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Abstract:  

Optimization of energy harvesting requires design of low complexity & high efficiency models that can 

work with maximum power gain levels. To design such models, researchers have proposed multiple 

techniques, that can assist in improving power quality via selection of optimum harvesting sources in 

multisource environments. But these models require continuous reconfiguration of static rules, which 

limits their efficiency when applied to large-scale network scenarios. Moreover, most of these models 

also showcase higher complexity due to reconfiguration, which reduces their scalability performance. To 

overcome this limitation, a novel Low-Complexity Energy Harvesting Model via Incremental Learning 

and Continuous Power Quality Optimization process is discussed in this text. The proposed model 

initially uses a Q-Learning based power evaluation method, that is capable of generating high-efficiency 

configurations of multisource harvesting devices. This is cascaded with design of a Particle Swarm 

Optimizer (PSO), that assists in performing continuous power quality optimizations. The combined 

model is capable of selecting hybrid harvesting source configurations, and incrementally tune it for 

optimum harvesting performance. This is achieved via modelling a reward function that incorporates 

power gain along with low-complexity source selection process. The selection process is further 

enhanced via PSO based continuous learning for improving harvesting source configurations. The 

proposed model was tested on a wide variety of network scenarios, and its QoS efficiency levels were 

compared with different state-of-the-art methods. Based on this comparison, it was observed that the 

proposed model is capable of improving power gain by 8.3%, while minimizing harvesting delay by 

6.5%, and improving harvesting throughput by 5.9%, which makes it useful for large-scale multisource 

harvesting applications. 

 

Keywords: Energy, Harvesting, Multisource, Throughput, Delay, Power, Gain, PSO, Q-Learning, 

Configurations 

 

1. Introduction 

Multisource energy harvesting requires integration of different signal processing & optimization 

operations, that can perform source selection along with low complexity source reconfigurations. These 

models use a combination of Maximum Power Point Tracking (MPPT) along with machine learning 
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based optimization techniques, which assists in improving their power gain efficiency, while 

maximizing network lifetime under wide variety of use cases. A typical harvesting model [1] that uses 

machine learning based energy flow controller along with storage capacitors is depicted in figure 1, 

wherein energy adapters & DC-DC converters are used for power conversion operations. The model is 

used for Solar & Thermal energy types, but can be extended for other sources via minimum 

reconfiguration operations. Due to integration of machine learning for energy flow control, the model is 

capable of demonstrating higher energy conversion efficiency, via maximization of power generation 

performance levels. Its performance can be further optimized via use of hybrid machine learning models, 

which assist in multiobjective optimizations.  

 
Figure 1. Design of a typical multisource harvesting model via energy flow control process 

Such models [2, 3, 4] along with their source-specific nuances, application-specific advantages, 

contextual limitations, and deployment-specific future scopes are discussed in the next section of this 

text. Based on this discussion it was observed that existing models require continuous reconfiguration of 

static rules, which limits their efficiency when applied to large-scale network scenarios. Moreover, most 

of these models also showcase higher complexity due to reconfiguration, which reduces their scalability 

performance. To overcome this limitation, a novel Low-Complexity Energy Harvesting Model via 

Incremental Learning and Continuous Power Quality Optimization process is discussed in section 3 text. 

The model’s performance was evaluated in terms of efficiency of power generation, throughput & delay, 

and compared with various state-of-the art methods in section 4, which assists in validating its efficiency 

under real-time use cases. Finally, this text is concluded with some contextual observations about the 

proposed model, and it also recommends various ways to further optimize its performance under 

different use cases. 
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2. Literature review 

Alternative harvesting models for wireless devices have been created by researchers to improve their 

energy efficiency under various harvesting sources. Adaptive duty cycle harvesting with BECC and 

Energy-Neutral Operation, for example, are suggested in [5, 6] studies to maximize harvesting 

performance. This model's scalability is limited by the fact that it is designed for a single source 

harvesting application. Using MLMs that can accommodate nonlinear energy consumption, wake-up 

time, and power changes during continuous data transfers is recommended in [7] in order to improve this 

performance. The model was developed for use with RF sources, although it might also be used to other 

types of harvesting. Finite-state Markov energy channels (FSMEC), Maximum Power Point Tracking 

with Energy Storage, and Data and Energy Integrated Networks (DEIN) are some of the models 

investigated in [8, 9, 10], which advocate using these techniques to increase harvesting performance 

continuously. There are a number of ways to improve the efficiency of harvesting processes, including 

the use of Improved Uneven Clustering (IUC) [11], Linear Optimizations [12], cooperative integration 

modules (13), and Markov Decision Process (MDP) [14]. These models are ideal for low-power 

deployment and may be adapted to gather from several sources. 

Distributed Coordination Function (DCF) [15], Modified Improved Opportunistic Ring Routing Protocol 

(MIORP) [16], Time-synchronized Channel Hoping (TSCH) [17], and the Hungarian Model (HM) [18] 

are examples of models that use large-scale network analysis metrics to help optimize harvester 

performance through the integration of harvesters. When it comes to harvesting process installations that 

are more efficient and less wasteful, they include location-based, geography-based, 

environmental/sensor-based, and other metrics. Differential Evolution (DE) and Energy Transducers are 

proposed in [19, 20] as extensions to these models, with the goal of maximizing energy gains and hence 

improving energy efficiency and throughput in real-time networks. However, these models can only be 

used with a small number of inputs, limiting their capacity to be scaled. Multiband sensors based on 

triplexers and switching-based harvesting models are some of the methods studied in [21, 22, 23] for 

improving sensor efficiency for various kinds of sources. Nonlinear Energy Harvesting and high-

efficiency RF models for low-complexity and high-speed harvesting processes are provided in [24, 25]. 

But these models require continuous reconfiguration of static rules, which limits their efficiency when 

applied to large-scale network scenarios. Moreover, most of these models also showcase higher 

complexity due to reconfiguration, which reduces their scalability performance. To overcome these 

limitations, next section proposes design of a novel Low-Complexity Energy Harvesting Model that uses 

Incremental Learning and Continuous Power Quality Optimization process. The model was evaluated on 

multiple scenarios, and compared with different state-of-the-art techniques which assists in its validation 

under different use cases. 

 

3. Design of the proposed Low-Complexity Energy Harvesting Model via Incremental Learning 

and Continuous Power Quality Optimization process 

Based on the brief review about energy harvesting models it was observed that existing models require 

continuous reconfiguration of static rules, which limits their efficiency when applied to large-scale 

network scenarios. Moreover, most of these models also showcase higher complexity due to 

reconfiguration, which reduces their scalability performance. To overcome these limitations, this section 

proposes design of a novel Low-Complexity Energy Harvesting Model that uses Incremental Learning 

and Continuous Power Quality Optimization process. Flow of the model is depicted in in figure 2, 
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wherein it can be observed that the proposed model initially uses a Q-Learning based power evaluation 

method, that is capable of generating high-efficiency configurations of multisource harvesting devices. 

This is cascaded with design of a Particle Swarm Optimizer (PSO), that assists in performing continuous 

power quality optimizations. 

The combined model is capable of selecting hybrid harvesting source configurations, and incrementally 

tune it for optimum harvesting performance. This is achieved via modelling a reward function that 

incorporates power gain along with low-complexity source selection process. The selection process is 

further enhanced via PSO based continuous learning for improving harvesting source configurations. 

To perform these tasks, the model initially collects data from multiple devices that includes Harvesting 

Device Configurations, Performance Metrics from different Devices, and information about the 

harvesting sources. These information sets are processed via a Q-Learning based optimization model, 

which assists in identification of optimum device configurations under multisource scenarios. 

 
Figure 2. Design of the proposed model for continuous harvesting optimizations 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240113345 Volume 6, Issue 1, January-February 2024 5 

 

The Q-Leaning model works via the following process, 

 Initialize configurations for Maximum Power Point Tracking (MPPT) for different sources based 

on equation 1, 

𝐶(𝑀𝑃𝑃𝑇)𝑖 = 𝑆𝑃 (𝑀𝑎𝑥 (⋃ 𝑃𝑜𝑢𝑡)) |𝑖 … (1) 

Where, 𝐶(𝑀𝑃𝑃𝑇) represents configuration of the MPPT devices, while 𝑆𝑃 represents corresponding 

sensor positions for 𝑖𝑡ℎ sensor, while 𝑃𝑜𝑢𝑡 represents output power levels. 

 

 Based on these configurations, estimate Q Values for each harvesting sensor via equation 2, 

𝑄𝑖 =
𝑃(𝐶(𝑀𝑃𝑃𝑇)𝑖)

𝑀𝑎𝑥(𝑃𝑖)
… (2) 

Where, 𝑃(𝐶(𝑀𝑃𝑃𝑇)) represents power output due to current harvesting node’s MPPT configuration, 

while 𝑀𝑎𝑥(𝑃) represents maximum possible power levels. 

 

 After each periodic interval, estimate New Q Value via equation 3, 

𝑄(𝑁𝑒𝑤) = 𝑄 + 𝐿𝑅 ∗ [𝑅 + 𝐷𝑅 ∗ 𝑀𝑎𝑥(𝑄) − 𝑄] … (3) 

Where, 𝑄(𝑁𝑒𝑤) represents New Q Value, 𝐿𝑅 represents learning rate, 𝑅 represents reward, which is 

evaluated via equation 4, and 𝐷𝑅 represents discount rate levels. 

𝑅 =
𝑃(𝑁𝑒𝑤)

𝑃(𝑁𝑒𝑤) + 𝑃(𝑂𝑙𝑑)
… (4) 

Where, 𝑃(𝑁𝑒𝑤) represents output power due to new configuration of harvesting device, while 𝑃(𝑂𝑙𝑑) 

represents corresponding output power due to old device configurations. The new configuration is 

obtained via modifying internal parameters of the harvesting device using a PSO based optimization 

process. This PSO Model works via the following process,  

 Initialize the following parameters for PSO, 

o Total PSO Particles (𝑁𝑝) 

o Total PSO Iterations (𝑁𝑖) 

o Learning Rate for Cognitive process (𝐿𝑐) 

o Learning Rate for Social Process (𝐿𝑠) 

 To start the optimization process, initially PSO generates a set of 𝑁𝑝 particles, via the following 

process, 

o Generate stochastic configurations of each harvesting source via equation 5, 

𝑃(𝐻𝑆)𝑖 = 𝑆𝑇𝑂𝐶𝐻 (𝑀𝑖𝑛(𝑃𝐻𝑆𝑖
), 𝑀𝑎𝑥(𝑃𝐻𝑆𝑖

)) … (5) 

Where, 𝑃(𝐻𝑆) represents parameter of the harvesting source, and its minimum & maximin value ranges, 

while 𝑖 ∈ (1, 𝑁𝑝𝑠), where, 𝑁𝑝𝑠 represents number of parameters for different harvesting sources. 

o Based on these configurations, identify particle position via equation 6, 

𝑃𝑖 =
∑ 𝑃𝑜𝑢𝑡𝑗

𝑁𝑠
𝑗=1

𝑀𝑎𝑥(𝑃𝑜𝑢𝑡)
… (6) 

Where, 𝑃𝑜𝑢𝑡 & 𝑀𝑎𝑥(𝑃𝑜𝑢𝑡) represents power output & maximum power output levels for the 

𝑖𝑡ℎ harvesting source respectively. 
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o Mark the current particle position as 𝑃𝐵𝑒𝑠𝑡, while mark maximum particle position as 𝐺𝐵𝑒𝑠𝑡, which 

will assist in social & cognitive learning processes. 

 Iterate through 𝑁𝑖 iterations, and generate new particle positions via equation 7, 

𝑃(𝑁𝑒𝑤) = 𝑃(𝑂𝑙𝑑) ∗ 𝑟 + 𝐿𝑐 ∗ (𝑃(𝑂𝑙𝑑) − 𝑃𝐵𝑒𝑠𝑡) + 𝐿𝑠(𝑃(𝑂𝑙𝑑) − 𝐺𝐵𝑒𝑠𝑡) … (7) 

Where, 𝑃(𝑁𝑒𝑤) is new particle position, while 𝑟 is a stochastic number generated during 

optimization process. 

 Update 𝑃𝐵𝑒𝑠𝑡 = 𝑃𝑁𝑒𝑤, if 𝑃𝐵𝑒𝑠𝑡 > 𝑃(𝑂𝑙𝑑) 

 Based on this value of 𝑃𝑁𝑒𝑤, modify the harvesting source configurations, and update 𝐺𝐵𝑒𝑠𝑡 

At the end of final iteration, identify particle with highest fitness levels, and use Its configuration for 

tuning performance of different harvesting sources. Based on this configuration, value of 𝑅 is evaluated, 

and MPPT positions are changed to obtain better performance levels. This performance is evaluated in 

terms of response delay, harvested energy levels, throughput & packet delivery ratio, when applied to 

different energy harvesting wireless network scenarios. This performance can be observed from the next 

section of this text. 

 

4. Results analysis & validation 

The technique that has been proposed utilizes a combination of Q-Learning and a harvesting 

configuration aware PSO model. This combination helps to promote the ongoing growth of harvesting 

and communication performance levels. These levels are evaluated on a wireless network, where each 

node is connected to radio frequency (RF) harvesting sources, solar harvesting sources, and wind 

harvesting sources. These levels were established by applying a standard set of network characteristics 

to the network. The following is a report of these parameters, which may be found in table 1, 

 

Harvesting Network Parameter Value of Network Parameter 

Uses harvesting sources Solar, Wind, and RF 

Model used for data propagation process Two Ray Ground 

Total nodes used for harvesting process 1000 to 2000 

Network Size 3000m x 3000m 

Power used for receiving packets 1 mW 

Power used for transmitting packets 4 mW 

Power used for sleep process 0.005 mW 

Power used for transition process 0.1 mW 

Delay for transition process 0.01 s 

Initial level of energy for each of the 

harvesting nodes 

3 W 

Table 1. Network and node configurations 

 

Based on these parameters, performance was evaluated in terms of harvesting delay (D), energy 

conserved during harvesting process (E), communication throughput due to harvesting (T), and Packet 

Delivery Ratio (P) due to harvesting process. These parameters were evaluated for different Number of 

Communications (NC), and were averaged across Solar, Wind & RF source types. These values were 

compared with [R1], [R2], and [R3], which assists in validating its performance under real-time 
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scenarios. Based on this evaluation process, the harvesting delay can be observed from table 2 as 

follows, 

EH Source Solar RF Wind 

NC D (ms) 

[R1] 

D (ms) 

[R2] 

D 

(ms) 

[R3] 

D (ms) 

Proposed 

25 4.58 5.27 5.86 4.24 

75 5.11 5.99 6.68 4.86 

150 5.87 6.97 7.77 5.67 

225 6.89 8.20 9.13 6.65 

300 8.12 9.61 10.66 7.75 

500 9.48 11.11 12.27 8.90 

750 10.87 12.66 13.95 10.09 

1000 12.28 14.30 15.72 11.30 

1125 13.65 15.96 17.52 12.51 

1250 14.92 17.56 19.27 13.67 

1375 16.10 19.09 20.93 14.75 

1500 17.14 20.44 22.39 15.72 

1750 18.06 21.57 23.64 16.58 

2000 19.08 22.79 24.97 17.52 

2250 20.14 24.04 26.34 18.50 

2500 21.27 25.36 27.79 19.54 

Table 2. Average end-to-end delay for different communications  

(Solar, RF, & Wind based Harvesting Sources) 

 

Based on this evaluation, it can be observed that the proposed model is 23.5% faster than [R1], 26.4% 

faster than [R2], and 28.5% faster than [R3] under Solar, RF & Wind based sources for power harvesting 

process. This performance optimization is possible due to use of low complexity PSO & Q-Learning 

models, which assist in improving harvesting performance under large-scale use cases. Based on similar 

strategy, energy harvesting performance can be observed from table 3 as follows, 

EH Source   Solar 

NC E (mJ) 

[R1] 

E (mJ) 

[R2] 

E 

(mJ) 

[R3] 

E (mJ) 

Proposed 

25 11.23 16.76 14.77 21.90 

75 11.83 17.60 15.50 22.78 

150 12.39 18.44 16.25 23.86 

225 12.98 19.34 17.04 25.04 

300 13.62 20.29 17.87 26.24 

500 14.28 21.26 18.67 27.34 

750 14.96 22.06 19.18 27.92 
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Table 3. Average energy consumption for different communications  

(Solar, RF, & Wind based Harvesting Sources) 

 

Based on this evaluation, it can be observed that the proposed model has 16.5% higher energy harvesting 

efficiency than [R1], 8.5% higher energy harvesting efficiency than [R2], and 19.5% higher energy 

harvesting efficiency than [R3] under Solar, RF & Wind based sources for power harvesting process. 

This performance optimization is possible due to use of continuous power optimization based PSO & Q-

Learning models, which assist in improving harvesting performance under large-scale use cases. Based 

on similar strategy, communication throughput can be observed from table 4 as follows, 

 

EH Source Solar RF Wind 

NC T 

(kbps) 

[R1] 

T 

(kbps) 

[R2] 

T 

(kbps) 

[R3] 

T (kbps) 

Proposed 

25 1195 1247 1455 1600 

75 1205 1258 1467 1614 

150 1216 1268 1479 1627 

225 1226 1279 1491 1641 

300 1236 1289 1504 1654 

500 1246 1300 1516 1668 

750 1256 1310 1528 1681 

1000 1266 1321 1540 1694 

1125 1276 1331 1553 1708 

1250 1286 1342 1565 1721 

1375 1296 1352 1577 1735 

1500 1306 1363 1589 1748 

1750 1316 1373 1601 1761 

2000 1327 1384 1614 1775 

2250 1337 1394 1626 1788 

2500 1347 1405 1638 1802 

Table 4. Average throughput performance for different communications  

(Solar, RF, & Wind based Harvesting Sources) 

1000 15.61 22.42 19.16 27.60 

1125 16.20 22.40 18.71 26.62 

1250 16.75 22.16 18.03 25.30 

1375 17.30 21.89 17.41 24.14 

1500 17.87 21.98 17.26 23.78 

1750 18.47 22.55 17.66 24.32 

2000 19.11 23.28 18.23 25.08 

2250 19.74 24.11 18.89 25.98 

2500 20.36 24.88 19.44 26.68 
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Based on this evaluation, it can be observed that the proposed model showcases 23.5% higher 

throughput than [R1], 20.5% higher throughput than [R2], and 8.5% higher throughput than [R3] under 

Solar, RF & Wind based sources for power harvesting process. This performance optimization is 

possible due to use of continuous power optimization based PSO & Q-Learning models, which assist in 

improving harvesting performance under large-scale use cases. Based on similar strategy, Packet 

Delivery Ratio (PDR) can be observed from table 5 as follows, 

 

EH Source Solar RF Wind 

NC PDR 

(%) 

[R1] 

PDR 

(%) 

[R2] 

PDR 

(%) 

[R3] 

PDR (%) 

Proposed 

25 74.20 73.86 74.70 87.84 

75 74.82 74.48 75.32 88.58 

150 75.45 75.10 75.96 89.32 

225 76.09 75.73 76.59 90.06 

300 76.72 76.36 77.22 90.80 

500 77.35 76.98 77.85 91.54 

750 77.98 77.61 78.48 92.28 

1000 78.61 78.23 79.11 93.02 

1125 79.24 78.85 79.74 93.76 

1250 79.86 79.47 80.36 94.50 

1375 80.49 80.09 80.99 95.24 

1500 81.11 80.71 81.62 95.88 

1750 81.73 81.33 82.24 96.43 

2000 82.36 81.95 82.87 97.10 

2250 82.99 82.58 83.50 97.76 

2500 83.62 83.20 84.13 98.52 

Table 5. Average packet delivery ratio performance for different communications  

(Solar, RF, & Wind based Harvesting Sources) 

 

Based on this evaluation, it can be observed that the proposed model showcases 15.3% higher PDR than 

[R1], 15.5% higher PDR than [R2], and 14.5% higher PDR than [R3] under Solar, RF & Wind based 

sources for power harvesting process. This performance optimization is possible due to use of 

continuous power optimization based PSO & Q-Learning models, which assist in improving harvesting 

performance under large-scale use cases.  Since of these improvements, the model may be utilized for 

large-scale harvesting network deployment scenarios because it shows higher harvesting performance 

under a variety of energy sources. 

 

5. Conclusion and future work 

The proposed model uses a combination of different energy sources, and performs source-dependent 

harvesting in order to optimize internal device configurations. These configurations are continuously 

evaluated, and checked in order to improve MPPT performance levels. This optimization is initiated by 

the Q-Learning model, and then continuously fine tuned by the PSO based optimization process. Due to 
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which, the proposed model is able to achieve 23.5% faster harvesting performance than [R1], 26.4% 

faster harvesting performance than [R2], and 28.5% faster harvesting performance than [R3], it was also 

observed to achieve 16.5% higher energy harvesting efficiency than [R1], 8.5% higher energy harvesting 

efficiency than [R2], and 19.5% higher energy harvesting efficiency than [R3] under Solar, RF & Wind 

based sources for power harvesting process. In terms of communication performance, the model 

showcased 23.5% higher throughput than [R1], 20.5% higher throughput than [R2], and 8.5% higher 

throughput than [R3], it was also observed that the model was capable of achieving 15.3% higher PDR 

than [R1], 15.5% higher PDR than [R2], and 14.5% higher PDR than [R3] under Solar, RF & Wind 

based sources for power harvesting process. Because of these enhancements, the model is now suitable 

for usage in large-scale harvesting network deployment scenarios. This is possible due to the fact that it 

demonstrates improved harvesting performance when applied to a wide range of energy sources. In 

future, use of multiple bioinspired techniques along with deep learning models is recommended, which 

will assist in continuously optimizing model’s performance under different energy sources. Moreover, 

the model must be validated on larger networks, and can be extended via use of incremental learning for 

real-time deployment scenarios. 
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