International Journal for Multidisciplinary Research (IJFMR)

Email: editor@ijfmr.com

To Study on Number of Subgroups of Finite Abelian Group $Z_m \bigotimes Z_n$

Mohd Haqnawaz Khan¹, Dr. Ashfaque ur Rahman²

¹Research Scholar (Mathematics) ²Research Supervisor, Madhyanchal Professional University Bhopal India

Abstract:

In this paper, we determine the number of subgroups of group $Z_{p^m} \otimes Z_{p^n}$ which may be cyclic or non – cyclic by using simple number –theoretic formulae. We describe the subgroups of the group $Z_m \otimes Z_n$ and derive a simple formula for the total number s(m,n) of the subgroups where m, n are arbitrary positive integers. We point out that certain multiplicative properties of related counting functions for finite. Abelian groups are immediate consequences of these formula.

Keywords: Subgroups, Abelian groups, Cyclic, Theoretic Formula, Finite Abelian Groups,

Introduction

Consider a finite abelian group $Z_m \otimes Z_n$ of order mn. If m and n are relatively prime then $Z_m \otimes Z_n$ is cyclic, otherwise non-cyclic. In [1], if group $Z_m \otimes Z_n$ is cyclic then number of subgroup is equal number of divisor of mn. It is well known (Frobenius-Stickelberger, 1878) that a finite abelian group is the direct sum of a finite number of cyclic groups of prime power orders.

However ,when it comes to draw the subgroup lattice of a given finite abelian group, or to find out the total number of subgroups this group has, this can be a difficult task. It is the purpose of this note to describe a new method which partially solves these two problems. The number of nontrivial subgroups of G = $Z_p \otimes Z_p$ is p+3. If p is prime then p+3 never equal to number of divisor of p^2 . In [4] (MARIUS of subgroups of $Z_{n^{\alpha_1}}$ TARNAUCANU) total number \otimes $Z_{p^{\alpha_2}}$,the is $\frac{[(\alpha_2 - \alpha_1 + 1)p^{\alpha_1 + 2} - (\alpha_2 - \alpha_1 - 1)p^{\alpha_1 + 1} - (\alpha_2 + \alpha_1 + 3)p + (\alpha_2 + \alpha_1 + 1)]}{(n-1)^2} \quad \text{where } \alpha_1 \le \alpha_2. \text{ In this paper we derive a}$ formula which works in both the case either group $Z_m \otimes Z_n$ cyclic or non-cyclic.

2-Preliminaries

2.1 Theorem: (The Fundamental Theorem of Arithmetic) Every positive integer greater than one can be written uniquely as a product of primes, with prime factors in the product written in order of non decreasing size.

2.2 Theorem: (The Fundamental Theorem of Finite Abelian Groups) Every finite Abelian group is a direct product of cyclic groups of prime -power order. Moreover, the factorization is unique except for rearrangement of factors.

2.3 Theorem: Prove that $G \otimes H \approx H \otimes G$ where H and G both are groups.

2.4 Theorem: If a and b are elements abelian groups G_1 and G_2 respectively and their orders are finite as well as co-prime, then $\langle a \rangle \otimes \langle b \rangle = \langle (a, b) \rangle$

Proof: We have $o((a, b)) = \text{lcm} \{o(a), o(b)\} = o(a)o(b)$ Hence subgroup $\langle (a, b) \rangle$ has order o(a) o(b) which same order of $\langle a \rangle \otimes \langle b \rangle$ Now want to prove that $\langle (a, b) \rangle = \langle a \rangle \otimes \langle b \rangle$ Let $x = (a, b)^k$ be any arbitrary element of $\langle (a, b) \rangle$ \Rightarrow x = (a^k, b^k) \Rightarrow $a^k \in \langle a \rangle$ and $b^k \in \langle b \rangle \Rightarrow (a^k, b^k) \in \langle a \rangle \otimes \langle b \rangle$ \Rightarrow x $\in \langle a \rangle \otimes \langle b \rangle$ Hence $\langle (a, b) \rangle \subseteq \langle a \rangle \otimes \langle b \rangle$ Let $x = (a^k, b^l)$ be any arbitrary element of $\langle a \rangle \otimes \langle b \rangle$ and without loss of generality assume that $k \leq l$ Case1: If k = 1 then x = (a^k, b^k) then x $\in \langle (a, b) \rangle$ **Case 2:** If k < 1 then x = $(a^k, b^l) = (a^k, b^k)(e, b^{l-k})$ We know that o(a) and o(b) are co-prime, then there exists integers α and β such that $1 = \alpha \cdot o(\alpha) + \alpha \cdot o(\alpha)$ $\beta.o(b)$ Then (e,b) = $(e, b^{\alpha.o(a)+\beta.o(b)}) = (e, (b^{o(a)})^{\alpha} (b^{o(b)})^{\beta}) = (e, (b^{o(a)})^{\alpha}) = (e, b^{o(a)})^{\alpha}$ Here $(a,b) \in \langle (a,b) \rangle \Rightarrow (a,b)^{o(a)} \in \langle (a,b) \rangle \Rightarrow (e,b^{o(a)}) \in \langle (a,b) \rangle$ $\Rightarrow (e,b) \in \langle (a,b) \rangle \Rightarrow (e,b^{l-k}) \in \langle (a,b) \rangle \dots \dots *$ \Rightarrow Also $(a^k, b^k) \in \langle (a, b) \rangle \dots **$ From (*) and (**), we get $(a^k, b^l) \in \langle (a, b) \rangle \Rightarrow x \in \langle (a, b) \rangle$

On basis of case 1 and case 2, we conclude that $\langle a \rangle \otimes \langle b \rangle \subseteq \langle (a, b) \rangle$

Therefore $\langle a \rangle \otimes \langle b \rangle = \langle (a, b) \rangle$

2.5 Theorem: If order of abelian group G_1 and G_2 are finite as well as co-prime ,then every subgroup of G_1 and G_2 are finite as well as co-prime ,then every subgroup of $G_1 \otimes G_2$ can be written as be written as external product of subgroup of G_1 and subgroup of G_2 .

Proof: Assume H is any subgroup of $G_1 \otimes G_2$, we have to prove that H can be written as external product of G_1 and subgroup G_2 .

Firstly, we prove that H must have a subgroup which can be written as external product of subgroup of G_1 and subgroup of G_2 .

Here $\{(e_1, e_2)\}$ is a subgroup of H and $\{(e_1, e_2)\} \approx \{e_1\} \otimes \{e_2\}$

Therefore ,our first claim is proved.

Assume that $H_1 \otimes H_2$ is the largest subgroup of H which can be written as external product of subgroup of G_1 and subgroup of G_2 . There are two cases arises here.

(i) $H_1 \otimes H_2 = H$

(*ii*) $H_1 \otimes H_2 \subseteq H$

Case 1: If $H_1 \otimes H_2 = H$, then nothing to prove.

Case 2: If $H_1 \otimes H_2 \subseteq H$, then there exists (a,b) $\in H$ such that (a, b) $\notin H_1 \otimes H_2$

It is given that G_1 is an abelian group; Therefore H_1 and $\langle a \rangle$ are also abelian subgroup of G_1 ; Hence $H_1\langle a \rangle = \langle a \rangle H_1 \Rightarrow H_1\langle a \rangle$ is a subgroup of G_1 . Similarly we can prove that $H_2\langle b \rangle$ is a subgroup of G_2 . Then $H_1\langle a \rangle \otimes H_2\langle b \rangle$ is also subgroup of $G_1 \otimes G_2$

Now we have to show that $H_1 \otimes H_2 \subseteq H_1(a) \otimes H_2(b) \subseteq H$ Let $(x, y) \in H_1 \otimes H_2 \Rightarrow x \in H_1$ and $y \in H_2 \Rightarrow x \in H_1(a)$ and $y \in H_2(b)$ \Rightarrow (x, y) \in H₁ (a) \otimes H₂(b) Hence $H_1 \otimes H_2 \subseteq H_1 \langle a \rangle \otimes H_2 \langle b \rangle$(i) It is given in this case that $(a, b) \notin H_1 \otimes H_2$ But $a \in \langle a \rangle \Rightarrow a \in H_1 \langle a \rangle$ Similarly, $b \in H_2(b)$ Hence $(a, b) \in H_1(a) \otimes H_2(b)$(ii) From (*) and (**), we get $H_1 \otimes H_2 \subseteq H_1(a) \otimes H_2(b)$ (iii) Let $(x_1, y) \in H_1(a) \otimes H_2(b)$ $\Rightarrow x \in H_1(a) \text{ and } y \in H_2(b)$ \Rightarrow x = $h_1 a^k$ and y = $h_2 b^l$ where $h_1 \in H_1$, $h_2 \in H_2$ and k, $l \in Z$ $(x, y) = (h_1 a^k, h_2 b^l) = (h_1, h_2) (a^k, b^l)$ (iv) It is also given that order of groups G_1 and G_2 are finite as well as co-prime ,hence o(a) and o(b) are also co-prime and finite By use of theorem 2.4, we get $\langle a \rangle \otimes \langle b \rangle \subseteq H$ Hence $(a^k, b^l) \in H$ (v) Also $(h_1, h_2) \in H_1 \otimes H_2 \subseteq H \dots \dots (vi)$ By use of (iv), (v) and (vi) with use of concept that H is subgroup, we get $(x, y) = (h_1 a^K, h_2 b^l) = (h_1, h_2)(a^k, b^l) \in H$ Hence $H_1(a) \otimes H_2(b) \subseteq H$ (vii) From (iii) and (vii) , we get $H_1 \otimes H_2 \subseteq H_1(a) \otimes H_2(b) \subseteq H$ Above the result is a contradiction with fact that $H_1 \otimes H_2$ is largest subgroup of H which can be external product of two subgroups of G_1 and G_2 . Hence H is itself external product of two subgroups of G_1 and G_2 .

But H is any arbitrary subgroup of $G_1 \otimes G_1$, hence every subgroup of $G_1 \otimes G_2$ can be written as be written as external product of subgroup of G_1 and subgroup of G_2 .

3- New Number-theoretic Formula for number of subgroup of $Z_{p^{a_1}} \otimes Z_{p^{a_2}}$

3.1 Theorem: Prove subgroups of $Z_n^{a_1} \otimes Z_n^{a_2}$ that the total number of are $\sum_{q|(p^{\alpha_1},p^{\alpha_2})} \tau\left(\frac{p^{\alpha_1}}{q}\right) \tau\left(\frac{p^{\alpha_2}}{q}\right) \boldsymbol{\Phi}(\boldsymbol{q}).$ **Proof:** Without loss of generality, assume that $\alpha_1 \leq \alpha_2$ Let S = $\sum_{q \mid (p^{\alpha_1}, p^{\alpha_2})} \tau\left(\frac{p^{\alpha_1}}{a}\right) \tau\left(\frac{p^{\alpha_2}}{a}\right) \boldsymbol{\Phi}(q)$ where $\alpha_1 \leq \alpha_2$ $S = \sum_{q|p^{\alpha_1}} \tau\left(\frac{p^{\alpha_1}}{q}\right) \tau\left(\frac{p^{\alpha_2}}{q}\right) \Phi(q)$ $\tau(p^{\alpha_1})\tau(p^{\alpha_2})\Phi(1) + \tau(p^{\alpha_1-1})\tau(p^{\alpha_2-1})\Phi(p) + \tau(p^{\alpha_1-2})\tau(p^{\alpha_2-2})\Phi(p^2) +$ S = $\tau(p^{\alpha_1-\alpha_1})\tau(p^{\alpha_2-\alpha_1})\Phi(p^{\alpha_1})$ $S = (\alpha_1 + 1)(\alpha_2 + 1) + (\alpha_1)(\alpha_2)(p - 1) + (\alpha_1 - 1)(\alpha_2 - 1)p(p - 1) + (\alpha_2 - 2)(\alpha_2 - 2)p^2(p - 1) + (\alpha_1 - 1)(\alpha_2 - 1)p(p - 1) + (\alpha_2 - 2)(\alpha_2 - 2)p^2(p - 1) + (\alpha_2 - 1)p(p - 1) + (\alpha_2 - 2)(\alpha_2 - 2)p^2(p - 1) + (\alpha_2 - 2)(\alpha_2 - 2)(\alpha_2 - 2)p^2(p - 1) + (\alpha_2 - 2)(\alpha_2 - 2)(\alpha_2 - 2)(\alpha_2 - 2)p^2(p - 1) + (\alpha_2 - 2)(\alpha_2 - 2)(\alpha_$ 1) + + $(\alpha_1 - \alpha_1 + 1)(\alpha_2 - \alpha_1 + 1)p^{\alpha_1 - 1}(p - 1).....(i)$ Multiply (i) by p, we obtain $S_{p} = (\alpha_{1} + 1)(\alpha_{2} + 1)p + (\alpha_{1})(\alpha_{2})(p - 1)p + (\alpha_{1} - 1)(\alpha_{2} - 1)p^{2}(p - 1) + (\alpha_{1} - 2)(\alpha_{2} - 1)p^{2}(p - 1)p^{2}(p - 1) + (\alpha_{1} - 2)(\alpha_{2} - 1)p^{2}(p - 1)p^{2}(p - 1) + (\alpha_{1} - 2)(\alpha_{2} - 1)p^{2}(p - 1)p^{2$ $2)p^{3}(p-1) + \dots + (\alpha_{1} - \alpha_{1} + 1)(\alpha_{2} - \alpha_{1} + 1)p^{\alpha_{1}}(p-1)\dots$ (*ii*)

Then (ii) and (i) we obtain

$$S(p-1) = (\alpha_1 + 1)(\alpha_2 + 1)(p - 1) - (\alpha_1)(\alpha_2)(p - 1) + (\alpha_1 + \alpha_2 - 1 + 2(1))p(p - 1) + (\alpha_1 + \alpha_2 - 1 + 2(2))p^2(p - 1) + (\alpha_1 + \alpha_1 - 1 + 2(3))p^3(p - 1) + \dots + (\alpha_1 + \alpha_2 - 1 + 2(\alpha_1 - 1))p^{\alpha_1 - 1}(p - 1) + (\alpha_2 - \alpha_1 + 1)p^{\alpha_1}(p - 1)$$

$$S = (\alpha_1 + 1)(\alpha_2 + 1) - (\alpha_1)(\alpha_2) + (\alpha_1 + \alpha_2 + 1 - 2(1))p + (\alpha_1 + \alpha_2 + 1 - 2(2))p^2 + (\alpha_1 + \alpha_2 + 1 - 2(3))p^3 + \dots + (\alpha_1 + \alpha_2 + 1 - 2(\alpha_1 - 1))p^{\alpha_1 - 1} + (\alpha_2 - \alpha_1 + 1)p^{\alpha_1}$$

$$S = (\alpha_1 + 1)(\alpha_2 + 1) - (\alpha_1)(\alpha_2) + (\alpha_1 + \alpha_2 + 1 - 2(1))p + (\alpha_1 + \alpha_2 + 1 - 2(2))p^2 + (\alpha_1 + \alpha_2 + 1 - 2(3))p^3 + \dots + (\alpha_1 + \alpha_2 + 1 - 2(\alpha_1 - 1))p^{\alpha_1 - 1} + (\alpha_2 - \alpha_1 + 1)p^{\alpha_1}$$

$$S = (\alpha_1 + \alpha_2 + 1)(1 + p + p^2 + \dots + p^{\alpha_1 - 1}) - 2(p + 2p^2 + 3p^3 + \dots + (\alpha_1 - 1)p^{\alpha_1 - 1}) + (\alpha_2 - \alpha_1 + 1)p^{\alpha_1}$$

$$S = (\alpha_1 + \alpha_2 + 1)\frac{p^{\alpha_1 - 1}}{p - 1} - 2\left(\frac{\alpha_1 p^{\alpha_1}}{p - 1} - \frac{p(p^{\alpha_1 - 1})}{(p - 1)^2}\right) + (\alpha_2 - \alpha_1 + 1)p^{\alpha_1}$$

$$S = \frac{(\alpha_1 + \alpha_2 + 1)\frac{p^{\alpha_1 - 1}}{p - 1} - 2\left(\frac{\alpha_1 p^{\alpha_1}}{p - 1} - \frac{p(p^{\alpha_1 - 1})}{(p - 1)^2}\right) + (\alpha_2 - \alpha_1 + 1)p^{\alpha_1}$$

$$S = \frac{(\alpha_1 + \alpha_2 + 1)\frac{p^{\alpha_1 - 1}}{p - 1} - 2\left(\frac{\alpha_1 p^{\alpha_1} - p(p^{\alpha_1 - 1})}{(p - 1)^2}\right) + (\alpha_2 - \alpha_1 + 1)p^{\alpha_1}$$

$$S = \frac{(\alpha_1 + \alpha_2 + 1)\frac{p^{\alpha_1 - 1}}{p - 1} - 2\left(\frac{\alpha_1 p^{\alpha_1} - p(p^{\alpha_1 - 1})}{(p - 1)^2}\right) + (\alpha_2 - \alpha_1 + 1)p^{\alpha_1}$$

$$S = \frac{(\alpha_1 + \alpha_2 + 1)\frac{p^{\alpha_1 - 1}}{p - 1} - 2\left(\frac{\alpha_1 p^{\alpha_1} - p(p^{\alpha_1 - 1})}{(p - 1)^2}\right) + (\alpha_2 - \alpha_1 + 1)p^{\alpha_1}$$

$$S = \frac{(\alpha_1 + \alpha_2 + 1)\frac{p^{\alpha_1 - 1}}{p - 1} - 2\left(\frac{\alpha_1 p^{\alpha_1} - p(p^{\alpha_1 - 1})}{(p - 1)^2}\right) + (\alpha_2 - \alpha_1 + 1)p^{\alpha_1}$$

$$S = \frac{(\alpha_1 + \alpha_2 + 1)\frac{p^{\alpha_1 - 1}}{p - 1} - 2\left(\frac{\alpha_1 p^{\alpha_1} + \alpha_2 + \alpha_1 + 1}{(p - 1)^2}\right) + (\alpha_2 - \alpha_1 + 1)p^{\alpha_1}$$

$$S = \frac{(\alpha_1 + \alpha_2 + 1)\frac{p^{\alpha_1 - 1}}{p - 1} - 2\left(\frac{\alpha_1 p^{\alpha_1} + \alpha_2 + \alpha_1 + 1}{(p - 1)^2}\right)}{(p - 1)^2}$$
Which is same as in [4] (MARIUS TARNAUCEANU), the total number of subgroups o+f Z_p^{\alpha_1} \otimes Z_p^{\alpha_1})

 $Z_{p^{a_2}}$ are

$$\frac{\left[(\alpha_2 - \alpha_1 + 1)p^{\alpha_1 + 2} - (\alpha_2 - \alpha_1 - 1)p^{\alpha_1 + 1} - (\alpha_2 + \alpha_1 + 3)p + (\alpha_2 + \alpha_1 + 1)\right]}{(p-1)^2} \text{ where } \alpha_1 \le \alpha_2$$

Hence, total number of subgroups of of $Z_{p^{a_1}} \otimes Z_{p^{a_2}}$ are $\sum_{q \mid (p^{\alpha_1}, p^{\alpha_2})} \tau\left(\frac{p^{\alpha_1}}{q}\right) \tau\left(\frac{p^{\alpha_2}}{q}\right) \boldsymbol{\Phi}(q)$

4- New Number-theoretic Formula for number of subgroup of $Z_m \otimes Z_n$

4.1 Theorem: If order of abelian groups G_1 and G_2 are finite as well as co-prime, then number of subgroups of $G_1 \otimes G_2$ is product of number of subgroups of G_1 with number of subgroups of G_2 .

Proof: Total number of subgroups of $G_1 \otimes G_2$ which can be written as be written as external product of subgroup of G_1 and subgroup of G_2 is product of number of subgroups of G_1 with number of subgroups of G_2 .

By use of theorem 2.5, every subgroup of $G_1 \otimes G_2$ can be written as be written as external product of subgroup of G_1 and subgroup of G_2 . Hence there is no subgroup of $G_1 \otimes G_2$ which cannot be written as external product of subgroup of G_1 and subgroup of G_2 .

Hence total number of subgroups of $G_1 \otimes G_2$ is product of number of subgroups of G_1 with number of subgroups of G_2 .

4.2 Corollary : If p and q are different primes, then number of subgroup of group $Z_{p^{\alpha}} \otimes Z_{q^{\beta}}$ are $\tau(p^{\alpha}q^{\beta})$

Proof: Number of subgroup of $Z_{p^{\alpha}}$ is $\tau(p^{\alpha})$ and Number of subgroup of $Z_{q^{\beta}}$ is $\tau(q^{\beta})$

Here order of abelian groups $Z_{p^{\alpha}}$ and $Z_{q^{\beta}}$ are finite as well as co-prime ,then number of subgroups of $G_1 \otimes G_2$ is $\tau(p^{\alpha})\tau(q^{\beta}) = \tau(p^{\alpha}q^{\beta})$

4.3 Theorem: If finite abelian group G_i for i = 1, 2, ..., k and $(|G_i|, |G_j|) = 1 \forall i \neq j$, then number of subgroups of $G_1 \otimes G_2 \otimes G_3 \otimes ... \otimes G_k$ is $\prod_{i=1}^k (Number \ of \ subgroup \ of \ G_i)$

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Proof: We use the principal of Mathematical Induction to prove this result. Take k = 2, then by use of theorem 4.1, we have

Number of subgroups of $G_1 \otimes G_2$ is $\prod_{i=1}^2 (Number \ of \ subgroup \ of \ G_i)$ Let us assume that the given result is true for k-1, we have Number of subgroups of $G_1 \otimes G_2 \otimes G_3 \otimes \ldots \otimes G_{k-1}$ is $\prod_{i=1}^{k-1} (Number \ of \ subgroup \ of \ G_i)$ We have to prove that the given result is true for k Say $H = G_1 \otimes G_2 \otimes G_3 \otimes \ldots \otimes G_{k-1}$ and $K = G_k$ It is given that order of each G_i for $i = 1, 2, \ldots, k-1$ is finite , therefore order H is finite. It is also given that each G_i for $i = 1, 2, \ldots, k-1$ is abelian group, therefore H is also abelian group. Here $(|G_1|, |G_k|) = 1$, $(|G_2|, |G_k|) = 1, \ldots, (|G_{k-1}|, |G_k|) = 1 \Rightarrow (|G_1||G_k| \dots |G_{k-1}|, |G_k|) = 1$ $\Rightarrow (|G_1 \otimes G_2 \otimes G_3 \otimes \ldots \otimes G_{k-1}|, |G_k|) = 1 \Rightarrow (|H|, |K|) = 1$

Hence number of subgroups of H \otimes K is (number of subgroup of H) \times (*number of subgroup* with k).

= $\left[\prod_{i=1}^{k-1} (Number of subgroup of G_i)\right] \times Number of subgroup of G_k$

 $\prod_{i=1}^{k} (Number \ of \ subgroup \ of \ G_i).$

4.4 Corollary:- Number of subgroups of $Z_m \otimes Z_n$ are $\sum_{q|(m,n)} \tau\left(\frac{m}{q}\right) \tau\left(\frac{n}{q}\right) \Phi(q)$. **Proof:** By use of the Fundamental Theorem of Arithmetic m and n can be written as $m = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots p_r^{\alpha_r}$ and $n = p_1^{\beta_1} p_2^{\beta_2} p_3^{\beta_3} \dots p_r^{\beta_r}$ throughout the paper. Here it is not necessary that all α_i and β_i are not zero. Hence, by use of Fundamental Theorem of finite Abelian Groups ,we have

 $Z_m \approx Z_{p_1^{\alpha_1}} \otimes Z_{p_2^{\alpha_2}} \otimes Z_{p_3^{\alpha_3}} \otimes \ldots \otimes Z_{p_r^{\alpha_r}}$ and $Z_n \approx Z_{p_1^{\beta_1}} \otimes Z_{p_2^{\beta_2}} \otimes Z_{p_3^{\beta_3}} \otimes \ldots \otimes Z_{p_r^{\beta_r}}$ Then, we can write

$$\begin{split} &Z_m \otimes Z_n \approx Z_{p_1^{\alpha_1}} \otimes Z_{p_2^{\alpha_2}} \otimes \dots \otimes Z_{p_r^{\alpha_r}} \otimes Z_{p_1^{\beta_1}} \otimes Z_{p_2^{\beta_2}} \otimes \dots \otimes Z_{p_r^{\beta_r}} \\ &\text{Now apply theorem 2.3 ,we get} \\ &Z_m \otimes Z_n \approx Z_{p_1^{\alpha_1}} \otimes Z_{p_1^{\beta_1}} \otimes Z_{p_2^{\alpha_2}} \otimes Z_{p_2^{\beta_2}} \otimes \dots \otimes Z_{p_r^{\alpha_r}} \otimes Z_{p_r^{\beta_r}} \\ &\text{Assume } G_1 = Z_{p_1^{\alpha_1}} \otimes Z_{p_1^{\beta_1}}, G_2 = Z_{p_2^{\alpha_2}} \otimes Z_{p_2^{\beta_2}}, \dots \dots G_r = Z_{p_r^{\alpha_r}} \otimes Z_{p_r^{\beta_r}} \\ &\text{Here each } G_i \text{ is abelian finite group and } (|G_i|, |G_i|) = 1 \forall i \neq j \\ &\text{By use of theorem , number of subgroups of } Z_m \otimes Z_n \text{ is } \prod_{i=1}^k (Number of subgroup of G_i) \\ &= \prod_{i=1}^k \left(Number of subgroup of Z_{p_i^{\alpha_i}} \otimes Z_{p_i^{\beta_i}} \right) \\ &= \prod_{i=1}^k \left(\sum_{q_i \mid p_i^{\alpha_i}, p_i^{\beta_i}} \tau \left(\frac{p_i^{\beta_i}}{q_i} \right) \tau \left(\frac{p_i^{\beta_i}}{q_i} \right) \Phi(q_i) \right) = \\ &\sum_{q_1 q_2 \dots q_k \mid (p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots p_r^{\alpha_r}, p_1^{\beta_1} p_2^{\beta_2} p_3^{\beta_3} \dots p_r^{\beta_r})} \tau \left(\frac{p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots p_r^{\alpha_r}}{q_1 q_2 \dots q_k} \right) \tau \left(\frac{p_1^{\beta_1} p_2^{\beta_2} p_3^{\beta_3} \dots p_r^{\beta_r}}{q_1 q_2 \dots q_k} \right) \Phi(q_1 q_2 \dots q_k) \\ &= \sum_{q \mid (m,n)} \tau \left(\frac{m}{q} \right) \tau \left(\frac{m}{q} \right) \Phi(q) \qquad [\text{ Here } q_1 q_2 \dots q_k = q] \end{split}$$

We get the desired result.

4.5 Corollary :- If p_1 and p_2 are different primes, then number of subgroup of group $Z_{p_1^{\alpha_1}} \otimes Z_{p_2^{\alpha_2}} \otimes Z_{p_2^{\beta_1}} \otimes Z_{p_2^{\beta_2}}$ are

=

International Journal for Multidisciplinary Research (IJFMR)

$$\sum_{\substack{q \mid \left(p_1^{\alpha_1} p_2^{\beta_1}, p_1^{\alpha_2} p_2^{\beta_2}\right)}} \tau\left(\frac{p_1^{\alpha_1} p_2^{\beta_1}}{q}\right) \tau\left(\frac{p_1^{\alpha_2} p_2^{\beta_2}}{q}\right) \Phi(q)$$

References

- 1. Butler M.L.Subgroup Lattices and Symmetric Functions. Mem. AMS ,vol .112,nr .539 ,1994.
- 2. Delsarte S. Fonctions de Mobius sur les groups abeliens finis. Annals of Math .49,(1948) 600-609
- 3. Djubjuk P.E. On the number of subgroups of a finite abelian group. Izv. Akad . Nauk SSSR Ser.Mat.12 ,(1948) 351-378.
- 4. A. Gallian , Contemporary Abstract Algebra , Narosa, 1999
- 5. V.Murali and B.B .Makamba ,On an equivalence of fuzzy subgroups I, Fuzzy sets and system. 123 (2001) ,259-264
- 6. CALUGAREANU ,GR.G, The total number of subgroups of a finite abelian group., Sci.Math .Jpn.(1) 60 (2004) ,157-167
- 7. MARIUS TARNAUCEANU, An arithmetic method of counting the subgroups of a finite abelian group, Bull .Math .Soc .Sci .Math .Roumanie Tome 53(101) No. 4, 2010 ,373-386
- 8. Yeh Y, On prime power abelian groups. Bull. AMS ,54 ,(1948) 323-327.
- 9. Suzuki M, On the lattice of subgroups of finite groups. Trans .Amer. Math .Soc. 70,(1951) 345-371.
- 10. Schmidt R. Subgroup lattices of groups.de Gruyter Expositions in Mathematics ,14. Walter de Gruyter,1994.
- 11. Remark R, Uber Untergruppen direkter Produkte von drei Faktoren .J. Reine Angew .Math 166, (1931), 65-100.
- 12. Fuchs L, Infinite Abelian Groups, vol. 1 and 2 .Academic Press, New York , London 1970, 1973.