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Introduction:-  

The  study  of common  fixed  point  of  mapping  contractive  type  condition  has  been   a  very  active  

field  of  research  activity  during  the  last  three  decades.  The  most  general  of  the  common   fixed   

point   pertain   to two  or  three  mapping  of  a  metric  space  (X, d)  and  use  either  a  Banach  type  

contractive  condition  or  other  contractive  condition. Many,   Hardy [1],  Rajput [2] ,  Yadav [3]  , 

Sengupta[4]  and  so  many   author  work  in  this  field  and   prove  more  interesting  result.   

Throughout  this  section   (X, d′)  denotes a  complete   metric  space  and  d  be  an   another  metric  on  

X.  if x0  ∈    X   and  r > 0   denote  by   B(x0, r )  =   {x ∈ X ∶ d(x0, x) < r }    and  by  

 clos. B(𝑥0, 𝑟)𝑑′
the  d’-  closer of  𝐵(𝑥0, 𝑟). 

 

Fixed  point  results  for Banach  Generalized  contractions:- 

Theorem: 1 :- Let   (𝑋, 𝑑′)  be  a complete  metric space,  d  another metric  on X,   𝑥0 ∈ 𝑋,   𝑟 > 0  and   

T    be  the mapping  from,  𝑐𝑙𝑜𝑠. 𝐵(𝑥0, 𝑟)𝑑′
into  X ,  satisfying the  following   conditions; 

    𝑑(𝑇𝑥, 𝑇𝑦)  ≤  𝛼. 𝑑( 𝑥, 𝑦)        (1.1)  

Where   non  negative  𝛼 ,  such that,  0 ≤   𝛼 <  1 

In  addition  assume the following  three  properties  hold: 

    𝑑(𝑥0, 𝑇𝑥0)  <   (1 − 𝛼) 𝑟          (1.2) 

If  𝑑 ≱   𝑑′   

then  T  is  uniformaly  continuous  from  ( 𝐵(𝑥0, 𝑟), 𝑑) 𝑖𝑛𝑡𝑜  (𝑋, 𝑑′)    (1.3) 

if  𝑑 ≠ 𝑑′  then T  is  continuous  from  (𝑐𝑙𝑜𝑠. 𝐵(𝑥0, 𝑟)𝑑′
, 𝑑′)  into  (𝑋, 𝑑′)   (1.4) 

then T  has  fixed  point ,  that  is  there  exists 𝑥 ∈  𝑐𝑙𝑜𝑠. 𝐵(𝑥0, 𝑟)𝑑′
  with  𝑇𝑥 = 𝑥. 

Proof: 

Let  𝑥1 =   𝑇𝑥0  then  from  (1.2),  we  have 

   𝑑(𝑥0, 𝑥1)   =   𝑑(𝑥0, 𝑇𝑥0)   <   (1 − 𝛼) 𝑟 ≤   𝑟  

So  that,  𝑥1  ∈  𝐵(𝑥0, 𝑟)  
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Next  let  𝑥2 =   𝑇𝑥1  then  we note that, 

   𝑑(𝑥1, 𝑥2)   =   𝑑(𝑇𝑥0, 𝑇𝑥1)  

From (1.1) 

   𝑑(𝑇𝑥0, 𝑇𝑥1)   ≤   𝛼 𝑑(𝑥0, 𝑥1)    

   𝑑(𝑇𝑥0, 𝑇𝑥1)   ≤   𝛼 (1 − 𝛼) 𝑟   

Now  

   𝑑(𝑥0, 𝑥2)   ≤   𝑑(𝑥0, 𝑥1)   +   𝑑(𝑥1, 𝑥2)  

   𝑑(𝑥0, 𝑥2)   ≤   (1 − 𝛼) 𝑟 + 𝛼 (1 − 𝛼) 𝑟     

   𝑑(𝑥0, 𝑥2)   ≤   (1 − 𝛼) 𝑟  (1 + 𝛼)  

   𝑑(𝑥0, 𝑥2)   <   (1 − 𝛼) 𝑟  (1 + 𝛼 +   𝛼2  + 𝛼3 + ⋯ … … . . )  

   𝑑(𝑥0, 𝑥2)   <   (1 − 𝛼) 𝑟  (1 − 𝛼 )−1  

   𝑑(𝑥0, 𝑥2)   <   𝑟    

So  that,  𝑥2  ∈  𝐵(𝑥0, 𝑟)  

Proceeding inductively  we  obtain 

   𝑑( 𝑥𝑛+1, 𝑥𝑛)   ≤   𝛼𝑛 𝑑(𝑥0, 𝑥1)     

   𝑑(𝑥0, 𝑥𝑛+1)     <   (1 − 𝛼)𝑛 𝑟  (1 − 𝛼 )−1  

It   follows   𝑑(𝑥0, 𝑥𝑛+1)   <     𝑟    and    𝑥𝑛+1  ∈    𝐵(𝑥0, 𝑟)  

In  this  way   we  construct  a  sequence   {𝑥𝑛}   of  elements  of  X, such that  {𝑥𝑛}  is   a Cauchy   

sequence  with respect  to,  d , which  converges  to  𝑥. 

We claim  that {𝑥𝑛}  is  a Cauchy  sequence  with  respect  to  d’. 

If    𝑑 ≥ 𝑑′ then  this is  trivial. 

Next  we  suppose  that,  𝑑 ≱  𝑑′ 

 Let  휀 > 0   be  given.  Now   from (1.3) that  there exists  𝛿 > 0  such  that, 

 𝑑′(𝑇𝑥, 𝑇𝑦)   <   휀 whenever 𝑥, 𝑦 ∈ 𝐵(𝑥0 , 𝑟) 𝑎𝑛𝑑  𝑑(𝑥, 𝑦)  <  𝛿    (1.5)  

From  the  above   the   sequence  {𝑥𝑛}  is  a  Cauchy  sequence with respect  to  d, so  we  know 

  that  there  exists  N  with  

  𝑑(𝑥𝑛, 𝑥𝑚)    <   𝛿  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑛, 𝑚 ≥   𝑁       (1.6) 

Now   from  (1.5)  and (1.6)  implies   

 𝑑′(𝑥𝑛+1, 𝑥𝑚+1)  =   𝑑′(𝑇𝑥𝑛, 𝑇𝑥𝑚)  <   휀  𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟   𝑛, 𝑚  ≥   𝑁  

Which  proves that  {𝑥𝑛}  is  a Cauchy  sequence  with  respect  to  d’. 

Now  since  (𝑋, 𝑑′)  is  complete  there  exists   𝑥  ∈   𝑐𝑙𝑜𝑠. 𝐵(𝑥0, 𝑟)𝑑′
  with  

 𝑑′(𝑥𝑛, 𝑥) → 0  𝑎𝑛𝑑  𝑛 → ∞. 

We  claim  that,   𝑥  =   𝑇𝑥            (1.7) 

First  consider   the  case,   when 𝑑 ≠ 𝑑′.  

 𝑑′(𝑥, 𝑇𝑥)   ≤   𝑑(𝑥, 𝑥𝑛)   +   𝑑(𝑥𝑛, 𝑇𝑥)   =   𝑑(𝑥, 𝑥𝑛)   +   𝑑(𝑇𝑥𝑛−1, 𝑇𝑥)    

Let 𝑛 → ∞  and  using  (1.4),  we  obtain   

 𝑑′(𝑥, 𝑇𝑥)   ≤   𝑑(𝑥, 𝑥) + 𝑑(𝑇𝑥, 𝑇𝑥)  

 𝑑′(𝑥, 𝑇𝑥)  =  0   

And  thus  (8.7)  is  true, 

Next  we  suppose that  𝑑 = 𝑑′  then   

 𝑑′(𝑥, 𝑇𝑥)   ≤    𝑑(𝑥, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛−1, 𝑇𝑥)  

From (1.1), 
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   𝑑′(𝑥, 𝑇𝑥)   ≤    𝑑(𝑥, 𝑥𝑛) + 𝛼𝑑( 𝑥𝑛−1, 𝑇𝑥)  

As → ∞ ,    𝑇𝑥𝑛 = 𝑥 =   𝑇𝑥  and  above  inequality  can  be  written  as, 

   (1 − 𝛼)𝑑(𝑥, 𝑇𝑥)   ≤   0  

  So  that,    , 𝑑(𝑥, 𝑇𝑥) = 0  and  (1.7)  holds. 

             This   the   proof  of   the  theorem. 

Theorem:- 2 

Let   (𝑋, 𝑑′)  be  a complete  metric space,  d another metric  on X,   𝑥0 ∈ 𝑋,   𝑟 > 0  and   T    be   

the mapping  from,  𝑐𝑙𝑜𝑠. 𝐵(𝑥0, 𝑟)𝑑′
into  X ,  satisfying the  following   conditions; 

       𝑑(𝑇𝑥, 𝑇𝑦)  ≤  𝛼. 𝑑( 𝑥, 𝑦) +  𝛽[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)]  +  𝛾[𝑑(𝑥, 𝑇𝑦) +  𝑑(𝑦, 𝑇𝑥)]    (2.1)  

Where   non  negative  𝛼, 𝛽, 𝛾  ,  such that,  0 ≤   𝛼 + 𝛽 + 𝛾 <  1 

In  addition  assume the following  three  properties  hold: 

    𝑑(𝑥0, 𝑇𝑥0)  <   (1 −
𝛼 + 𝛽

1−𝛽−𝛾
)  𝑟         (2.2) 

If  𝑑 ≱   𝑑′   

then  T  is  uniformaly  continuous  from  ( 𝐵(𝑥0, 𝑟), 𝑑) 𝑖𝑛𝑡𝑜  (𝑋, 𝑑′)    (2.3) 

if  𝑑 ≠ 𝑑′  then T  is  continuous  from  (𝑐𝑙𝑜𝑠. 𝐵(𝑥0, 𝑟)𝑑′
, 𝑑′)  into  (𝑋, 𝑑′)   (2.4) 

then T  has  fixed  point ,  that  is  there  exists 𝑥 ∈  𝑐𝑙𝑜𝑠. 𝐵(𝑥0, 𝑟)𝑑′
  with  𝑇𝑥 = 𝑥. 

 

Proof: 

Let  𝑥1 =   𝑇𝑥0  then  from  (2.2),  we  have 

   𝑑(𝑥0, 𝑥1)   =   𝑑(𝑥0, 𝑇𝑥0)   <   (1 −
𝛼 + 𝛽

1−𝛽−𝛾
)  𝑟 ≤   𝑟  

So  that,  𝑥1  ∈  𝐵(𝑥0, 𝑟)  

Next  let  𝑥2 =   𝑇𝑥1  then  we note that, 

   𝑑(𝑥1, 𝑥2)   =   𝑑(𝑇𝑥0, 𝑇𝑥1)  

From (2.1) 

   𝑑(𝑇𝑥0, 𝑇𝑥1)   ≤   𝛼 𝑑(𝑥0, 𝑥1)  +  𝛽[𝑑(𝑥0, 𝑥1) + 𝑑(𝑥1, 𝑥2)]  +  𝛾 𝑑(𝑥0 , 𝑥2)      

   𝑑(𝑇𝑥0, 𝑇𝑥1)   ≤   (
𝛼 + 𝛽

1−𝛽−𝛾
) (1 −

𝛼 + 𝛽

1−𝛽−𝛾
)  𝑟    

Now  

   𝑑(𝑥0, 𝑥2)   ≤   𝑑(𝑥0, 𝑥1)   +   𝑑(𝑥1, 𝑥2)  

   𝑑(𝑥0, 𝑥2)   ≤   (1 −
𝛼 + 𝛽

1−𝛽−𝛾
)  𝑟 + (

𝛼 + 𝛽

1−𝛽−𝛾
) (1 −

𝛼 + 𝛽

1−𝛽−𝛾
)  𝑟     

   𝑑(𝑥0, 𝑥2)   ≤   (1 −
𝛼 + 𝛽

1−𝛽−𝛾
)  𝑟  (1 +

𝛼 + 𝛽

1−𝛽−𝛾
)  

   𝑑(𝑥0, 𝑥2)   <   (1 −
𝛼 + 𝛽

1−𝛽−𝛾
)  𝑟  (1 + [

𝛼 + 𝛽

1−𝛽−𝛾
]  +   [

𝛼 + 𝛽

1−𝛽−𝛾
]

2

 + [
𝛼 + 𝛽

1−𝛽−𝛾
]

3

+

⋯ … … . . )  

   𝑑(𝑥0, 𝑥2)   <   (1 − [
𝛼 + 𝛽

1−𝛽−𝛾
])  𝑟  (1 − [

𝛼 + 𝛽

1−𝛽−𝛾
] )

−1

  

   𝑑(𝑥0, 𝑥2)   <   𝑟    

So  that,  𝑥2  ∈  𝐵(𝑥0, 𝑟)  

Proceeding inductively  we  obtain 
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   𝑑( 𝑥𝑛+1, 𝑥𝑛)   ≤   [
𝛼 + 𝛽

1−𝛽−𝛾
]

𝑛

 𝑑(𝑥0, 𝑥1)     

   𝑑(𝑥0, 𝑥𝑛+1)     <   (1 − [
𝛼 + 𝛽

1−𝛽−𝛾
])

𝑛

 𝑟  (1 − [
𝛼 + 𝛽

1−𝛽−𝛾
] )

−1

  

It   follows   𝑑(𝑥0, 𝑥𝑛+1)   <     𝑟    and    𝑥𝑛+1  ∈    𝐵(𝑥0, 𝑟)  

In  this  way   we  construct  a  sequence   {𝑥𝑛}   of  elements  of  X, such that  {𝑥𝑛}  is   a Cauchy   

sequence  with respect  to,  d , which  converges  to  𝑥. 

We claim  that {𝑥𝑛}  is  a Cauchy  sequence  with  respect  to  d’. 

If    𝑑 ≥ 𝑑′ then  this is  trivial. 

Next  we  suppose  that,  𝑑 > ≠   𝑑′ 

 Let  휀 > 0   be  given.  Now   from (1.3) that  there exists  𝛿 > 0  such  that, 

 𝑑′(𝑇𝑥, 𝑇𝑦)   <   휀 whenever 𝑥, 𝑦 ∈ 𝐵(𝑥0 , 𝑟) 𝑎𝑛𝑑  𝑑(𝑥, 𝑦)  <  𝛿    (2.5)  

From  the  above   the   sequence  {𝑥𝑛}  is  a  Cauchy  sequence with respect  to  d, so  we  know 

  that  there  exists  N  with  

  𝑑(𝑥𝑛, 𝑥𝑚)    <   𝛿  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑛, 𝑚 ≥   𝑁       (2.6) 

Now   from  (2.5)  and (2.6)  implies   

 𝑑′(𝑥𝑛+1, 𝑥𝑚+1)  =   𝑑′(𝑇𝑥𝑛, 𝑇𝑥𝑚)  <   휀  𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟   𝑛, 𝑚  ≥   𝑁  

Which  proves that  {𝑥𝑛}  is  a Cauchy  sequence  with  respect  to  d’. 

Now  since  (𝑋, 𝑑′)  is  complete  there  exists   𝑥  ∈   𝑐𝑙𝑜𝑠. 𝐵(𝑥0, 𝑟)𝑑′
  with  

 𝑑′(𝑥𝑛, 𝑥) → 0  𝑎𝑛𝑑  𝑛 → ∞. 

We  claim  that,   𝑥  =   𝑇𝑥            (2.7) 

First  consider   the  case,   when 𝑑 ≠ 𝑑′.  

 𝑑′(𝑥, 𝑇𝑥)   ≤   𝑑(𝑥, 𝑥𝑛)   +   𝑑(𝑥𝑛, 𝑇𝑥)   =   𝑑(𝑥, 𝑥𝑛)   +   𝑑(𝑇𝑥𝑛−1, 𝑇𝑥)    

Let 𝑛 → ∞  and  using  (2.4),  we  obtain   

 𝑑′(𝑥, 𝑇𝑥)   ≤   𝑑(𝑥, 𝑥) + 𝑑(𝑇𝑥, 𝑇𝑥)  

 𝑑′(𝑥, 𝑇𝑥)  =  0   

And  thus  (2.7)  is  true, 

Next  we  suppose that  𝑑 = 𝑑′  then   

 𝑑′(𝑥, 𝑇𝑥)   ≤    𝑑(𝑥, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛−1, 𝑇𝑥)  

From (2.1), 

 

 𝑑′(𝑥, 𝑇𝑥)   ≤    𝑑(𝑥, 𝑥𝑛) + 𝛼𝑑( 𝑥𝑛−1, 𝑇𝑥)   +  𝛽[𝑑( 𝑥𝑛−1, 𝑇𝑥𝑛−1) +  𝑑(𝑥, 𝑇𝑥)] + 

   𝛾[𝑑( 𝑥𝑛−1, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑥𝑛−1)]   

As → ∞ ,    𝑇𝑥𝑛 = 𝑥 =   𝑇𝑥  and  above  inequality  can  be  written  as, 

   (1 − [
𝛼 + 𝛽

1−𝛽−𝛾
]) 𝑑(𝑥, 𝑇𝑥)   ≤   0  

  So  that,    , 𝑑(𝑥, 𝑇𝑥) = 0  and  (2.7)  holds. 

             This complete  proof  of   the  theorem. 
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