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Abstract 

A new era in the analysis of biological data has been sparked by the revolutionary development in 

processing speed and memory capacity. With the sequencing of hundreds of microbial and numerous 

eukaryotic genomes—including a clearer draft of the human genome—better control over microbes is 

anticipated. The objectives are very high and include the creation of sensible medications and 

antimicrobial agents, the creation of novel, improved bacterial strains for bioremediation and pollution 

control, the creation of more effective vaccines that are simple to administer, the creation of protein 

biomarkers for a variety of bacterial diseases, and a deeper comprehension of the interactions between 

hosts and bacteria to prevent bacterial infections. Bioinformatics research currently being conducted on 

the basis of Genomics, Proteomics, cell visualization and application to the development of drugs and 

antimicrobial agents. The main contributions of bioinformatics research include automated genome 

sequencing, automated development of integrated genomics and proteomics databases, automated genome 

comparisons to determine the function of the genome, automated metabolic pathway derivation, 

automated gene expression analysis to determine regulatory pathways, automated statistical technique 

development, data mining and clustering techniques to determine protein-protein and protein-DNA 

interactions, modeling of 3D protein structure and 3D docking between proteins and biochemicals for 

rational drug design, and analysis of differences between pathogenic and non-pathogenic strains to identify 

candidate genes for vaccines and anti-microbial agents.  

 

Keywords Microbial genome, human genome, genomics, proteomics, data mining, 3D docking, 

bioinformatics. 

 

Background 

Over the past ten years, significant advancements in computer technology and memory capacity have 

enabled the modeling of grand challenge issues like extensive internet-based genomic sequencing and 

massively integrated database management. Researchers worldwide now have access to a tremendous 

number of genomic and proteomic data thanks to this much increased computational capacity along with 

the large-scale downsizing of biochemical procedures like PCR, BAC, gel electrophoresis, and microarray 

chips. Wet-lab experiments cannot produce the same level of new tools and discoveries as the surge in 

genome and proteome research that has resulted from the availability of data (1-3).  

The expectation of mankind to be able to regulate has increased due to the availability of genetic and 

proteomics data as well as enhanced bioinformatics and biochemical techniques by tampering with the 
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already-existing microorganisms. Increased agricultural quality and quantity, improved disease diagnosis 

through the use of protein biomarkers, disease prevention through the use of affordable vaccines and 

sensible drug design, and the development of methods that enable us to see and comprehend the intricate 

microbial machinery at the systemic level are just a few of the many benefits(4, 5). Since the first complete 

microbial genome of Haemophilus influenzae was sequenced in 1995, hundreds of microbial genomes 

have been sequenced and archived for public research in GenBank ftp://ftp.ncbi.nih.gov/genbank thanks 

to the coordinated efforts of national laboratories, academic universities, non-profit organizations like 

TIGR, multiple drug development companies like Celera, federal health agencies like the NIH and DOE 

in the USA, EMBL and EBI in Europe, and the DNA databank of Japan. The goal of comprehending host-

pathogen interaction has increased with the sequencing of the human genome and other pertinent 

eukaryotic genomes. This will help in the development of more effective vaccines and sensible 

medications that target the aberrations at the gene and pathway levels that cause pathogenesis (6-8). 

Without the availability of bioinformatics techniques, the enormous volume of data produced by genome 

sequencing programs would be unmanageable and unable to be understood because of a shortage of highly 

skilled personnel and the prohibitive expense of continuing such an endeavor. Over the past ten years, 

bioinformatics has quietly taken over the job of affordable data analysis. This has accelerated the rate at 

which new discoveries, medications, vaccines, and antimicrobial agents are being developed (9-11).  

Furthermore, our knowledge of the genome's structure and the process of microorganism reformation has 

improved thanks to bioinformatics analysis. Understanding the cellular processes in order to treat and 

regulate microbial cells as factories, as well as analyzing the systemic level behavior of these processes, 

will be made easier and faster by bioinformatics analysis. Bioinformatics approaches have been created 

during the past ten years to discover and evaluate different components of cells, including relationships, 

metabolic and regulatory processes, and gene and protein activity. The next ten years will be dedicated to 

integrating bioinformatics, wet lab, and cell simulation tools to better understand cellular mechanisms and 

manipulation. These methods have recently been applied by researchers to the synthesis of recombinant 

proteins. This decade's semi-automated analysis of cellular function at the systemic level is expected to 

accelerate this capability (12, 13)                 

 

Literature review 

Bioinformatics has been applied to microbial biotechnology in a variety of ways over the past ten years: 

developing genomic and proteomics databases; inferring phenotypes (higher level functions) from 

genotypes (gene level functions)(14-16); computationally analyzing wet-lab data; genome sequencing; 

identifying protein coding segments and using genome comparison to determine gene function. Four main 

studies have been conducted to better understand higher level functions: (i) automating the reconstruction 

and comparison of metabolic pathways (17-19); (ii) studying the interactions between proteins and DNA 

to comprehend regulatory pathways (20-22); (iii) modeling the 2D and 3D structures of proteins (23, 24); 

and (iv) modeling the docking of 3D models of proteins with drugs (25, 26). Knowing the three-

dimensional structure of proteins is essential to comprehending the interactions between proteins. A solid 

understanding of the binding sites in signaling pathways will come from protein-protein and protein-DNA 

interactions; knowledge of the interactions between proteins and chemical substances has already aided in 

the development of medication design (27, 28). 

In bioinformatics, three methods have been employed: (i) computational search and alignment methods to 

compare a newly sequenced genome to the set of known genes in order to annotate the structure and 
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function of genes (29, 30); (ii) mathematical modeling methods such as data mining, statistical analysis, 

neural networks, genetic algorithms, and graph matching methods to find common patterns, features, and 

high level functions (31-36); and (iii) an integrated method that combines search methods with 

mathematical modeling (37-41). 

 

Genome Sequencing 

The development of automated sequencing techniques that combine 2D gel electrophoresis, PCR or BAC-

based amplification, and automated nucleotide reading has been the primary contribution of bioinformatics 

to genome sequencing. Other developments include contig assembly, which joins the sequences of smaller 

fragments (contigs) to form a complete genome sequence, and promoter and protein-coding region 

prediction. Limited size genome fragments are obtained by amplification techniques based on BAC 

(Bacterial Artificial Chromosome) or PCR (Polymerase Chain Reaction) (42, 43). Nucleotide reading 

mistakes, repetitions (extremely small and very similar fragments that fit in two or more portions of a 

genome), and chimeras (two separate parts of the genome or artifacts caused by contamination that unite 

end to end providing an artifactual fragment) are among the problems with the available fragment 

sequences (44-50). 

The nucleotide reading error problem is resolved by creating several copies of the fragments, aligning the 

fragments, and using majority voting at the same nucleotide sites. To prove repeats and chimeras, several 

experimental copies are required. Before the genomic fragments are finally assembled, chimeras and 

repetitions are eliminated. A greedy technique is used to combine the fragments based on maximal overlap. 

The fragments are modeled as a mathematical weighted network, where nodes are fragments and weights 

of edges reflect the number of overlapping nucleotides. The majority of nodes with the highest (or lowest) 

scores collapse first in a greedy algorithm. The pieces with greater nucleotide sequence overlap are linked 

first to form contigs (21, 42-44). 

 

Identification and recognition of genes automatically 

Finding the genomes' ORFs (open reading frames), or areas that code for proteins, comes next once the 

contigs have been linked. There are three methods for identifying ORFs: Three methods are used to 

identify genes: (1) utilizing Hidden Markov Model (HMM) based approaches like GLIMMER (51-53) 

and GeneMark; (2) exploring known gene databases like GenBank ftp://ftp.ncbi.nih.gov/genbank ; and 

(3) using decision tree-based algorithms to identify the start and end codons of the coding regions (54, 

55). Multiple probabilistic state machines, each able to recognize an ORF, are developed using HMM-

based approaches (56). Every machine uses a state transition with greatest probability to predict the next 

nucleotide character. It then compares the predicted character to the current character in the sequence. 

HMM-based methods create several probabilistic state machines, each of which is able to recognize an 

ORF. Every machine uses a state transition with greatest probability to predict the next nucleotide 

character, then compares the anticipated character to the current character in the sequence. The likelihood 

of a state transition is determined through statistical training with known sample sequences. HMM-based 

programs like GLIMMER have produced results with 95% to 97% accuracy when it comes to microbial 

genomes (57). 

 

Finding the function of genes: searching and aligning 

Annotating the genes with the correct structure and function comes next after determining the ORFs (open  
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reading frames). Pair-wise gene alignment and well-known sequence search methods have been used to 

determine the gene's function. The four most widely used algorithms for functional gene annotation are 

BLAST and its variants, Smith-Waterman alignment and its variations using dynamic programming, 

indexing-based scheme FASTA and its variations, and BLOCKS, which employs multiple sequence 

alignment of conserved domains to identify motifs, or patterns that characterize proteins (58-62). 

In order to find the largest matching nonrandom segment, BLAST search expands numerous probable 

seed points (greater than four nucleotides) that match. It does this by using scoring matrices like BLOSUM 

or PAM (63). When amino acids share biological or biophysical characteristics, their matching values in 

scoring matrices are positive; when they don't, they have negative match values. The frequency patterns 

of the amino acids present in conserved domains of protein families have been statistically compared to 

create substitution matrices like BLOSUM (BLOcks SUbstitution Matrix). A nucleotide matrix that 

penalizes non-matching places is used to score nucleotide sequences. The BLAST method is quick in its 

current implementation and has a temporal complexity that is almost linear. The BLAST algorithm, 

however, sacrifices some accuracy in order to increase computing speed by indexing the sequences in the 

database using the most likely combinations of nucleotide seeds (64-66).  

In order to increase the BLAST algorithm's execution speed, accuracy, and reliance on specified scoring 

matrices, numerous heuristic changes have been made. There are two main enhancements: (i) using 

numerous matching iterations to build a position-specific scoring matrix that can be utilized in place of a 

predetermined biochemistry matrix, and using two or more hits inside a matching region before extending 

the high scoring segment. A well-liked BLAST implementation that makes advantage of both of these 

enhancements is called PSI-BLAST (Position Specific Iterative BLAST) (67-69). Utilizing a position-

specific matrix enhances the search for weakly similar sequences in evolutionary distant species, while 

using two hits increases the segment extension's execution efficiency (70, 71). By determining the multiple 

sequence alignment of the best matching segments and examining the frequency of amino acid 

substitutions in the matching segments, a position-specific matrix is constructed. 

For pairwise gene alignment, dynamic algorithms like Smith-Waterman and other indexing systems 

perform better. Using dynamic algorithms, gene pairs are aligned incrementally by maximizing the sum 

of the scores for matching the current amino acid characters (or nucleotide characters) with the best 

alignment of the previous subsequences. While nucleotide sequences use a nucleotide matrix for scoring 

that penalizes non-matching places, amino-acid sequence mismatches are punished using scoring matrices 

like BLOSUM or PAM (65, 72). To demonstrate the insertion and deletion of nucleotides, a gap is added 

(or amino-acids). Gaps are entered by users as parameters and are not included in a substitution matrix. A 

scoring penalty is also incurred when there is a gap (73). 

A gap also results in a deduction from score. Global and local dynamic programming protein (or gene) 

alignments are the two main varieties. The amino-acid (or nucleotide) characters are arranged in global 

alignment to maximize the final score. Local alignment, on the other hand, identifies the segment with the 

highest score and disregards the segments with lower ratings. Large-scale changes in amino acid 

composition are best handled by local alignment when comparing amino acid sequences from evolutionary 

distant taxa. When only a little quantity of random mutation is present, global alignment performs 

effectively (64, 73-75). 

Utilizing methods of multiple sequence alignment, one can determine conserved portions and an 

evolutionary tree by comparing several homologous genes (genes with similar sequences). Pair-wise 

alignment between two homologs and the concept of distance between two nucleotide or amino acid 
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sequences are combined in this technique. The concept of distance can be obtained in two ways: first, as 

the evolutionary distance between two microorganisms indicated by an evolutionary tree; second, as the 

edit distance, which is the number of mismatches obtained following pairwise alignment of two sequences. 

The method, which is implemented as a greedy algorithm, is based on a progressive pair-wise comparison 

to create intermediate alignments between nearest neighbor’s homologs with the least distance (76, 77). 

The assigning of user-defined equal weight to indels (gaps), which lessens the significance of a particular 

amino acid or set of amino acid characters, is a primary cause of error in the aforementioned sequence 

comparison techniques. Repeat characters are another small issue with the sequences; they cannot be 

combined with other amino-acid characters and only indicate the structural or functional separation of the 

component components within a gene. Multiple sequence comparison methods, like BLOCK, are useful 

for deriving motifs and have been used to find conserved subsequences in gene sequences that are 

strikingly similar. A protein's motif, which is a collection of distinct subsequences that define it, has been 

shown to be highly helpful in identifying genes that share the same functions (78-81). 

Once the sequences are aligned, the conserved subsequences of the functionally equivalent genes from 

other organisms are found, leading to the derivation of motif sequences.  The fundamental building block 

of a protein's function, the protein domain is linked to a single, distinct pattern of folding (beta sheets, 

helices, or their variants) at the structural level. To determine whether areas of several homologous genes 

are individually homologous to one another, the researchers employed multiple sequence alignment and 

HMM. These areas are most likely domains (82-84). 

 Numerous domain-related databases, including PRODOM, Pfam, and SMART, are available at the 

moment. A database of numerous protein domain or conserved protein region alignments is called Pfam. 

The alignments show a conserved evolutionary structure that affects the function of the protein. Profile 

not visible Even in cases of limited homology, Markov models (profile HMMs) constructed from the Pfam 

alignments can be used to automatically identify a novel protein as a member of an established protein 

family. Pfam is currently automatically generated using PRODOM database cluster analysis. The methods 

based on sequence search assume that the best sequence is adequate to annotate the function. In general, 

this presumption is accurate. However, in many instances, the function cannot be determined by best 

sequence match because: (1) the function is restricted to a particular region of the protein, such as the 

hydrophobic region; (2) the function depends on the presence of a certain pattern of amino acids; (3) 3D 

structure conformation in protein containing multiple domains (85, 86). Occasionally, a little nucleotide 

mutation will change the matching amino acids, changing the protein's three-dimensional structure. The 

inability of best match methods to pinpoint every potential role for a multi-domain protein is another 

drawback. A protein can be multifunctional and have several domains. Since there is no direct relationship 

between a protein's number of domains and its functionality, the issue is more complicated (87-93). 

 

Docking of 3D structure 

Depending on how it interacts with other proteins, a protein can exist in one or many low free energy 

conformational forms. A protein's stable conformational state exposes certain areas to interactions 

between proteins and DNA. Protein function can also be inferred by comparing the three-dimensional 

(3D) structures of known and unknown proteins, since function depends on exposed active regions. 

Nevertheless, there are few 3D structures obtained using NMR spectroscopy and X-ray crystallography. 

A different method of matching genes is therefore required. The relationship between gene sequence and 

three-dimensional structure is generally close. In these situations, function annotation only requires 
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sequence matching. Even if amino acid sequences do not match, various sequences frequently map to the 

same three-dimensional structure. In these situations, it is necessary to find corresponding 3D structures 

and 2D structures, such as alpha helix and beta sheet patterns, to confirm the function of the recently 

sequenced protein (94-99). 

Sequence homology based prediction and ab initio (or de novo) method are the two main methods used to 

model the three-dimensional structure of a protein. Sequence homology is a technique that predicts the 

overall 3D structure by using sequence alignment to find the best matching 3D structure for various 

components, such as side chains, loop portions, and conserved portions from the database. Based solely 

on the sequence, the ab initio technique predicts the structure using the energy minimization concept. 

Modern developments in ab initio techniques incorporate biophysical and biological characteristics, such 

as beta sheet folding and hydrophobic area information, to improve accuracy (100-106). 

When two molecules (a receptor and a ligand) attach to one another, their 3D structures are compared to 

find the best matches by simulating interaction surfaces and minimizing free energy at the domain level. 

This process is known as docking. Finding the optimal match to suit two surfaces without having too much 

intersection is necessary while solving the docking issue, which involves modeling surfaces using spheres 

(or grids). Binding locations and other biochemical data are frequently supplied. In docking, there are 

three main issues: Docking techniques suffer from three basic drawbacks: (i) conformation may vary 

during docking for multidomain proteins; (ii) significant computational cost causes large-scale modeling 

to be very slow; and (iii) over prediction causes a high proportion of false positives (107-110). 

 

Genome comparison (Pairwise) 

Pairwise genome comparisons are a logical next step following the identification of gene-functions. The 

features of paralogous genes—duplicate genes with identical sequences but different functions—can be 

found by performing a pairwise genome comparison of one genome against the other. Genome 

comparisons between genomes in pairs have yielded a plethora of information, including orthologous 

genes that are functionally equivalent but diverged in two genomes due to speciation, various types of 

gene-groups, which are adjacent genes that are compelled to occur in close proximity because they are 

involved in some common higher level function, lateral gene-transfer, which is the transfer of genes from 

a distantly related microorganism, gene-fusion/gene-fission, gene-group duplication, gene-duplication, 

and difference analysis, which is used to identify genes unique to a group of genomes like pathogens, as 

well as conserved genes (111-114). 

Genomes are treated as an ordered collection of genes and a pair of genomes is modeled as a bipartite 

graph where each node in one set is connected to homologous nodes (similar genes via pair-wise gene-

alignment) in the second set in order to obtain orthologs and sets of gene-groups. The best matched 

homologs are deduced to be orthologs. A window of neighboring genes is created in both genomes and 

slid until the next gene in the first genome has no homologous gene in the corresponding neighborhood 

window in the second genome. This process is used to identify homologous gene-groups. First, two 

neighboring genes in one genome that are homologous to two neighboring genes in the other genome are 

identified. Following the identification of a non-matching gene, the matching genes are gathered as one-

gene-group (111, 115-117). 

This extensive comparative analysis has revealed that: (i) a significant portion of these gene groups are 

cotranscribed or co-regulated; (ii) there are different kinds of gene groups in a genome; (iii) homologous 

genes in a gene group do not always have the same order in two microorganisms; (iv) gene groups are 
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frequently duplicated; (v) all genes in ordered gene groups are embedded in the same pathway, whereas 

unordered gene groups occur at the intersections of adjacent pathways; (vi) larger genomes share more 

gene-groups despite not being too closely related evolutionary (vii) Genes involved in cell surface 

interaction, nutrition transport, and sensor proteins are frequently duplicated, and (viii) horizontal gene 

transfer and gene fusion are also frequent methods of genome reorganization. Duplication is justified by 

the necessity for adaptation to various environmental factors and by the utilization of comparable 

mechanisms by several sensors and transport proteins. Identification of candidates for vaccine production 

and the creation of antimicrobial medications is greatly aided by the knowledge of genes conserved in 

pathogens, genes inserted or deleted from pathways analogous to genes in plasmids, and genes peculiar to 

pathogens. Pairwise genome comparison studies have revealed an intriguing finding: genome restructuring 

is brought about by a mix of gene fusion, duplication, and insertion/deletion of domains. Nevertheless, 

because of their computational complexity and the scarcity of domain-level functional data regarding 

different genes from the wet-labs, domain-level comparative analysis techniques are still in their 

experimental stages (111, 118, 119). 

 

Reestablishment of Metabolic processes 

A new area of bioinformatics research has been sparked by the identification of gene functionality: the 

automated reconstruction and comparison of pathways in newly sequenced species. The reconstruction of 

pathways has been the subject of numerous initiatives and strategies. The three main methods are 

categorized as follows: (i) a global network of enzyme-catalyzed reactions; (ii) a network of gene-groups 

connected by enzyme-catalyzed reactions embedded in the gene-groups; and (iii) a global modeling of 

chemical reactions in microbial cells. Using known biochemical pathways and enzymes, the first method 

matches the product and substrate of chemical reactions catalyzed by enzymes to build a network of 

reactions. It also uses BLAST based search or pairwise genome comparison of evolutionary close genomes 

to identify the enzyme function of new genes in a newly sequenced genome. This is a very effective 

strategy. Nevertheless, it has numerous shortcomings: (i) it cannot determine the precise location in 

pathways for homologous genes; (ii) it ignores genes that appear in the same pathway because of co-

transcription and gene grouping; and (iii) it ignores the response rate (120, 121). 

An integrated method for rebuilding metabolic pathways has been developed using the knowledge of gene-

groups. There are four steps in this method: Gene-groups that share a promoter can be identified by (i) 

using ortholog analysis to identify the enzymes and their functions in a newly sequenced genome; (ii) by 

analyzing the promoter region of the genes; (iii) by deriving the gene groups by pairwise comparison of 

the newly sequenced genome with multiple genomes; and (iv) by connecting the network of gene-groups 

using biochemical knowledge of existing pathways and enzymes. With the exception of the leading gene, 

cotranscribed gene-groups (potential operons) typically have intergenic distances (the distance between 

the start codons of the next gene and the stop codons of the previous gene) of fewer than 75 nucleotides. 

The majority of these potential co-transcribed gene groupings are found by computationally comparing 

the intergenic distance. Nonetheless, the identification of pathways cannot be achieved solely by using the 

knowledge of co-transcribed gene groups, as (i) these groups may contain genes that are absent due to 

conservative cutoff threshold estimates; (ii) gene insertion/deletion resulting from genome restructuring 

may separate multiple adjacent co-transcribed gene-groups within a single pathway; and (iii) some 

regulating genes that are in close proximity and regulate pathways may not be detected. By combining 

genes from different pairwise genome comparisons with the recently sequenced genome that belong to the 
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same gene group, these three issues are diminished. Combining the data from pairwise genome 

comparison analysis and promoter-based analysis yields the overall gene-groups. Since the gene-groups 

in a pathway are dispersed across the genome, enzyme databases are used to match the biochemical 

product and substrates in the reactions that the enzymes contained in the gene-groups catalyze. This allows 

the gene-groups to connect with one another. This system incorporates several regulatory genes associated 

with a pathway, decreases the ambiguity of homologous genes, and increases computational efficiency. 

However, because reaction rate is not included in this system, cell level behavior cannot be modeled (122, 

123). 

Modeling global biochemical reactions involving products, byproducts, and the impact of cofactors on 

reaction rate forms the basis of the third strategy. Based on the study state flux distribution in a metabolic 

network required for target product synthesis, the model represents the network of metabolic reactions as 

a collection of vector processes known as extreme pathways. This method models the entire network of 

routes as a matrix, with columns representing particular reactions and rows representing extreme 

pathways. This method works well for simulating a microbial cell's general metabolic activity. The gene 

functions that are now available from wet laboratories limit the metabolic pathway approaches used today. 

An additional concern is that merely identifying metabolic pathways is insufficient without knowledge of 

reaction rates and the impact of stress response on response times. Although modern methodologies have 

been developed to simulate the rate of reaction of metabolic pathways, the whole picture remains 

unverified, mostly because wet lab gene functions are not available (124, 125). 

 

Comparing automated pathways and phenotypic similarities 

In order to comprehend the impact of gene insertion and deletion in diverse microbes and to comprehend 

evolution at the pathway level, the researchers' next line of inquiry is to compare similar pathways. The 

genes in a route are aligned as follows so that two pathways can be compared. If every protein in the first 

pathway (or the gene-group within a pathway) has a homologous gene in the other pathway (or the gene-

group within the pathway), then the two pathways are entirely matched. When a homologous gene is added 

or removed, there is a mismatch, and when the matching homologous genes have a low similarity score, 

there is a gap. Many routes between H. pylori and yeast have been found to be compared based on this 

modeling. More significantly, a quantification mechanism for comparing two paths has been discovered 

(126, 127). 

 

Development of regulatory pathways and mechanisms 

Rebuilding metabolic pathways, identifying signaling pathways, and conducting promoter analysis to find 

transcription factors for protein-DNA interactions have all been advances in the field of genomics and 

proteomics research. Studying protein-DNA interactions can be done in four main ways: micro-array 

analysis of gene expressions in response to various cell stressors; (ii) statistical analysis of the promoter 

regions of orthologous genes (functionally equivalent genes in different organisms identified as best 

homologs); (iii) worldwide analysis of dimer frequency patterns in the intergenic region of a genome, 

which is the promoter region between adjacent protein coding regions; and (iv) atomic bond level 

biochemical modeling to comprehend how a protein will bind to nucleotides. Of the four ways, only the 

microarray analysis methodology is based on experimental data; the other two rely on sequence analysis 

and mathematical modeling (128, 129). 
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Using a two-step process, micro array analysis evaluates how a change in stimuli affects the relative 

changes in gene expressions for stressed (or stimulated) cells and changes in cellular expression patterns, 

such as differentiation, cellular cycle, tissue remodeling, sporulation, etc. The process involves mapping 

all the genes in a genome that has been etched onto a thin glass plate, hybridizing the genes of a healthy 

cell with etched genes to derive the regular gene expression under equilibrium conditions, and (ii) 

hybridizing the affected cells with etched genes to determine the gene expression of affected cells under 

equilibrium conditions. The information about the damaged genes is obtained through a comparative 

analysis of gene expressions under normal and stimulated (or stressed) conditions. Assuming that auto 

regulation occurs within a gene-group and that there is no cyclic self-regulation, the observed changes in 

gene expression can be attributed to the interaction between transcription factors and proteins. The gene-

expression data is subjected to either (i) cluster analysis, which identifies significant gene-expression 

patterns, or (ii) data mining techniques, which are statistical methods that establish correlations between 

expressed genes and various stress conditions. Using pair-wise genome comparison databases (see 

http://www.cs.kent.edu/~arvind/intellibio/orthos.html ) or the knowledge of cluster of orthologs (COGS), 

a group of genes in a super family archived at NCBI at NIH that has been derived by multiple genome 

comparisons, the second method of statistical promoter analysis first identifies the orthologous genes from 

evolutionary close microorganisms with active pathways. The second stage involves identifying and 

comparing the upstream regions of two orthologous genes to find statistically conserved patterns. The 

transcription factors, or regions of promoters involved in enhancing or repressing the gene-expression of 

the associated gene, for protein-DNA interaction in the promoters of orthologous genes would likewise be 

very similar if functionally equivalent genes in the very similar pathways of evolutionary close organisms 

have similar regulation mechanisms. Many transcription factors have been found as a result of this 

investigation. Plotting the frequency of occurrence of the dimers in the intergenic region over the entire 

genome by statistical analysis is the third method. It's possible that the more common non-random dimers 

interact with DNA through interactions with proteins (130-133). 

Hydrogen bonds in amino-acid base interactions, Van der Wall forces at contacts, and water-mediated 

bonds at varying degrees of closeness between two molecules are all taken into account in the biochemical 

approach to studying protein-DNA interactions at the atomic bond level. Based on the bond analysis and 

the actual statistical results, it has been determined that the complex and biased interactions between 

different amino acids and DNA—that is, the preferences of different amino acids for different types of 

bases—play a significant role in binding, Van der Wall forces provide stabilization, and protein-DNA 

interactions are fundamental to binding. Some amino acids that prefer guanine include arginine, histidine, 

serine and lysine (134-136). 

As of yet, no researcher has made an attempt to combine the biochemical technique with the other four 

ways in a hybrid manner. A more complete picture will be obtained through an integrated approach. A 

multi-transcription factor co-regulated gene may have weaker transcription factors individually and/or 

correlations with other transcription factors, which presents another challenging issue. A two-step 

procedure can be used to determine the weak transcription factor: The steps are as follows: (i) use one of 

the earlier methods to find the strong associated transcription factor; (ii) search for patterns in the vicinity 

of the strong pattern (137, 138). 

Determining the signaling pathway by analyzing the connectivity in protein-protein interactions has 

proven to be an arduous task. Two methods have evolved in the last two years: (1) combining entropy-

based modeling and microarray analysis to identify gene clustering of genes implicated in the same 

https://www.ijfmr.com/
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regulatory pathway, and (2) using random algorithms to maximize transition probability. The first method 

groups the protein groups with more mutual information above a threshold by computing the mutual 

information of each gene pair. The mutual information is based on an entropy-based methodology and is 

obtained by adding up all of the frequency patterns that gene pairs occur in. Gene expressions are separated 

into discrete histograms, and the mutual information between each gene pair is calculated to determine 

entropy. Increased mutual information indicates a direct genetic link. Genes associated with the same 

pathway have been shown statistically to cluster together. Many signaling pathways in the yeast-based 

system have been found using this cluster analysis. The analysis is a versatile method that works with both 

eukaryotic and prokaryotic systems (139-142). 

The transient temporal behavior of numerous genes participating in the regulation and auto-regulatory 

mechanisms of operons, a co-transcribed gene-group inside a pathway involved in a common 

functionality, cannot be explained, not even by determining connection. Since the data corresponds to an 

equilibrium state of processes, hybridization-based microarray analysis is unable to capture the modeling 

of transitory activity of genes. It is necessary to research the general organization and behavior, including 

transitory behavior and stress responses, in order to comprehend harmful bacterial strains and 

malfunctioning cells (143-145). 

 

Reexamining Microbial Evolution  

In order to correlate and categorize the genomes into different families and to investigate evolution, 

bioinformatics experts have extensively analyzed many genomes. Numerous researchers have established 

that point-based mutations leading to specialization and genome restructuring based on gene duplications, 

gene insertions, gene deletions, gene fusion/fission, horizontal gene transfer, and domain-level 

restructuring constitute the basis of overall evolution. The three types of evolutionary study approaches 

are as follows: (1) the use of multiple sequence alignment of 16SrRNA to construct a traditional 

evolutionary tree using point-based mutation approaches (146-148); (2) The investigation of genome 

restructuring through gene-level inversion and transposition; and (3) the study based on whole genome 

comparisons using gene identities of orthologous genes across multiple microbial genomes. 

The 16SrRNA method leverages multiple sequence alignment and the 16SrRNA database to create an 

evolutionary tree. It is based on the idea that conserved genes undergo point mutations because of their 

slow rate of mutation. This method was deemed quantitatively sound prior to the sequencing of microbial 

genomes, and it allowed for the identification of three separate domains bacteria, archaea, and eukaryotes 

using the 16SrRNA database. Because the Archea domain is hyperthermophilic, its 16S rRNA differs 

somewhat from that of bacteria (148-150). 

Scientists have been attempting to construct the evolutionary tree by examining other highly conserved 

genes since 1998, when numerous microbial genomes became available. According to the findings, there 

is no obvious differentiation between bacteria and archaea on the evolutionary tree, which fluctuates 

greatly depending on the selection of conserved genes. The conventional evolutionary trees based on point 

mutations in 16S RNA have been called into question by this observation as well as the understanding of 

genome restructuring brought about by domain level and gene level restructuring, such as horizontal gene 

transfer (82, 150, 151). 

According to the second method, the genomic distance between the two organisms is determined by 

rearranging the genome due to gene shuffling. It is inversion and transposition that cause gene shuffling. 

As a departure from the conventional gene-order in two genomes, the distance measure serves as the 
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foundation for this system. The cumulative score for the genome is calculated by adding the breakaway 

distances of each orthologous gene using this scheme. Between two genomes, this score serves as a 

measure. Until recently, the use of pairwise comparison rendered the construction of large-scale 

evolutionary trees unfeasible. However, advancements in parallel algorithms have made the creation of 

such trees feasible. Does this plan since duplications are mapped to a single gene and insertions and 

deletions are not included in the assumption, horizontal gene transfer is not included. Duplication, 

insertion, and deletion of genes and gene domains have been demonstrated to be important aspects of 

evolution. Particularly duplicated genes are essential to several sensing and transportation networks, 

including ABC transporters, and should not be disregarded (152-157). 

To find the cumulative similarity of two genomes, the third method compares the overall gene content of 

functionally identical genes. To account for variations in genome size, the data has been standardized. The 

underlying presumption of this technique is that slow mutation rates only aid in high multiple sequence 

alignment and that conserved genes are rare and do not form a consensus. Comparisons of entire genomes 

can counteract the inaccuracy caused through comparison of a single conserved gene. The findings 

demonstrate that there is no discernible difference in the overall amino acid composition of 

microorganisms between archaea and bacteria to warrant the classification of archaea as a distinct domain. 

Furthermore, it is impossible to separate the makeup of other hyperthermophilic bacteria from that of 

archaea (158-161). 

To categorize the genomes, no proteome level method has yet been proposed. A future version of this 

strategy might rely on pathway alignment and comparative analysis across several genomes. As all three 

factors are directly involved in the pathway variations, under this scheme, the distance between two 

genomes could be described by combining, once the pathways are aligned, the cumulative number of gene 

insertions and deletions in the pathways, gene duplication in the same pathway, and gene shuffling. 

Nevertheless, more research is needed to determine the precise process integrating these three pathway 

evolution components (162-165). 

 

Conclusion 

Bioinformatics, although still in its infancy, has contributed to fundamental microbiology and 

biotechnology by developing tools, algorithms, and discoveries that improve the abstract model of 

microbial cell functioning. The automation of microbial genome sequencing, the creation of integrated 

databases via the Internet, and the study of genomes to comprehend gene and genome function have been 

the main contributions of bioinformatics. When comparing genes and genomes, the BLAST-based 

database search and the Smith-Waterman-based gene-pair alignment technique, along with its variants, 

are widely utilized. These methods have become the foundation for determining the functionality of genes 

and genomes. Comparative genome analysis has been extremely successful in identifying conserved 

function within a genome family, identifying particular genes within a group of genomes, modeling 3D 

protein structures, and docking biological substances and receptors. These achievements directly influence 

the creation of vaccines, antimicrobial agents, and sensible medicine formulation. Reconstructing 

metabolic pathways has become almost entirely automated by combining the knowledge of orthologs and 

gene functions, gene grouping based on the integration of pairwise genome comparison, co-transcribed 

gene groups, and graph-based matching of substrates and products catalyzed by enzymes. Nowadays, the 

focus is on identifying regulatory pathways, identifying interactions between proteins, DNA, and RNA, 

simulating metabolic reactions to examine the impact of reaction rates, and analyzing experimental data 
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from microarray data to investigate the relationship between gene expressions and stress conditions. The 

knowledge gained from wet laboratories and the computational tools and algorithms at hand are vital to 

the majority of bioinformatics procedures. Regretfully, due to the large number of unknowns in genomics 

and proteomics, neither resource can effectively handle the massive amount of data required for 

interpretation. There are many gaps in the overall picture of gene functions in many recently sequenced 

genomes since the wet lab data only provides a small selection of gene functions. 

The transcription factors for regulatory pathways, metabolic pathways, variants in metabolic pathways, 

and novel findings to identify candidate genes for vaccines and rational medication design can all be 

modeled mathematically. Nevertheless, there are a lot of false positives and false negatives in the modeling 

findings. Wet-lab tests are required to confirm and validate these findings. Complete verification, 

however, is becoming unfeasible due to a lack of resources, specialists, coordination issues, and dynamic 

bioinformatics databases brought about by fresh research and findings. 

Microbial wet lab investigations will become more goal-focused as a result of improved cell visualization 

tools, abstract genomics models based on current bioinformatics analysis, and their integration with 

existing biochemical knowledge. Wet-lab technique development and bioinformatics advancement must 

continue to be targeted, interdependent, and complementary to one another for both current and future 

biotechnology advancement. The application of strategies in an integrated manner to manipulate microbial 

cells at the systemic level will become increasingly important in the future. 
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