International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@iffmr.com

To Study on Number of Subgroups of Finite Abelian Group $\boldsymbol{Z}_{\boldsymbol{m}} \boldsymbol{\otimes} \boldsymbol{Z}_{\boldsymbol{n}}$

Mohd Haqnawaz Khan ${ }^{1}$, Dr. Ashfaque ur Rahman ${ }^{2}$
${ }^{1}$ Research Scholar (Mathematics)
${ }^{2}$ Research Supervisor, Madhyanchal Professional University Bhopal India

Abstract

: In this paper, we determine the number of subgroups of group $Z_{p^{m}} \otimes Z_{p^{n}}$ which may be cyclic or non cyclic by using simple number -theoretic formulae. We describe the subgroups of the group $Z_{m} \otimes Z_{n}$ and derive a simple formula for the total number $\mathrm{s}(\mathrm{m}, \mathrm{n})$ of the subgroups where m, n are arbitrary positive integers. We point out that certain multiplicative properties of related counting functions for finite. Abelian groups are immediate consequences of these formula.

Keywords: Subgroups, Abelian groups ,Cyclic ,Theoretic Formula, Finite Abelian Groups,

Introduction

Consider a finite abelian group $Z_{m} \otimes Z_{n}$ of order mn . If m and n are relatively prime then $Z_{m} \otimes Z_{n}$ is cyclic, otherwise non-cyclic. In [1] ,if group $Z_{m} \otimes Z_{n}$ is cyclic then number of subgroup is equal number of divisor of mn . It is well known (Frobenius-Stickelberger, 1878) that a finite abelian group is the direct sum of a finite number of cyclic groups of prime power orders.
However, when it comes to draw the subgroup lattice of a given finite abelian group, or to find out the total number of subgroups this group has, this can be a difficult task. It is the purpose of this note to describe a new method which partially solves these two problems. The number of nontrivial subgroups of $\mathrm{G}=Z_{p} \otimes Z_{p}$ is $\mathrm{p}+3$. If p is prime then $\mathrm{p}+3$ never equal to number of divisor of p^{2}. In [4] (MARIUS TARNAUCANU) ,the total number of subgroups of $Z_{p^{\alpha_{1}}} \otimes Z_{p^{\alpha_{2}}}$ is $\frac{\left[\left(\alpha_{2}-\alpha_{1}+1\right) p^{\alpha_{1}+2}-\left(\alpha_{2}-\alpha_{1}-1\right) p^{\alpha_{1}+1}-\left(\alpha_{2}+\alpha_{1}+3\right) p+\left(\alpha_{2}+\alpha_{1}+1\right)\right]}{(p-1)^{2}}$ where $\alpha_{1} \leq \alpha_{2}$. In this paper we derive a formula which works in both the case either group $Z_{m} \otimes Z_{n}$ cyclic or non-cyclic .

2-Preliminaries

2.1 Theorem: (The Fundamental Theorem of Arithmetic) Every positive integer greater than one can be written uniquely as a product of primes, with prime factors in the product written in order of non decreasing size.
2.2 Theorem: (The Fundamental Theorem of Finite Abelian Groups) Every finite Abelian group is a direct product of cyclic groups of prime -power order. Moreover, the factorization is unique except for rearrangement of factors.
2.3 Theorem: Prove that $\mathrm{G} \otimes H \approx H \otimes G$ where H and G both are groups.

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@iffmr.com
2.4 Theorem: If a and b are elements abelian groups G_{1} and G_{2} respectively and their orders are finite as well as co-prime, then $\langle a\rangle \otimes\langle b\rangle=\langle(a, b)\rangle$
Proof: We have $\mathrm{o}((a, b))=\operatorname{lcm}\{o(a), o(b)\}=o(a) o(b)$
Hence subgroup $\langle(a, b)\rangle$ has order o(a) o(b) which same order of $\langle a\rangle \otimes\langle b\rangle$
Now want to prove that $\langle(a, b)\rangle=\langle a\rangle \otimes\langle b\rangle$
Let $\mathrm{x}=(a, b)^{k}$ be any arbitrary element of $\langle(a, b)\rangle$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}=\left(a^{k}, b^{k}\right) \Rightarrow a^{k} \in\langle a\rangle \text { and } b^{k} \in\langle b\rangle \Rightarrow\left(a^{k}, b^{k}\right) \in\langle a\rangle \otimes\langle b\rangle \\
& \Rightarrow \mathrm{x} \in\langle a\rangle \otimes\langle b\rangle
\end{aligned}
$$

Hence $\langle(a, b)\rangle \subseteq\langle a\rangle \otimes\langle b\rangle$
Let $\mathrm{x}=\left(a^{k}, b^{l}\right)$ be any arbitrary element of $\langle a\rangle \otimes\langle b\rangle$ and without loss of generality assume that $\mathrm{k} \leq l$
Case1:
If $\mathrm{k}=1$ then $\mathrm{x}=\left(a^{k}, b^{k}\right)$ then $\mathrm{x} \in\langle(a, b)\rangle$
Case 2: If $\mathrm{k}<1$ then $\mathrm{x}=\left(a^{k}, b^{l}\right)=\left(a^{k}, b^{k}\right)\left(e, b^{l-k}\right)$
We know that $\mathrm{o}(\mathrm{a})$ and $\mathrm{o}(\mathrm{b})$ are co-prime ,then there exists integers α and β such that $1=\alpha \cdot o(a)+$ $\beta . o(b)$
Then $(\mathrm{e}, \mathrm{b})=\left(e, b^{\alpha . o(a)+\beta . o(b)}\right)=\left(e,\left(b^{o(a)}\right)^{\alpha}\left(b^{o(b)}\right)^{\beta}\right)=\left(e,\left(b^{o(a)}\right)^{\alpha}\right)=\left(e, b^{o(a)}\right)^{\alpha}$
Here $(\mathrm{a}, \mathrm{b}) \in\langle(a, b)\rangle \Rightarrow(a, b)^{o(a)} \in\langle(a, b)\rangle \Rightarrow\left(e, b^{o(a)}\right) \in\langle(a, b)\rangle$
$\Rightarrow(e, b) \in\langle(a, b)\rangle \Rightarrow\left(e, b^{l-k}\right) \in\langle(a, b)\rangle$
\Rightarrow Also $\left(a^{k}, b^{k}\right) \in\langle(a, b)\rangle \ldots \ldots \ldots \ldots{ }^{* *}$
From (*) and (**), we get $\left(a^{k}, b^{l}\right) \in\langle(a, b)\rangle \Rightarrow \mathrm{x} \in\langle(a, b)\rangle$
On basis of case 1 and case 2 , we conclude that $\langle a\rangle \otimes\langle b\rangle \subseteq\langle(a, b)\rangle$
Therefore $\langle a\rangle \otimes\langle b\rangle=\langle(a, b)\rangle$
2.5 Theorem: If order of abelian group G_{1} and G_{2} are finite as well as co-prime ,then every subgroup of G_{1} and G_{2} are finite as well as co-prime ,then every subgroup of $G_{1} \otimes G_{2}$ can be written as be written as external product of subgroup of G_{1} and subgroup of G_{2}.
Proof: Assume H is any subgroup of $G_{1} \otimes G_{2}$, we have to prove that H can be written as external product of G_{1} and subgroup G_{2}.
Firstly, we prove that H must have a subgroup which can be written as external product of subgroup of G_{1} and subgroup of G_{2}.
Here $\left\{\left(e_{1}, e_{2}\right)\right\}$ is a subgroup of H and $\left\{\left(e_{1}, e_{2}\right)\right\} \approx\left\{e_{1}\right\} \otimes\left\{e_{2}\right\}$
Therefore ,our first claim is proved.
Assume that $H_{1} \otimes H_{2}$ is the largest subgroup of H which can be written as external product of subgroup of G_{1} and subgroup of G_{2}. There are two cases arises here.
(i) $H_{1} \otimes H_{2}=H$
(ii) $H_{1} \otimes H_{2} \subseteq H$

Case 1: If $H_{1} \otimes H_{2}=\mathrm{H}$, then nothing to prove.
Case 2: If $H_{1} \otimes H_{2} \subseteq \mathrm{H}$, then there exists $(\mathrm{a}, \mathrm{b}) \in \mathrm{H}$ such that $(a, b) \notin H_{1} \otimes H_{2}$
It is given that G_{1} is an abelian group; Therefore H_{1} and $\langle a\rangle$ are also abelian subgroup of G_{1}; Hence $H_{1}\langle a\rangle=\langle a\rangle H_{1} \Rightarrow H_{1}\langle a\rangle$ is a subgroup of G_{1}. Similarly we can prove that $H_{2}\langle b\rangle$ is a subgroup of G_{2} .Then $H_{1}\langle a\rangle \otimes H_{2}\langle b\rangle$ is also subgroup of $G_{1} \otimes G_{2}$

Now we have to show that $H_{1} \otimes H_{2} \subseteq H_{1}\langle a\rangle \otimes H_{2}\langle b\rangle \subseteq H$
Let $(x, y) \in H_{1} \otimes H_{2} \Rightarrow \mathrm{x} \in H_{1}$ and $\mathrm{y} \in H_{2} \Rightarrow \mathrm{x} \in H_{1}\langle a\rangle$ and $y \in H_{2}\langle b\rangle$

$$
\begin{equation*}
\Rightarrow(x, y) \in H_{1}\langle a\rangle \otimes H_{2}\langle b\rangle \tag{i}
\end{equation*}
$$

Hence $H_{1} \otimes H_{2} \subseteq H_{1}\langle a\rangle \otimes H_{2}\langle b\rangle$
It is given in this case that $(a, b) \notin H_{1} \otimes H_{2}$
But $\mathrm{a} \in\langle a\rangle \Rightarrow \mathrm{a} \in H_{1}\langle a\rangle$
Similarly, b $\in H_{2}\langle b\rangle$
Hence $(a, b) \in H_{1}\langle a\rangle \otimes H_{2}\langle b\rangle$
From $\left(^{*}\right)$ and ${ }^{(* *)}$, we get $H_{1} \otimes H_{2} \subseteq H_{1}\langle a\rangle \otimes H_{2}\langle b\rangle$
Let $(x, y) \in H_{1}\langle a\rangle \otimes H_{2}\langle b\rangle$
$\Rightarrow x \in H_{1}\langle a\rangle$ and $y \in H_{2}\langle b\rangle$
$\Rightarrow \mathrm{x}=h_{1} a^{k}$ and $\mathrm{y}=h_{2} b^{l}$ where $h_{1} \in H_{1}, h_{2} \in H_{2}$ and $\mathrm{k}, l \in Z$
$(x, y)=\left(h_{1} a^{k}, h_{2} b^{l}\right)=\left(h_{1}, h_{2}\right)\left(a^{k}, b^{l}\right)$
It is also given that order of groups G_{1} and G_{2} are finite as well as co-prime ,hence o(a) and o(b) are also co-prime and finite
By use of theorem 2.4 , we get $\langle a\rangle \otimes\langle b\rangle \subseteq H$
Hence $\left(a^{k}, b^{l}\right) \in H$ \qquad
Also $\left(h_{1}, h_{2}\right) \in H_{1} \otimes H_{2} \subseteq H$
By use of (iv),(v) and (vi) with use of concept that H is subgroup, we get
$(x, y)=\left(h_{1} a^{K}, h_{2} b^{l}\right)=\left(h_{1}, h_{2}\right)\left(a^{k}, b^{l}\right) \in H$
Hence $H_{1}\langle a\rangle \otimes H_{2}\langle b\rangle \subseteq H$ \qquad .(vii)
From (iii) and (vii) ,we get $H_{1} \otimes H_{2} \subseteq H_{1}\langle a\rangle \otimes H_{2}\langle b\rangle \subseteq H$
Above the result is a contradiction with fact that $H_{1} \otimes H_{2}$ is largest subgroup of H which can be external product of two subgroups of G_{1} and G_{2}. Hence H is itself external product of two subgroups of G_{1} and G_{2}.
But H is any arbitrary subgroup of $G_{1} \otimes G_{1}$, hence every subgroup of $G_{1} \otimes G_{2}$ can be written as be written as external product of subgroup of G_{1} and subgroup of G_{2}.

3- New Number-theoretic Formula for number of subgroup of $\boldsymbol{Z}_{\boldsymbol{p}^{a_{1}}} \otimes \boldsymbol{Z}_{\boldsymbol{p}^{a_{2}}}$

3.1 Theorem: Prove that the total number of subgroups of $Z_{p^{a_{1}}} \otimes Z_{p^{a_{2}}}$ are
$\sum_{q \mid\left(p^{\alpha_{1}}, p^{\alpha_{2}}\right)} \tau\left(\frac{p^{\alpha_{1}}}{q}\right) \tau\left(\frac{p^{\alpha_{2}}}{q}\right) \boldsymbol{\Phi}(\boldsymbol{q})$.
Proof: Without loss of generality, assume that $\alpha_{1} \leq \alpha_{2}$
Let $\mathrm{S}=\sum_{q \mid\left(p^{\alpha_{1}}, p^{\alpha_{2}}\right)} \tau\left(\frac{p^{\alpha_{1}}}{q}\right) \tau\left(\frac{p^{\alpha_{2}}}{q}\right) \boldsymbol{\Phi}(q)$ where $\alpha_{1} \leq \alpha_{2}$

$$
\mathrm{S}=\sum_{q \mid p^{\alpha_{1}}} \tau\left(\frac{p^{\alpha_{1}}}{q}\right) \tau\left(\frac{p^{\alpha_{2}}}{q}\right) \Phi(q)
$$

$\mathrm{S}=\tau\left(\mathrm{p}^{\alpha_{1}}\right) \tau\left(p^{\alpha_{2}}\right) \Phi(1)+\tau\left(p^{\alpha_{1}-1}\right) \tau\left(p^{\alpha_{2}-1}\right) \Phi(p)+\tau\left(p^{\alpha_{1}-2}\right) \tau\left(p^{\alpha_{2}-2}\right) \Phi\left(p^{2}\right)+$
$\tau\left(p^{\alpha_{1}-\alpha_{1}}\right) \tau\left(p^{\alpha_{2}-\alpha_{1}}\right) \Phi\left(p^{\alpha_{1}}\right)$
$\mathrm{S}=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)+\left(\alpha_{1}\right)\left(\alpha_{2}\right)(p-1)+\left(\alpha_{1}-1\right)\left(\alpha_{2}-1\right) p(p-1)+\left(\alpha_{2}-2\right)\left(\alpha_{2}-2\right) p^{2}(p-$

1) $+\cdots \ldots+\left(\alpha_{1}-\alpha_{1}+1\right)\left(\alpha_{2}-\alpha_{1}+1\right) p^{\alpha_{1}-1}(p-1)$

Multiply (i) by p, we obtain
$S_{p}=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) p+\left(\alpha_{1}\right)\left(\alpha_{2}\right)(p-1) p+\left(\alpha_{1}-1\right)\left(\alpha_{2}-1\right) p^{2}(p-1)+\left(\alpha_{1}-2\right)\left(\alpha_{2}-\right.$ 2) $p^{3}(p-1)+\cdots \ldots+\left(\alpha_{1}-\alpha_{1}+1\right)\left(\alpha_{2}-\alpha_{1}+1\right) p^{\alpha_{1}}(p-1) \ldots$.

Then (ii) and (i) we obtain
$\mathrm{S}(\mathrm{p}-1)=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)(p-1)-\left(\alpha_{1}\right)\left(\alpha_{2}\right)(p-1)+\left(\alpha_{1}+\alpha_{2}-1+2(1)\right) p(p-1)+\left(\alpha_{1}+\alpha_{2}-\right.$ $1+2(2)) p^{2}(p-1)+\left(\alpha_{1}+\alpha_{1}-1+2(3)\right) p^{3}(p-1)+\cdots+\left(\alpha_{1}+\alpha_{2}-1+2\left(\alpha_{1}-1\right)\right) p^{\alpha_{1}-1}(p-$ 1) $+\left(\alpha_{2}-\alpha_{1}+1\right) p^{\alpha_{1}}(p-1)$
$\mathrm{S}=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)-\left(\alpha_{1}\right)\left(\alpha_{2}\right)+\left(\alpha_{1}+\alpha_{2}+1-2(1)\right) p+\left(\alpha_{1}+\alpha_{2}+1-2(2)\right) p^{2}+\left(\alpha_{1}+\alpha_{2}+\right.$ $1-2(3)) p^{3}+\cdots+\left(\alpha_{1}+\alpha_{2}+1-2\left(\alpha_{1}-1\right)\right) p^{\alpha_{1}-1}+\left(\alpha_{2}-\alpha_{1}+1\right) p^{\alpha_{1}}$
$\mathrm{S}=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)-\left(\alpha_{1}\right)\left(\alpha_{2}\right)+\left(\alpha_{1}+\alpha_{2}+1-2(1)\right) \mathrm{p}+\left(\alpha_{1}+\alpha_{2}+1-2(2)\right) p^{2}+\left(\alpha_{1}+\alpha_{2}+\right.$ $1-2(3)) p^{3}+\ldots+\left(\alpha_{1}+\alpha_{2}+1-2\left(\alpha_{1}-1\right)\right) p^{\alpha_{1}-1}+\left(\alpha_{2}-\alpha_{1}+1\right) p^{\alpha_{1}}$
$\mathrm{S}=\left(\alpha_{1}+\alpha_{2}+1\right)\left(1+p+p^{2}+\cdots+p^{\alpha_{1}-1}\right)-2\left(p+2 p^{2}+3 p^{3}+\cdots+\left(\alpha_{1}-1\right) p^{\alpha_{1}-1}\right)+\left(\alpha_{2}-\alpha_{1}+\right.$ 1) $p^{\alpha_{1}}$
$\mathrm{S}=\left(\alpha_{1}+\alpha_{2}+1\right) \frac{p^{\alpha_{1}}-1}{p-1}-2\left(\frac{\alpha_{1} p^{\alpha_{1}}}{p-1}-\frac{p\left(p^{\alpha_{1}}-1\right)}{(p-1)^{2}}\right)+\left(\alpha_{2}-\alpha_{1}+1\right) p^{\alpha_{1}}$
$\mathrm{S}=\frac{\left(\alpha_{1}+\alpha_{2}+1\right)\left(p^{\alpha_{1}}-1\right)(p-1)-2\left(\alpha_{1} p^{\alpha_{1}}(p-1)-p\left(p^{\alpha_{1}}-1\right)\right)+\left(\alpha_{2}-\alpha_{1}+1\right) p^{\alpha_{1}}(p-1)^{2}}{(p-1)^{2}}$
$S=\frac{\left[\left(\alpha_{2}-\alpha_{1}+1\right) p^{\alpha_{1}+2}-\left(\alpha_{2}-\alpha_{1}-1\right) p^{\alpha_{1}+1}-\left(\alpha_{2}+\alpha_{1}+3\right) p+\left(\alpha_{2}+\alpha_{1}+1\right)\right]}{(p-1)^{2}}$
Which is same as in [4] (MARIUS TARNAUCEANU), the total number of subgroups o+f $Z_{p^{a_{1}}} \otimes$ $Z_{p^{a_{2}}}$ are
$\frac{\left[\left(\alpha_{2}-\alpha_{1}+1\right) p^{\alpha_{1}+2}-\left(\alpha_{2}-\alpha_{1}-1\right) p^{\alpha_{1}+1}-\left(\alpha_{2}+\alpha_{1}+3\right) p+\left(\alpha_{2}+\alpha_{1}+1\right)\right]}{(p-1)^{2}}$ where $\alpha_{1} \leq \alpha_{2}$
Hence, total number of subgroups of of $Z_{p^{a_{1}}} \otimes Z_{p^{a_{2}}}$ are $\sum_{q \mid\left(p^{\left.\alpha_{1}, p^{\alpha_{2}}\right)}\right.} \tau\left(\frac{p^{\alpha_{1}}}{q}\right) \tau\left(\frac{p^{\alpha_{2}}}{q}\right) \boldsymbol{\Phi}(q)$

4- New Number-theoretic Formula for number of subgroup of $\boldsymbol{Z}_{\boldsymbol{m}} \boldsymbol{\otimes} \boldsymbol{Z}_{\boldsymbol{n}}$

4.1 Theorem: If order of abelian groups G_{1} and G_{2} are finite as well as co-prime, then number of subgroups of $G_{1} \otimes G_{2}$ is product of number of subgroups of G_{1} with number of subgroups of G_{2}.
Proof: Total number of subgroups of $G_{1} \otimes G_{2}$ which can be written as be written as external product of subgroup of G_{1} and subgroup of G_{2} is product of number of subgroups of G_{1} with number of subgroups of G_{2}.
By use of theorem 2.5 ,every subgroup of $G_{1} \otimes G_{2}$ can be written as be written as external product of subgroup of G_{1} and subgroup of G_{2}. Hence there is no subgroup of $G_{1} \otimes G_{2}$ which cannot be written as external product of subgroup of G_{1} and subgroup of G_{2}.
Hence total number of subgroups of $G_{1} \otimes G_{2}$ is product of number of subgroups of G_{1} with number of subgroups of G_{2}.
4.2 Corollary : If p and q are different primes, then number of subgroup of group $Z_{p^{\alpha}} \otimes Z_{q^{\beta}}$ are $\tau\left(p^{\alpha} q^{\beta}\right)$
Proof: Number of subgroup of $Z_{p^{\alpha}}$ is $\tau\left(p^{\alpha}\right)$ and Number of subgroup of $Z_{q^{\beta}}$ is $\tau\left(q^{\beta}\right)$
Here order of abelian groups $Z_{p^{\alpha}}$ and $Z_{q^{\beta}}$ are finite as well as co-prime ,then number of subgroups of $G_{1} \otimes G_{2}$ is $\tau\left(p^{\alpha}\right) \tau\left(q^{\beta}\right)=\tau\left(p^{\alpha} q^{\beta}\right)$
4.3 Theorem: If finite abelian group G_{i} for $\mathrm{i}=1,2, \ldots, \mathrm{k}$ and $\left(\left|G_{i}\right|,\left|G_{j}\right|\right)=1 \forall i \neq j$, then number of subgroups of $G_{1} \otimes G_{2} \otimes G_{3} \otimes \ldots \otimes G_{k}$ is $\prod_{i=1}^{k}\left(\right.$ Number of subgroup of $\left.G_{i}\right)$

E-ISSN: 2582-2160 • Website: www.iffmr.com • Email: editor@ijfmr.com

Proof: We use the principal of Mathematical Induction to prove this result. Take $\mathrm{k}=2$, then by use of theorem 4.1, we have
Number of subgroups of $G_{1} \otimes G_{2}$ is $\prod_{i=1}^{2}$ (Number of subgroup of G_{i})
Let us assume that the given result is true for $k-1$, we have
Number of subgroups of $G_{1} \otimes G_{2} \otimes G_{3} \otimes \ldots \otimes G_{k-1}$ is $\prod_{i=1}^{k-1}$ (Number of subgroup of G_{i})
We have to prove that the given result is true for k
Say $\mathrm{H}=G_{1} \otimes G_{2} \otimes G_{3} \otimes \ldots . . \otimes G_{k-1}$ and $\mathrm{K}=G_{k}$
It is given that order of each G_{i} for $\mathrm{i}=1,2, \ldots . . \mathrm{k}-1$ is finite , therefore order H is finite.
It is also given that each G_{i} for $\mathrm{i}=1,2, \ldots \mathrm{k}-1$ is abelian group, therefore H is also abelian group.
Here $\left(\left|G_{1}\right|,\left|G_{k}\right|\right)=1,\left(\left|G_{2}\right|,\left|G_{k}\right|\right)=1, \ldots \ldots\left(\left|G_{k-1}\right|,\left|G_{k}\right|\right)=1 \Rightarrow\left(\left|G_{1}\right|\left|G_{k}\right| \ldots\left|G_{k-1}\right|,\left|G_{k}\right|\right)=1$
$\Rightarrow\left(\left|G_{1} \otimes G_{2} \otimes G_{3} \otimes \ldots \otimes G_{k-1}\right|,\left|G_{k}\right|\right)=1 \Rightarrow(|H|,|K|)=1$
Hence number of subgroups of $\mathrm{H} \otimes K$ is (number of subgroup of H$) \times($ number of subgroup with k).
$=\left[\prod_{i=1}^{k-1}\left(\right.\right.$ Number of subgroup of $\left.\left.G_{i}\right)\right] \times$ Number of subgroup of G_{k}
$\prod_{i=1}^{k}$ (Number of subgroup of $\left.G_{i}\right)$.
4.4 Corollary:- Number of subgroups of $Z_{m} \otimes Z_{n}$ are $\sum_{q \mid(m, n)} \tau\left(\frac{m}{q}\right) \tau\left(\frac{n}{q}\right) \Phi(q)$. Proof: By use of the Fundamental Theorem of Arithmetic m and n can be written as $\mathrm{m}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \ldots \ldots p_{r}^{a_{r}}$ and $\mathrm{n}=$ $p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} p_{3}^{\beta_{3}} \ldots \ldots p_{r}^{\beta_{r}}$ throughout the paper. Here it is not necessary that all α_{i} and β_{i} are not zero. Hence, by use of Fundamental Theorem of finite Abelian Groups, we have
$Z_{m} \approx Z_{p_{1}} \alpha_{1} \otimes Z_{p_{2} \alpha_{2}} \otimes Z_{p_{3} \alpha_{3}} \otimes \ldots \otimes Z_{p_{r}} \alpha_{r}$ and $Z_{n} \approx Z_{p_{1} \beta_{1}} \otimes Z_{p_{2} \beta_{2}} \otimes Z_{p_{3} \beta_{3}} \otimes \ldots \otimes Z_{p_{r} \beta_{r}}$ Then, we can write
$Z_{m} \otimes Z_{n} \approx Z_{p_{1} \alpha_{1}} \otimes Z_{p_{2} \alpha_{2}} \otimes \ldots \ldots \otimes Z_{p_{r}{ }^{\alpha}} \otimes Z_{p_{1} \beta_{1}} \otimes Z_{p_{2} \beta_{2}} \otimes \ldots \otimes Z_{p_{r} \beta_{r}}$
Now apply theorem 2.3 ,we get
$Z_{m} \otimes Z_{n} \approx Z_{p_{1} \alpha_{1}} \otimes Z_{p_{1} \beta_{1}} \otimes Z_{p_{2} \alpha_{2}} \otimes Z_{p_{2} \beta_{2}} \otimes \ldots . . \otimes Z_{p_{r}{ }^{\alpha_{r}}} \otimes Z_{p_{r} \beta_{r}}$.
Assume $G_{1}=Z_{p_{1} \alpha_{1}} \otimes Z_{p_{1} \beta_{1}}, G_{2}=Z_{p_{2} \alpha_{2}} \otimes Z_{p_{2} \beta_{2}}, \ldots \ldots G_{r}=Z_{p_{r} \alpha_{r}} \otimes Z_{p_{r} \beta_{r}}$
Here each G_{i} is abelian finite group and $\left(\left|G_{i}\right|,\left|G_{i}\right|\right)=1 \forall i \neq j$
By use of theorem, number of subgroups of $Z_{m} \otimes Z_{n}$ is $\prod_{i=1}^{k}$ (Number of subgroup of G_{i})
$=\prod_{i=1}^{k}\left(\right.$ Number of subgroup of $Z_{p_{i} \alpha_{i}} \otimes Z_{p_{i} \beta_{i}}$.)
$=\prod_{i=1}^{k}\left(\sum_{q_{i} \mid p_{i}^{\alpha_{i}, p_{i}^{\beta_{i}}}} \tau\left(\frac{p_{i}^{\alpha_{i}}}{q_{i}}\right) \tau\left(\frac{p_{i}^{\beta_{i}}}{q_{i}}\right) \Phi\left(q_{i}\right)\right)=$
$\sum_{q_{1} q_{2} \ldots q_{k} \mid\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\left.\alpha_{3} \ldots \ldots p_{r}^{\alpha_{r}}, p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} p_{3}^{\beta_{3}} \ldots p_{r}^{\beta_{r}}\right)}\right.} \tau\left(\frac{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \ldots . p_{r}^{\alpha_{r}}}{q_{1} q_{2} \ldots q_{k}}\right) \tau\left(\frac{p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} p_{3}^{\beta_{3}} \ldots p_{r}^{\beta_{r}}}{q_{1} q_{2} \ldots q_{k}}\right) \Phi\left(q_{1} q_{2} \ldots q_{k}\right)$
$=\sum_{q \mid(m, n)} \tau\left(\frac{m}{q}\right) \tau\left(\frac{n}{q}\right) \boldsymbol{\Phi}(q) \quad\left[\right.$ Here $\left.q_{1} q_{2} \ldots . . q_{k}=\mathrm{q}\right]$
We get the desired result.
4.5 Corollary :- If p_{1} and p_{2} are different primes, then number of subgroup of group $Z_{p_{1} \alpha_{1}} \otimes Z_{p_{2} \alpha_{2}}$ $\otimes Z_{p_{2} \beta_{1}} \otimes Z_{p_{2} \beta_{2}}$ are

$$
\sum_{q \mid\left(p_{1}^{\alpha_{1}} p_{2}^{\left.\beta_{1}, p_{1}^{\alpha_{2}} p_{2}^{\beta_{2}}\right)}\right.} \tau\left(\frac{p_{1}^{\alpha_{1}} p_{2}^{\beta_{1}}}{q}\right) \tau\left(\frac{\mathrm{p}_{1}^{\alpha_{2}} \mathrm{p}_{2}^{\beta_{2}}}{q}\right) \Phi(q)
$$

References

1. Butler M.L.Subgroup Lattices and Symmetric Functions. Mem. AMS ,vol .112,nr .539, 1994 .
2. Delsarte S. Fonctions de Mobius sur les groups abeliens finis. Annals of Math .49,(1948) 600-609
3. Djubjuk P.E. On the number of subgroups of a finite abelian group. Izv. Akad . Nauk SSSR Ser.Mat. 12 ,(1948) 351-378.
4. A. Gallian ,Contemporary Abstract Algebra ,Narosa, 1999
5. V.Murali and B.B .Makamba ,On an equivalence of fuzzy subgroups I, Fuzzy sets and system. 123 (2001) ,259-264
6. CALUGAREANU ,GR.G, The total number of subgroups of a finite abelian group., Sci.Math .Jpn.(1) 60 (2004) ,157-167
7. MARIUS TARNAUCEANU, An arithmetic method of counting the subgroups of a finite abelian group, Bull .Math .Soc .Sci .Math .Roumanie Tome 53(101) No. 4, 2010 ,373-386
8. Yeh Y, On prime power abelian groups. Bull. AMS ,54, (1948) 323-327.
9. Suzuki M, On the lattice of subgroups of finite groups. Trans .Amer. Math .Soc. 70,(1951) 345-371.
10. Schmidt R. Subgroup lattices of groups.de Gruyter Expositions in Mathematics ,14. Walter de Gruyter,1994.
11. Remark R, Uber Untergruppen direkter Produkte von drei Faktoren .J. Reine Angew .Math 166, (1931), 65-100.
12. Fuchs L, Infinite Abelian Groups, vol. 1 and 2 .Academic Press, New York, London 1970, 1973.
