number of millable canes / plot, CH – Millable cane height (cm), CG – Cane girth (cm), SCW – Average single cane weight (kg), CB – Brix per cent (%), CP – Sucrose content (Pol%), CCS% - Commercial cane sugar per cent (%), CY - Cane yield (t/ha), CCSY - Commercial cane sugar yield (t/ha), d.f. – degrees of freedom

Variables	Mean	Std. Deviation	Min.	Max.	Std. Error	CV (%)
NMC/ plot	28.85	7.86	7.96	56.96	0.64	27.24
CG (cm)	CG (cm) 2.52 0.20		1.97	3.44	0.02	8.10
CH (cm)	293.00	32.81	195.53	369.27	2.68	11.20
SCW (kg)	1.63	0.27	0.72	2.74	0.02	16.74
Brix%	22.61	1.32	17.58	26.06	0.11	5.84
Pol %	20.36	1.81	13.45	24.09	0.15	8.87
CCS %	14.59	1.53	9.09	17.79	0.13	10.47
CY (t/ha)	18.71	5.63	4.46	32.78	0.46	30.11
CCSY (t/ha)	129.00	37.60	33.13	226.63	3.07	29.15

Table 3: Descriptive statistics of cane yield traits in 150 sugarcane clones at the first clonal stage

NMC/ plot – Number of millable canes / plot, CH – Millable cane height (cm), CG – Cane girth (cm), SCW - Single cane weight (kg), CB - Brix per cent (%), CP - Sucrose content (Pol%), CCS% -Commercial cane sugar per cent (%), CY - Cane yield (t/ha), CCSY - Commercial cane sugar yield (t/ha)

Table 4	4: Estimates of	genetic v	ariability	paramete	ers for c	ane yiel	d and i	ts comp	onents t	raits in
		f	irst clonal	generatio	on of su	garcane	e			
	_		2	2	2			- 2	~	

. . .

. . .

Trait	Mean	$\sigma^{2}p$	$\sigma^2_{ m g}$	σ^2_{e}	GCV	PCV	h ² _{BS}	GAM
NMC/ plot	28.76	65.22	63.31	1.91	27.67	28.08	97.07	56.24
CG (cm)	2.53	0.06	0.05	0.01	8.95	9.93	81.15	16.63
CH (cm)	289.23	1260.32	1169.27	91.05	11.82	12.27	92.78	23.49
SCW (kg)	1.62	0.12	0.09	0.03	18.83	21.60	75.99	33.86
Brix%	22.56	2.06	1.92	0.15	6.13	6.36	92.92	12.20
Pol %	20.33	3.62	3.45	0.17	9.13	9.36	95.30	18.40
CCS %	14.58	2.49	2.43	0.05	10.70	10.82	97.79	21.82
CY (t/ha)	128.31	1413.73	1333.42	80.32	28.46	29.30	94.87	57.02
CCSY (t/ha)	18.63	31.71	30.93	0.79	29.05	30.23	97.64	60.81

NMC: Number of millable canes per plot, CG: Cane girth, CH: Millable cane height, SCW: Single cane weight, Brix%: Brix per cent, Pol%: Sucrose per cent in juice, CCS%: Commercial cane sugar per cent,

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

CY: Cane yield, CCSY: Commercial cane sugar yield, σ^2_P : Phenotypic variance, σ^2_g : Genotypic variance, σ^2_e : Environmental variance, GCV: Genotypic coefficient of variation (%), PCV: Phenotypic coefficient of variation (%), h^2_{BS} : Heritability (Broad Sense, %): GAM: Genetic advance over mean (%) **3.2 Estimates of genetic variability for the first clonal generation of sugarcane**

Variability is measured by estimation of genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV), broad sense heritability (h^2_{BS}) and genetic advance as per cent of mean (GAM). These parameters help in selection for improvement of desired traits. Environment plays an important role in the expression of phenotype. The phenotypic variability which is observable includes both genotypic (heritable) and environmental variation (non-heritable). The estimates for PCV were higher than for GCV in all the traits studied, indicating greater influence of environment on genetic variation. The narrow difference between PCV and GCV were recorded for all the traits (Table 4). The highest phenotypic and genotypic coefficient of variation were observed for CCS yield (PCV = 30.23%, GCV = 29.05%) followed by cane yield per plot (PCV = 29.30%, GCV = 28.46%) and number of millable cane per plot (PCV = 28.08% and GCV = 27.67%). These findings were in accordance with Kumar et al., 2018; Sanghera and Jamwal (2019).

In the present experiment, high heritability estimates were recorded for all the traits except for single cane weight (75.99%) and cane girth (81.15%), which were found to be moderate values. This suggests that simple selection for these traits would be effective. Heritability estimates along with GAM is more useful than the heritability value alone in predicting the resultant effect for selecting the best genotypes [23]. Maximum genetic gain (as percent of mean) was observed for CCS yield (60.81%) followed by cane yield (57.02%) and NMC per plot (56.24%), indicating that there exist a scope to improve cane yield to a considerable extent by adopting suitable breeding procedures. Cane girth (16.63%), Brix% (12.20%) and Pol% (18.40%) had moderate GAM, suggesting a little scope in the improvement of these traits. Perusal of Table 5 revealed that cane yield has significant association with traits with number of millable canes per plot, millable cane height, single cane weight, CCS yield and CCS% these traits be given consideration while making indirect selection for cane yield. These findings were in accordance with Kumar et al., (2018); Tolera et al., (2023).

3.3 Correlation studies with cane yield and its component traits

The Pearson's correlation coefficients between different pairs of cane yield and its component traits were calculated to examine the relationships among the various traits studied. The correlation coefficient values are presented in Figure 1, revealing that cane yield is significantly positively related to CCS yield (0.93^{***}) , number of millable canes (0.72^{***}) , single cane weight (0.54^{**}) , millable cane height (0.39^{***}) and cane girth (0.26^{***}) . This has significant implications for the selection of varieties to be used as parental material in crossing programs. The information above suggests that many characters influence cane yield, and the extent to which each character affects yield depends on the degree of association between that character and cane yield.

With regard to the quality traits in the present study, CCS yield was closely correlated (P < 0.01) with Brix%, Pol% and CCS%. The three sugar quality traits also had strong positive significant association with each other (Figure 1). This indicated that selection through Brix%, Pol% and CCS% would produce

varieties with high levels of sugar recovery. In contrast, CCS% (-0.17*), Brix% (-0.16*) and Pol% (-0.16*) showed negatively significant to cane yield. These results are in accordance with the findings of Tena et al., (2016), who also reported significant correlation of cane yield with all other traits.

3.4 Path coefficient analysis

3.4.1 Direct effects of different component traits on cane yield

Path analysis helps us in identifying the most important characters affecting directly and indirectly through other characters. In the present study, the path coefficient analysis was performed for cane yield as a dependent variate and such of the traits having high correlation with cane yield like NMC per plot, cane girth, millable cane height, single cane weight, Brix%, Pol%, CCS% and CCS yield as independent variables (Table 5). The results revealed that, among the cane traits studied, CCS yield (t/ha) had highest positive direct effect of 0.805 on cane yield followed by Pol per cent in juice (0.631), CCS% (0.286), number of millable canes (0.175) and single cane weight (0.159). Cane girth and cane height exhibited negative direct effects of -0.036 and -0.001, respectively. The results are in accordance with the findings of Marsi (2015); Tena et al., (2016); Ahmed et al., (2019); Somu et al., (2020).

NMC – Number of millable canes / plot, CH –Millable cane height (cm), CG –Cane girth (cm), SCW – Single cane weight (kg), CB – Brix per cent (%), CP – Sucrose content (Pol%), CCS% – Commercial cane sugar per cent (%), PP – Juice purity per cent (%),CY - Cane yield (t/ha), CCSY - Commercial cane sugar yield (t/ha)

3.4.2 Indirect effects of different component traits on cane yield

The relationship between CCS yield and cane yield was positive and significant (0.93^{***}) . This trait also exhibited the highest positive direct effect on cane yield (0.805). CCS yield registered positive and high indirect effect on cane yield through NMC per plot (0.506), single cane weight (0.407), cane height (0.361) and cane girth (0.207) (Table 5). Residual effect was found to be very low (0.00879) which indicated that almost all the cane yield traits were included.

Critical analysis of the results by path analysis revealed that the traits CCS yield, single cane weight, Pol% and NMC per plot exhibited high positive direct effects on cane yield and many traits also exhibited their indirect positive effects on cane yield via these traits indicating that these are the major contributing traits to cane yield in sugarcane. Hence, direct selection for CCS yield, Pol%, single cane weight and NMC per plot would be helpful for the improvement of cane yield in first clonal stage. These four traits showed significant positive correlation among themselves and with cane girth, millable cane height and CCS%, indicating that indirect selection based on these traits may be given importance in first clonal stage. Similar results of positive direct effect on cane yield were also reported by Ahmed et al., (2019); Somu et al., (2020).

	NMC/ P	CG	СН	SCW	СВ	СР	CCS	CCSY
NMC/ P	0.175	0.011	0.000	-0.035	-0.015	0.122	-0.056	0.506
CG	-0.055	-0.036	0.000	0.123	-0.009	0.025	-0.006	0.207
СН	0.026	0.000	-0.001	0.068	0.009	-0.049	0.020	0.361
SCW	-0.038	-0.028	0.000	0.159	-0.006	0.012	-0.001	0.407
СВ	-0.027	0.004	-0.001	-0.011	0.094	-0.586	0.256	0.114
СР	-0.034	0.001	-0.001	-0.003	0.088	0.631	0.285	0.145
CCS	-0.034	0.001	0.000	-0.001	0.084	-0.628	0.286	0.153
CCSY	0.110	-0.009	0.000	0.080	0.013	-0.114	0.054	0.805
CY	0.72***	0.26***	0.39***	0.54***	-0.16*	-0.16*	-0.17*	0.93***

 Table 5: Direct (diagonal) and indirect effects of cane yield component traits on cane yield at phenotypic level in first clonal stage of sugarcane

Residual effect: 0.00879

NMC: Number of millable canes per plot, CG: Cane girth, CH: Millable cane height, SCW: Single cane weight, Brix%: Brix per cent, Pol%: Sucrose content in juice, CCS%: Commercial cane sugar per cent, CCSY: Commercial cane sugar yield, CY: Cane yield

3.5 Mean performance of 150 clones for cane yield and quality traits

Mean performance of hybrid progenies (clones) and standards for cane yield and its component traits are presented in Table 6. The number of clones (genotypes) that were significantly superior over the popular mid-late check, Co 86032 was 31 (cane yield), 65 (CCS yield), 34 (Brix per cent in juice), 42 (sucrose content in juice), 29 (CCS%), 31 (single cane weight), 17 (cane girth), 96 (millable cane height), 54

(number of millable canes per plot). Similarly, the number of genotypes that surpassed the popular early check, Co 09004 was 08 (cane yield), 03 (CCS yield), 11 (Brix per cent in juice), 09 (sucrose content in juice), 12 (CCS%), 16 (single cane weight), 06 (cane girth), 83 (millable cane height), 13 (number of millable canes per plot).

		1									
S. No.	clones	FC	NMC/ P	CG	СН	SC W	СВ	СР	CCS	CCS Y	СҮ
1	SNK 180011	18F0 1	32.9*	3.0 *	302.3 *	2.2*	22.6	19.9	14.1	29.4*	206.7*
2	SNK 180018	18F0 1	36.8*	2.7	310.0 *	1.9*	23.0	20.1	14.2	28.5*	199.7*
3	SNK 180028	18F0 1	33.9*	3.0 *	306.9 *	2.2*	22.1	19.0	13.3	29.8*	221.7*
4	SNK 180064	18F0 2	30.9	2.6	333.2 *	1.9*	22.6	19.6	13.9	23.7*	169.9*
5	SNK 180090	18F0 2	33.9*	2.4	330.1 *	1.5	22.1	19.2	13.6	18.2	134.2
6	SNK 180122	18F0 2	43.6*	2.3	303.8 *	1.5	19.8	17.3	12.3	22.1*	179.7*
7	SNK 180058	18F0 2	25.1	2.7	280.6	1.7	22.1	19.9	14.3	16.8	117.9
8	SNK 180082	18F0 2	30.0	2.5	333.2 *	1.9*	22.6	19.4	13.6	22.3*	163.3*
9	SNK 180111	18F0 2	24.1	2.7	271.4	1.6	20.7	17.8	12.5	13.4	107.5
10	SNK 180061	18F0 2	41.6*	2.5	316.2 *	1.2	24.9 *	21.8 *	15.5	19.5*	126.7
11	SNK 181265	18F0 2	19.3	2.4	226.6	1.2	20.7	17.3	11.9	7.2	62.1
12	SNK 180053	18F0 2	41.6*	2.3	293.0 *	1.4	22.1	19.2	13.6	20.5*	150.7
13	SNK 181267	18F0 2	29.0	2.6	331.6 *	2.0*	23.9 *	21.2	15.1	24.6*	162.9
14	SNK 180124	18F0 2	34.8*	2.2	300.7 *	1.4	23.9 *	20.2	14.0	18.6	132.4
15	SNK 180113	18F0 2	31.9*	2.3	337.8 *	1.6	25.3 *	22.2 *	15.8 *	22.8*	144.2
16	SNK 180041	18F0 2	30.0	2.4	337.8 *	1.5	23.9 *	20.9	14.8	18.6	126.0
17	SNK	18F0	33.9*	2.2	302.3	1.5	23.9	20.7	14.6	19.2*	131.8

Table 6: Mean performance of 163 genotypes (150 clones & 13 check varieties) for cane yield and its components traits in first clonal generation of sugarcane

E-ISSN: 2582-2160 • Website: www.ijfmr.com

	180118	2			*		*				
	SNK	18F0			313.1		24.4	21.8	15.6		
18	180121	2	27.1	2.3	*	1.4	*	*	*	15.4	99.3
	SNK	18F0			314.6		24.4	22.2	16.1		
19	180073	2	31.9*	2.5	*	1.7	*	*	*	23.9*	148.1
	SNK	18F0			319.3						
20	180080	2	34.8*	2.7	*	1.9*	20.7	16.8	11.4	22.1*	193.2*
	SNK	18F0			293.0			1 - 0			
21	181271	2	21.2	2.6	*	1.7	21.2	17.9	12.5	12.5	101.1
	SNK	18F0	20.7*	2.6	325.4	1.0	21.2	17.7	10.0	0.4.7*	201.0*
22	180065	2	38.7*	2.6	*	1.8	21.2	17.7	12.2	24.7*	201.9*
	SNK	18F0	24.0*	26	310.0	1.0*	22.6	10.0	1 4 1	26.0*	102.2*
23	180123	2	34.8*	2.6	*	1.9*	22.6	19.9	14.1	26.0*	183.3*
24	SNK	18F0	20.2	26	319.3	1.0	23.9	21.4	15.2	15.0	104.7
24	180051	2	20.2	2.0	*	1.8	*	*	15.5	13.9	104.7
25	SNK	18F0	21 8*	2.4	320.8	1.6	23.9	20.7	14.6	22.4*	153.4
23	180054	2	34.0	2.4	*	1.0	*	20.7	14.0	22.4	155.4
26	SNK	18F0	25.1	27	294.5	17	23.9	21.2	15.1	18 1	120.8
20	180112	2	23.1	2.7	*	1./	*	21.2	13.1	10.1	120.0
27	SNK	18F0	42.6*	25	271.4	16	23.5	21.7	15.8	29.6*	186 8*
21	180070	2	42.0	2.5	271.4	1.0	23.5	*	*	27.0	100.0
28	SNK	18F0	28.0	25	269.8	15	23.5	21.4	15.5	18 3	118 5
20	180089	2	20.0	2.5	207.0	1.5	25.5	*	*	10.5	110.5
29	SNK	18F0	25.1	2.5	322.4	1.7	23.0	21.2	15.5	18.5	120.3
	180037	2	20.1	2.0	*		2010	21.2	*	10.0	120.0
30	SNK	18F0	29.0	2.3	305.4	1.3	22.6	19.4	13.6	12.9	95.7
	180087	2			*						
31	SNK	18F0	32.9*	2.4	369.3	1.7	23.0	20.1	14.2	21.4*	149.9
_	181268	2			*					-	
32	SNK	18F0	22.2	2.7	323.9	1.9*	22.6	20.4	14.7	18.0	123.1
	180067	2			*						
33	SNK	18F0	36.8*	2.5	248.2	1.4	23.5	21.2	15.3	20.9*	137.1
	181257	2		2.0	202.0						
34	SNK	18F0	34.8*	2.8	303.8	1.9*	21.2	20.5	15.2	29.7*	193.5*
	181272	2		*	*						
35	SNK 19010C	18F0	26.1	2.5	242.0	1.7	23.0	20.8	15.0	17.9	120.3
		2 1950			200 4						
36	SINK 190110	1910	33.9*	2.1	288.4 *	1.2	23.5	21.2	15.3	15.0	99.5
		2 1950			210.0						
37	5INK 191255	1910	47.5*	2.2	510.0 *	1.3	17.9	15.2	10.5	16.9	160.4
20	181233 CNIV	2 1950	22.2	25	200.2	16	22.0	21.2	15 1	15 1	101.2
38	SINK	1940	23.2	2.3	299.2	1.0	23.9	21.2	15.1	15.1	101.2

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

	181269	2			*		*				
30	SNK	18F0	21.2	27	272.9	17	193	15.3	10.3	10.0	98.1
37	180031	2	21.2	2.7	212.)	1./	17.5	15.5	10.5	10.0	70.1
40	SNK	18F0	23.2	25	293.0	17	23.0	20.1	14.2	15.1	106.7
40	180116	2	23.2	2.5	*	1.7	23.0	20.1	11.2	13.1	100.7
41	SNK	18F0	30.9	24	234 3	14	22.1	19.0	133	153	115.0
71	180230	9	50.7	2.7	237.3	1.7	22.1	17.0	15.5	15.5	115.0
42	SNK	18F0	36.8*	26	320.8	17	193	15.6	10.5	17.8	168 7*
72	180449	9	50.0	2.0	*	1.7	17.5	15.0	10.5	17.0	100.7
43	SNK	18F0	30 7*	24	259.3	16	197	157	10.6	18.6	175 5*
-J	181311	9	37.1	2.7	237.3	1.0	17.7	15.7	10.0	10.0	175.5
44	SNK	18F0	41.6*	25	266.7	15	193	13.8	92	15 A	166.6*
	180349	9	41.0	2.5	200.7	1.5	17.5	15.0).2	15.4	100.0
45	SNK	18F0	34 8*	24	296.7	15	22.9	19.4	13.5	19.5*	144 8
-10	180319	9	54.0	2.7	*	1.5	22.7	17.4	15.5	17.5	144.0
47	SNK	18F0	46.5*	21	215.8	1.0	22.5	19.2	13.4	13 /	100.4
	180218	9	- 0.5	2.1	215.0	1.0	22.5	17.2	13.4	13.7	100.4
46	SNK	18F0	42.6*	23	271 /	14	22.9	20.6	147	22.3*	150.7
ΨU	181281	9	42.0	2.5	271.4	1.4	22.9	20.0	14.7	22.5	150.7
48	SNK	18F0	19.3	2.8	265.2	2.1*	22.5	20.1	14.4	17.0	118 7
-10	180249	9	17.5	*	203.2	2.1	22.3	20.1	14.4	17.0	110.7

Cont

											•••
S. No.	clones	FC	NMC/ P	CG	СН	SC W	СВ	СР	CCS	CCS Y	СҮ
49	SNK 180220	18F0 9	32.9*	2.5	339.3 *	1.7	22.9	20.8	15.0	23.3*	154.9
50	SNK 180252	18F0 9	30.0	2.4	287.1 *	1.6	20.6	18.2	12.9	17.1	132.4
51	SNK 180294	18F0 9	28.0	2.4	250.9	1.4	21.0	17.9	12.4	12.9	104.4
52	SNK 180364	18F0 9	27.1	2.3	328.1 *	1.7	20.6	18.2	12.9	16.3	126.6
53	SNK 180219	18F0 9	33.9*	2.6	262.0	1.4	21.5	19.4	14.0	17.9	128.1
54	SNK 180328	18F0 9	35.8*	2.4	256.7	1.6	21.5	19.2	13.7	21.7*	157.5
55	SNK 180341	18F0 9	27.1	2.9 *	256.4	1.3	21.0	18.4	13.0	12.2	94.5
56	SNK 180175	18F0 9	24.1	2.5	263.2	2.0*	22.9	20.7	14.9	21.0*	140.1
57	SNK	18F0	30.9	2.6	234.2	1.3	21.9	19.6	14.0	15.0	107.8

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

	180265	9									
50	SNK	18F0	22.2	26	222.0	15	22.4	10.0	1 4 1	10.0	01.7
58	180435	9	22.2	2.0	233.9	1.5	22.4	19.8	14.1	12.8	91.7
50	SNK	18F0	20.0	2.4	227.1	1.2	22.2	21.6	15.7	14.0	04.0
39	180308	9	29.0	2.4	227.1	1.5	23.3	*	*	14.8	94.9
60	SNK	18F0	16 5*	22	294.4	1.4	21.0	10 1	10.7	22.0*	170.2*
00	180288	9	40.5	2.5	*	1.4	21.0	10.1	12.7	22.01	172.5
61	SNK	18F0	25.9*	22	308.0	1.2	21.0	10 1	12.7	15.0	125.5
01	180467	9	33.8	2.5	*	1.5	21.0	10.1	12.7	13.9	125.5
62	SNK	18F0	36.8*	24	333.7	1.0*	22.4	20.6	14.0	20.5*	106.6*
02	180442	9	30.8	2.4	*	1.9	22.4	20.0	14.7	29.5	190.0*
63	SNK	18F0	<u> </u>	26	317.3	1 0*	21.0	10.6	14.0	173	123 1
03	180318	9	23.2	2.0	*	1.9	21.9	19.0	14.0	17.5	123.1
64	SNK	18F0	30.0	24	271.6	13	20.6	18.0	12.7	13.3	105.1
04	180339	9	50.0	2.7	271.0	1.5	20.0	10.0	12.7	15.5	105.1
65	SNK	18F0	193	25	286.7	17	20.6	18.2	12.9	11.9	927
0.5	180172	9	17.5	2.5	*	1.7	20.0	10.2	12.9	11.9)2.1
66	SNK	18F1	24.1	25	308.6	17	24.3	23.1	17.0	18.9*	1113
00	180519	1	27.1	2.5	*	1.7	*	*	*	10.9	111.5
67	SNK	18F1	29.0	23	297.2	15	21.0	179	12.4	15.2	122.0
07	180537	1	27.0	2.5	*	1.5	21.0	17.9	12.1	15.2	122.0
68	SNK	18F1	31 9*	2.4	289.5	15	21.9	19.4	13.8	18.1	130.8
	180536	1	51.9	2.1	*	1.5	21.9	17.1	15.0	10.1	150.0
69	SNK	18F1	22.2	2.5	309.6	1.7	22.9	21.2	15.4	15.7	102.5
	180634	2		2.0	*		>		*	1017	102.0
70	SNK	18F1	32.9*	2.5	318.8	1.7	21.0	18.1	12.7	19.2*	150.7
	180625	2	020		*			1011			10017
71	SNK	18F1	23.2	2.5	317.3	1.9*	22.4	20.8	15.1	18.7	123.9
	180582	2			*						
72	SNK	18F1	26.1	2.5	291.0	1.6	22.5	21.0	15.3	17.4	113.9
	180775	4			*						
73	SNK	18F1	29.0	2.9	312.7	2.3*	22.9	21.2	15.4	30.4*	195.3*
	180664	4		*	*				*		
74	SNK	18F1	30.9	2.5	348.2	1.7	21.9	19.6	14.0	20.2*	143.6
	180674	4			*						
75	SNK	18F1	21.2	2.6	329.3	1.9*	23.3	21.8	15.9	18.1	113.5
_	180800	4			*			*	*		_ · -
76	SNK	18F1	36.8*	2.5	237.0	1.2	24.3	23.3	17.3	20.2*	117.0
	180784	4					*	*	*		
77	SNK	18F1	36.8*	2.5	295.7	1.7	21.9	19.6	14.0	24.7*	174.8*
	180705	4			*						
78	SNK	18F1	32.9*	2.8	300.3	1.8	22.9	21.2	15.4	26.2*	169.0*

E-ISSN: 2582-2160 • Website: www.ijfmr.com

	180731	4		*	*				*		
	SNK	18F1		2.8	298.8						
79	180665		16.4	*	*	1.8	22.9	20.7	14.9	12.3	83.6
	SNK										
80	180702		29.0	2.7	269.4	1.6	20.6	17.9	12.6	16.6	131.4
	100702 SNIV	4 10F1			212.7		247	22.1	16.0		
81	SINK	1861	43.6*	2.3	512.7	1.4	24.1 *	23.1 *	10.9	26.6*	156.6
	180/96	4			*		ŕ	*	*		
82	SNK	18F1	42.6*	2.6	325.0	1.7	23.3	21.6	15.7	30.9*	194.9*
	180662	4			*			*	*		
83	SNK	18F1	28.0	26	316.7	16	23.8	21.8	15.8	18.8*	1197
05	180693	4	20.0	2.0	*	1.0	*	*	*	10.0	117.7
Q /	SNK	18F1	21.2	27	7707	17	22.2	21.6	15.6	15.0	102.4
04	180732	4	21.2	2.1	270.7	1./	23.3	*	*	13.9	102.4
05	SNK	18F1	07.1	2.4	240.6	1 4	24.3	23.8	17.8	17.0	101.4
00	180730	4	27.1	2.4	249.0	1.4	*	*	*	17.9	101.4
0.6	SNK	18F1			308.0	1.5	22.4		14.0	15.0	100.0
86	180768	4	22.2	2.6	*	1.7	22.4	20.5	14.8	15.2	102.9
	SNK	18F1	10 11		329.6					•• •	100.41
87	180774	4	43.6*	2.4	*	1.6	22.4	20.7	15.1	28.7*	188.4*
	SNK	18F1									
88	180792	4	30.9	2.7	247.2	2.1*	21.9	19.9	14.3	27.3*	189.2*
	SNK	18F1		2.8							
89	180716	4	21.2	*	278.0	1.9*	22.4	20.8	15.1	17.0	112.6
	SNK	18F1					23.8	21.6	15.5		
90	180795	4	33.9*	2.5	240.0	1.3	*	*	*	17.8	115.0
	SNK	18F1			308.9						
91	180823	8	27.1	2.5	*	1.6	21.9	20.4	14.8	17.5	118.3
	SNK	18F1			290.7						
92	180875	8	23.2	2.5	*	1.5	21.9	19.6	14.0	13.7	98.4
	SNK	0 19F1			228.2				15 /		
93	190979		36.8*	2.5	*	1.8	22.9	21.2	13.4 *	28.2*	181.6*
	100070	0 10F1		2.0							
94	190976	1011	12.5	3.0 *	223.1	1.7	22.4	20.8	15.1	9.1	61.7
	180870	0		-,-	200.0						
95	SNK	18F1	33.9*	2.4	298.8	1.4	21.5	19.4	14.0	18.0	128.4
	180847	8			*						
96	SNK	18F1	21.2	2.1	301.2	1.2	24.7	23.8	17.6	11.4	66.3
	180832	8			*		*	*	*		
97	SNK	18F1	24.1	2.6	297.2	1.6	20.6	18.2	12.9	13.6	106.2
	180922	9			*	1.0	_0.0	10.2		10.0	100.2
98	SNK	18F1	24-1	27	326.6	2.0*	21.9	20.1	14.5	21.0*	143 5
	180899	9	<u>~</u> 7 .1	2.1	*	2.0	21.7	20.1	17.3	21.0	173.3
99	SNK	18F1	21.2	2.4	297.2	1.6	24.3	23.1	17.0	16.0	95.0

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

	180912	9			*		*	*	*		
											Cont
S.	clones	FC	NMC/	CG	СН	SC	CB	СР	CCS	CCS	СҮ
No.			Р	00		W	02		000	Y	<u> </u>
100	SNK181091	18F2 6	30.9	2.4	320.4 *	1.7	23.8 *	21.8 *	15.8 *	23.2*	146.6
101	SNK 181120	18F2 7	27.1	2.5	332.7 *	1.8	23.8 *	22.0 *	16.0 *	22.8*	142.4
102	SNK 181139	18F2 7	21.2	2.3	251.1	1.2	24.7 *	23.6 *	17.4 *	10.6	63.1
103	SNK 181165	18F2 7	37.8*	2.4	301.5 *	1.4	24.3 *	23.3 *	17.3 *	25.3*	146.2
104	SNK 181220	18F2 7	23.2	2.5	306.7 *	1.7	21.5	20.2	14.7	16.0	109.1
105	SNK 181127	18F2 7	18.3	2.3	308.3 *	1.5	23.4	21.9 *	15.9 *	11.4	73.3
106	SNK 181110	18F2 7	22.2	2.8 *	330.8 *	2.2*	24.3 *	23.3 *	17.3 *	24.8*	143.2
107	SNK 181160	18F2 7	30.9	2.3	346.9 *	1.5	23.9 *	23.7 *	17.3 *	22.1*	127.8
108	SNK 181148	18F2 7	28.0	2.4	277.4	1.5	24.4 *	23.8 *	17.3 *	19.0*	110.6
109	SNK 181199	18F2 7	31.9*	2.3	356.8 *	1.6	24.7 *	23.1 *	16.9 *	23.3*	138.2
110	SNK 181174	18F2 7	27.1	2.4	294.4 *	1.5	23.4	21.6 *	15.7 *	16.9	108.3
111	SNK 181106	18F2 7	23.2	2.2	299.0 *	1.2	25.7 *	23.8 *	17.3 *	12.5	74.0
112	SNK 181219	18F2 7	31.9*	2.3	336.1 *	1.5	23.4	21.6 *	15.7 *	19.6*	124.9
113	SNK 181179	18F2 7	22.2	3.0 *	318.5 *	2.1*	23.8 *	21.6 *	15.5 *	21.5*	138.3
114	SNK 181145	18F2 7	31.9*	2.8 *	272.7	2.0*	22.4	21.0	15.4 *	28.7*	185.6*
115	SNK 181203	18F2 7	29.0	2.5	303.0 *	1.6	22.4	20.6	14.9	19.2*	129.2
116	SNK 181118	18F2 7	30.9	2.5	305.2 *	1.7	23.4	21.6 *	15.7 *	22.7*	144.2
117	SNK 181112	18F2 7	29.0	2.7	274.3	1.8	22.0	20.1	14.5	21.0*	144.3
118	SNK 181149	18F2 7	25.1	2.5	267.2	1.4	22.9	21.2	15.4 *	14.1	92.4

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

		10-0			1	1				1	1
119	SNK 181143	18F2 7	24.1	2.8 *	275.2	1.7	24.3 *	23.1 *	17.0 *	20.1*	118.6
120	SNK 181126	18F2 7	35.8*	2.6	351.5 *	2.0*	23.5	21.4 *	15.4 *	32.7*	210.2*
121	SNK 181190	18F2 7	57.0*	2.4	308.3 *	1.3	21.7	19.5	13.9	27.2*	193.9*
122	SNK 181397	18F4	25.1	2.9 *	351.5 *	2.5*	21.2	18.6	13.1	24.6*	186.5*
123	SNK 181446	18F4	34.8*	2.2	257.0	1.2	22.6	20.6	14.8	16.0	108.9
124	SNK 181393	18F4	21.2	2.7	320.6 *	2.0*	22.6	20.3	14.6	17.6	121.3
125	SNK 181396	18F4 1	30.9	2.6	317.5 *	1.9*	22.1	20.1	14.5	24.0*	165.0*
126	SNK 181352	18F4 1	36.8*	2.6	308.3 *	1.8	22.1	20.6	15.0	27.4*	181.3*
127	SNK 181452	18F4 1	17.3	3.4 *	316.0 *	2.7*	23.5	21.6 *	15.6 *	20.3*	129.7
128	SNK 181402	18F4 1	31.9*	2.7	267.2	1.8	22.1	20.4	14.7	24.6*	166.1*
129	SNK 181479	18F4 1	22.2	2.5	325.3 *	1.8	21.2	18.1	12.6	14.1	112.2
130	SNK 181480	18F4 1	22.2	2.3	275.8	1.4	23.5	21.6 *	15.6 *	12.5	81.5
131	SNK 181476	18F4 1	13.4	2.5	340.7 *	1.7	22.6	20.8	15.0	9.2	63.3
132	SNK 181410	18F4 1	24.1	2.6	260.4	1.7	23.1	21.2	15.4	17.7	115.6
133	SNK 181366	18F4 1	23.2	2.7	271.2	1.8	21.7	19.5	13.9	16.1	116.4
134	SNK 181518	18F4 1	17.3	2.6	201.7	1.3	22.1	19.7	14.0	8.1	59.5
135	SNK 181498	18F4 1	28.0	2.1	218.7	0.9	24.0 *	21.6 *	15.4 *	8.9	59.6
136	SNK 181444	18F4 1	8.6	2.5	283.6 *	1.5	22.6	20.3	14.6	5.1	37.3
137	SNK 181365	18F4 1	22.2	2.4	235.7	1.3	22.4	20.1	14.4	10.3	73.2
138	SNK 181499	18F4 1	22.2	2.6	284.5 *	1.7	22.0	19.2	13.5	14.4	107.1
139	SNK180068	18F4 1	22.2	2.7	292.8 *	1.9*	22.0	19.9	14.3	17.0	119.7

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

140	SNK 181720	18F4 1	16.4	2.2	253.6	1.1	23.4	20.5	14.5	6.4	46.8
141	SNK 181543	18F4 2	16.4	2.5	257.9	1.6	22.9	20.1	14.2	10.3	73.9
142	SNK 181591	18F4 4	21.2	2.5	265.9	1.7	22.4	20.1	14.4	14.2	99.4
143	SNK 181227	18F0 3	14.4	2.7	300.2 *	1.9*	22.4	20.1	14.4	11.5	81.3
144	SNK 181230	18F0 4	16.4	2.7	275.2	1.8	23.8 *	21.6 *	15.5 *	13.2	86.3
145	SNK 180129	18F0 8	22.2	2.6	266.9	1.8	22.9	21.2	15.4 *	16.9	110.4
146	SNK 180509	18F0 9	27.1	2.5	280.5	1.7	22.9	20.8	14.9	19.1*	128.3
147	SNK 180506	18F0 9	25.1	2.5	258.8	1.6	22.9	21.2	15.4 *	16.9	110.1
148	SNK 180805	18F1 5	36.8*	2.7	280.5	1.7	23.4	21.4 *	15.4 *	27.8*	178.7*
149	SNK 180949	18F2 0	29.0	2.4	284.5 *	1.4	23.4	21.6	15.7 *	16.2	103.9
150	SNK 180954	18F2 4	27.1	3.1 *	249.0	2.0*	24.7 *	23.1 *	16.9 *	25.9*	153.1

Cont	
Cont	

Standards	Code	NMC/ P	CG	СН	SC W	СВ	СР	CCS	CCS Y	CY
Commercial standards										
CoC 671	C1	30.0	2.8	208.5	1.6	24.7	20.9	14.8	21.1	137.0
Co 09004	C2	37.0	2.7	219.8	1.6	23.5	22.3	16.4	26.0	172.7
SNK 09211	C3	28.7	2.5	257.2	1.5	24.4	22.0	16.0	17.8	108.9
Co 86032	C4	27.3	2.5	256.8	1.4	22.6	20.2	14.8	14.5	140.7
Co 09232	C5	28.5	2.2	254.7	1.2	21.8	20.5	15.3	15.3	98.3
SNK 09227	C6	28.5	2.4	228.5	1.4	22.1	20.1	14.1	15.6	112.1
SNK 09268	C7	27.5	2.6	314.7	1.7	20.3	18.7	13.5	17.0	126.6
SNK 08789	C8	22.5	2.3	249.2	1.4	21.3	20.0	14.6	12.1	84.4
SNK 07680	C9	27.5	2.5	234.0	1.1	22.5	19.9	14.4	11.5	84.4
VSI 12121	C10	36.0	2.8	253.7	1.9	19.8	18.5	12.8	27.7	182.9
CoM 265	C11	16.0	2.8	221.0	1.6	21.6	20.0	14.5	11.6	77.4
SNK 09293	C12	26.5	2.8	249.8	1.8	19.6	17.8	12.8	17.3	180.1
MS 13081	C13	25.5	2.9	291.7	2.1	22.5	20.5	14.8	21.3	146.6
CD @ 5	%	3.4	0.3	23.6	0.4	0.9	1.0	0.6	4.2	22.2
CV		4.83	4.2 9	3.37	10.6 5	1.70	2.0	1.6	4.8	7.0

*Significantly superior over popular check variety, Co 86032

FC: Family code, NMC/P: Number of millable canes per plot, CG: Cane girth, CH: Millable cane height, SCW: Single cane weight, CB: Brix per cent in juice, CP: Sucrose per cent in juice, CCS: Commercial cane sugar per cent, CY - Cane yield (t/ha), CCSY - Commercial cane sugar yield (t/ha), CD: Critical difference, CV: Coefficient of variation.

03.5.1 Cane and sugar productivity

The pre-selected clonal population from ground nursery exhibited wide range of cane productivity in comparisons with commercial standards. Among 150 clones, three clones, SNK 180028 (221.7 t/ha), SNK 181126 (210.2 t/ha), and SNK 180011 (206.7 t/ha) recorded significantly superior for cane yield over best cane yielding standard, VSI 12121 (Table 6). The significantly higher cane yield in three most promising progenies was due to their continuous vegetative growth and dry matter accumulation even beyond flowering period (November and December). These three genotypes recorded 31-37% superiority over popular commercial standard, Co 86032, indicating their great promise as improved commercial varieties with desirable feature. The performance of genotypes for commercial cane sugar yield (CCS) also shown similar trend where in three promising genotypes recorded 49-56% superiority over most popular commercial standard, Co 86032 (Table 6). Hence these genotypes hold great promise as commercial varieties in the region. The results are in accordance with the findings of Patil et al., (2015); Sanghera and Jamwal (2019).

Most of the clones had higher number of millable canes per plot than most popular standard, Co 09004, but seven genotypes, such as SNK 181190, SNK 181255, SNK 180288, SNK 180218, SNK 180774, SNK 180796 and SNK 180122, recorded significantly greater number of millable canes per plot (Table 6). SNK 181452 (Co 87015, GC) and SNK 180954 (CP 52-1, GC) had significantly the highest means of cane girth (3.40 and 3.10 cm, respectively) for the best standard, Co 09004 (2.70 cm). Among various juice quality parameters, the sucrose per cent in juice is an important and deciding trait for commercial acceptability in sugar industry. Six genotypes like SNK 181106, SNK 180730, SNK 180832, SNK 181148, SNK 181160 and SNK 181139 recorded superior sucrose content in juice (Pol%) over best commercial standard, Co 09004 but the cane productivity is significantly inferior (Table 6). Among 150 genotypes, the clones SNK 180070, SNK 180662, SNK 181126 and SNK 180805 recorded significant superiority over Co 86032 in both for cane and sugar productivity with higher sucrose content in juice.

4. CONCLUSIONS

In sugarcane varietal development, there is a continuous need for high yielding as well as high sugared clones. If potential parental combinations can be identified, it can save labour and monetary resources during subsequent clonal selections. Five genotypes, such as SNK 180011 (CoVC 14062 \times Co 89003), SNK 180028 (CoVC 14062 \times Co 89003), SNK 180070 (Co 86032 \times CoVC 14061), SNK 180662 (CoVC 14062, GC) and SNK 181126 (Co 11015, GC) were found to be the most promising for commercial cultivation and suitably be exploited for sustaining and improving cane and sugar productivity in the region. The clones identified as promising for both cane yield and juice quality traits need to be further tested in advanced yield trials. Additionally, their parentage can be considered as proven parents for intensifying further improvement to realize the expected genetic gain in sugarcane breeding.

ACKNOWLEDGEMENTS

I express my heartfelt gratitude to Dr. Sanjay B. Patil (major advisor) and the esteemed members of my advisory committee for their invaluable guidance and support throughout the entire duration of my study. Additionally, I extend sincere thanks to the University of Agricultural Sciences, Dharwad, for their unwavering support and encouragement in facilitating this research work.

REFERENCES

- Anna Durai A., Premachandran M.N., Govindaraj P., Malathi P., Viswanathan, R., Variability in breeding pool of sugarcane (*Saccharum* spp.) for yield, quality and resistance to different biotic and abiotic stress factors. Sugar Technology, 2015, 17, 107-115. <u>https://link.springer.com/article/10.1007/s12355-014-0301-x</u>
- Creste S., Accoroni K.A.G., Pinto L.R., Vencovsky R., Gimenes M.A., Xavier M.A., Landell M.G.A., Genetic variability among sugarcane genotypes based on polymorphisms in sucrose metabolism and drought tolerance genes. Euphytica, 2010, 172(3), 435-446. <u>https://link.springer.com/article/10.1007/s10681-009-0078-2</u>
- 3. Cyrilus O.W., Samson O.O., Ouko, O.E., Screening of new strains of sugarcane using augmented block designs. Mathematical Theory and Modeling, 2014, 4(8), 153-161. https://www.iiste.org/Journals/index.php/MTM/article/view/14408
- Dinesh Babu K.S., Janakiraman V., Palaniswamy H., Kasirajan L., Gomathi R., Ramkumar T.R., A short review on sugarcane: its domestication, molecular manipulations and future perspectives. Genetic Resources Crop Evolution, 2022, 69(8): 2623-2643. https://link.springer.com/article/10.1007/s10722-022-01430-6
- 5. Federer W.T., Augmented (or honyaku) designs. Hawaiian Planters' Record, 1956, 55(1), 191-208. https://ecommons.cornell.edu/items/22e171a6-71d7-422a-9de5-9d7cc372ccd0
- Federer W.T., Searle, S.R., Model considerations and variance component estimation in augmented completely randomized and randomized complete blocks designs. Cornell University, Ithaca, New York, 1976, 11. <u>https://ecommons.cornell.edu/server/api/core/bitstreams/af9a0d69-1e83-4ce3-980fe544ad21de27/content</u>
- Govindaraj P., Amalraj V.A., Expedition collection, characterization and diversity analysis of the new wild sugarcane germplasm from Manipur. Indian Journal of Plant Genetic Resources, 2022, 35(2), 199-208. <u>https://ispgr.in/index.php/ijpgr/article/view/26</u>
- Hemaprabha G., Mohanraj K., Jackson P.A., Lakshmanan P., Ali G.S., Li A.M., Huang D.L., Ram B., Sugarcane genetic diversity and major germplasm collections. Sugar Technology, 2022, 24, 279-297. <u>https://link.springer.com/article/10.1007/s12355-021-01084-1</u>
- 9. Johnson H.W., Robinson H.F., Comstock, R.E., Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 1955, 47(7), 314-318. https://doi.org/10.2134/agronj1955.00021962004700070009x
- 10. Khokhar J.S., Jamwal N.S., Sanghera G.S., Singh, P., Evaluation of sugarcane (*Saccharum officinarum*) germplasm for quality, yield traits and effects of flowering on cane traits. Indian Journal of Agricultural Sciences, 2022, 92(7), 842-846. https://epubs.icar.org.in/index.php/IJAgS/article/view/105840

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

- 11. Kumar P., Pandey S.S., Kumar B., Kamat D.N., Kumar, M., Genetic variability, heritability and genetic advance of quantitative traits in sugarcane. International Journal of Chemical Studies, 2018, 6(3), 3569-3572.
- Mallikarjun P.K., Sanjay B. Patil, Study of genetic variability in productivity and juice quality traits among first clonal generation sugarcane clones (*Saccharum* spp.). The Pharma Innovation Journal, 2023, 12(9), 1806-1811. <u>https://www.thepharmajournal.com/archives/2023/vol12issue9/PartT/12-8-350-414.pdf</u>
- 13. Masri M.I., Genetic trait interrelationships and selection indices for cane yield in sugar cane.
 Egyptian Journal of Plant Breeding, 2015, 19(4), 1183-1197.
 https://platform.almanhal.com/Files/2/94605
- 14. Meade C.P., Chen, J.C.P., Cane sugar hand book, John Wiley and Sons, Inc. New York, 1977, 947. https://www.cabdirect.org/cabdirect/abstract/19770354795
- Pal R., Singh K., Singh O., Singh V., Jain R., Solomon S., Effect of plant growth regulators (PGRS) on germination, yield and quality of sugarcane in sub-tropical India. Agricultural Research Journal, 2021, 58, 657-661.
- 16. Patil S.B., Guddadamath S.G., Khadi B.M., Genetic enhancement of sugarcane productivity combining non flowering feature. Sugar Technology, 2015, 17, 386-394. https://link.springer.com/article/10.1007/s12355-014-0338-x
- 17. Sabitha N., Rao K.P., Rao C.P., Rao, M.S., Genetic variation, heritability and genetic advance for yield components in sugarcane. Sugar Technology, 2007, 9(4), 290-292.
- Sanghera G.S., Jamwal, N.S., Identification of potential crosses based on vigour, cane characteristics and HR Brix for first clonal selection in sugarcane. Indian Journal of Sugarcane Technology, 2019, 34(1), 12-16.
- 19. Shrivastava A.K., Srivastava, S. Diversity of the germplasm of *Saccharum* species and related genera available for use in directed breeding programmes for sugarcane improvement. Current Science, 2016, 111(3), 475-482. <u>https://www.jstor.org/stable/24908652</u>
- 20. Silveira L.C.I.D., Brasileiro B.P., Kist V., Weber H., Daros E., Peternelli L.A., Barbosa M.H.P., Selection in energy cane families. Crop Breeding and Applied Biotechnology, 2016, 16(4), 298-306. https://www.scielo.br/j/cbab/a/W79KZZb9C46JPwnmgtPpzFs/?lang=en
- 21. Somu G., Nagaraja T.E., Genetic variability, heritability and genetic advance in first clonal stage of sugarcane. International Journal of Chemical Studies, 2020, 8(2), 959-963.
- 22. Somu G., Kanavi M.S.P., Meena N., Shashikumar C., Shivaray Navi, Character association studies in first clonal stage of sugarcane (*Saccharum officinarum* L.), International Journal of Chemical Studies, 2020, 8(5), 1041-1044.
- 23. Tena E., Mekbib F., Ayana A., Correlation and path coefficient analyses in sugarcane genotypes of Ethiopia. American Journal of Plant Sciences, 2016, 7, 490-497. <u>https://www.scirp.org/html/10-2601824_69315.htm</u>
- 24. Tolera B., Gedebo A., Tena E., Variability, heritability and genetic advance in sugarcane (*Saccharum* spp. hybrid) genotypes. Cogent Food and Agriculture, 2023, 9(1), 1-15. https://www.tandfonline.com/doi/full/10.1080/23311932.2023.2194482