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Abstract 

Upon receiving order release updates from clients, the supplier of automotive components in this 

proposed alters its production plan for the next periods every week. Erroneous order releases can 

lead to significant costs, such as premium expedited shipping, production overtime, and excess 

inventory. For the purpose of studying order release variation, this setting is appropriate because 

the supply chain has adopted a JIT strategy with zero ideal inventory levels. For this reason, 

precise order releases are crucial for managing production volumes.  Preprocessing, model 

training, and feature selection are the three primary components.  Imputation of missing values 

and data transformation are components of the data preparation phase. To identify the best 

features from historical data, a powerful GOA algorithm is used in feature selection.  For model 

training, we employed the Parallel LSTM-CNN framework to do this.  On the other hand, it 

makes LSTM and CNN obsolete. The data indicates that the success rate is 96.52%. 

 

Keywords: Convolutional Neural Network (CNN), Demand Driven Distribution, Production 

Planning. 

I. INTRODUCTION 

 Both interest in and demand for ready-to-wear garments is on the rise. Many people are starting 

their own businesses in the clothing sector to offer more affordable and environmentally friendly 

products because of this trend. Businesses can't launch operations or begin producing money unless they 

decide on the optimal aggregate planning technique. In order to maximize profits, one must find the 

optimal balance between meeting maximum demand and limiting costs. In order to adapt to fluctuations 

in demand, most small garment companies utilize the chase method, which involves changing 

production rates every period. Because the process requires less capital and the materials used are easy 

to adjust and inexpensive, small clothing firms can profit the most from it. Production rates are set by 

meticulous planning and forecasting to ensure customer requests are balanced. Thorough planning and 

forecasting lead to on-time delivery, less waste, and cost-effective production. To get the most out of the 

chosen strategy, the company needs a meticulously planned production and raw material inventory 

schedule. In recent years, there has been a proliferation of AI-powered supply chain management 

systems. These systems optimize data from both inside and outside the supply chain using machine 

learning and optimization algorithms. For retailers, especially those dealing with consumables with a 
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near-term expiration date, accurately gauging product demand is an ongoing struggle. Due to their short 

shelf life and often unpredictable demand, perishable commodities typically require daily orders, 

manufacture, and delivery. When things go unsold at the end of the day, it's called demand waste. When 

things sell out rapidly, on the other hand, demand drops. Retailers of perishable goods can cut down on 

lost revenue with the help of an efficient forecasting model by increasing product availability and 

lowering day-end waste. The importance of accurate forecasting for day-to-day operations is well-

known to managers involved in the supply chain for perishable commodities. However, there are several 

reasons why a production forecasting model has not been easily developed. One reason for the 

incredibly high degrees of variance at the store level is because product demand patterns are intrinsically 

unpredictable. Over the past few decades, there have been significant changes in industrial production. 

Things that have changed include the breadth and depth of production, the technologies used, and the 

amount of effort put into it. Manufacturers must produce high-quality products at cheap prices that can 

adjust to customers' shifting demands if they want to remain competitive. An essential component of 

fixing this problem is production planning, which is the area where optimization, forecasting, and 

simulation can be used. When actual requirements are met, the method's forecasts are accurate. 

Production planning that relies on precise projections is crucial for lowering risk and boosting company 

performance. A study's authors have ramped up their usage of prognostic methods and Bootstrap 

(Bagging) combination aggregations to improve electric energy demand estimates. Outcomes from 

forecasting models constructed using the ANN principle outperform other methods of prognosis. The 

essay compares and contrasts two well-known prediction models, namely, ARIMA models and state 

space models. The majority of supply chain management decisions necessitate predictions. The level of 

detail in a decision is mostly defined by two variables: time and product. Some product-related 

decisions, like inventory control, only consider a single SKU, while others, like aggregate capacity 

planning, consider all SKUs. Decisions regarding operations are decided on a daily or weekly basis, 

while decisions regarding strategy and tactics are made on a monthly or annual basis. Supply chain 

managers at the strategic level face capacity unpredictability, increasing market volatility, and rapid 

technical and market shifts when deciding on distribution channels (online, store, or Omni channel). 

They are compelled to consider the entire spectrum of items available to those markets as a result. 

Decisions on product lineups, production capacity, and inventory storage are made at the tactical level. 

Plans for transportation, production schedules, employee rosters, after-sale services, and inventory 

replenishment are all ultimately decided upon at the operational level.  

  

II. LITERATURE SURVEY 

 Operations in production planning and control (PPC) attempt to define when, how much, and 

what to make, purchase, and ship in order for a business's manufacturing performance to match client 

demands. Research by [1] suggests that PPC can be viewed as a method that improves the productivity 

of manufacturing. PPC needs to be flexible enough to adapt to new supply chain opportunities, complex 

client needs, and operational and strategic situations. [2]all agree that PPC needs to be adaptable, 

complimentary, and always changing. The dynamic nature of the industrial environment necessitates a 

more comprehensive and evolutionary perspective from the PPC function and operations management. 

The PPC function considers many activities, including JIT, enterprise resource planning (ERP), 

collaborative planning, forecasting, and replenishment, and material requirements planning (MRP). 

[3]states that information and communication technology has recently been a huge boon to PPC. Factors 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com   ●   Email: editor@ijfmr.com 

 

IJFMR240141303 Volume 6, Issue 1, January-February 2024 3 

 

that aid in the organization and management of crucial production processes include production 

scheduling, master production scheduling (MPS), sales and operations planning (S&OP), demand 

forecasting, material requirements planning (MRP), and information and communication technology[4], 

PPC also includes interface processes including ordering systems, procurement, shipment, capacity 

analysis, and input/output control. [5]Several studies have found that the rise of the Internet of Things 

(IoT) and cyber-physical systems (CPS) in industrial settings has introduced a new PPC context. The 

extensive use of statistical methods can be attributed to three primary factors. They are easy to use and 

implement, first of all. Second, the results are computed and the forecasts are made in a flash. [6] They 

are more easily integrated with other decisions pertaining to company operations, such inventory 

management, because they may be expressed in a closed form. Merchants that need to think about how 

time-series trends, especially seasonal changes, affect future demand for products with steady demand 

can benefit from statistical methodologies. [7]were the first to forecast the demand for apparel. When it 

comes to predicting the demand for women's clothes, take a Bayesian method. [8]have explored the 

hypothesis that a Bayesian forecasting model may be applied to anticipate the demand for apparel in the 

future. When compared to existing methods, the proposed hierarchical Bayesian strategy produces better 

quantitative results. In their study, [9] compare a number of suitable methodologies for forecasting the 

single-period products. The study relies on advance order data collected from clients who pre-purchase 

and other sources due to the lack of demand data from the past. Their analysis of the situation at one 

mail-order Apparel Company led them to suggest a novel "top-flop" method that is more effective than 

the alternatives based on pre-orders. [10] Better results than the advanced demand information method 

are also seen with expert judgment procedures several things. Their findings suggest that in order for the 

corresponding forecasting method to achieve higher levels of prediction accuracy, it requires additional 

item families and applicable classification criteria.Complexity and uncertainty abound in modern supply 

systems. Unpredictability in the supply chain is caused by several things, such as the network itself, 

partner actions, customer and competitor actions, new technology introduction, and product 

development [11]. Market volatility is the root cause of demand fluctuations. Avoiding the negative 

effects of demand volatility requires careful consideration and anticipation of the uncertainties. The 

difficulty in accurately predicting future demand is one factor that can increase this uncertainty [12]. 

Due to the difficulty of demand forecasting, many businesses and forecasters refrain from doing 

scientific forecasts [13]. One of the key challenges in demand forecasting is the inherent uncertainty in 

the market. The degree to which demands are correct determines the level of unforcedness of decisions. 

Inaccurate forecasts may lead to overspending on transportation, labor, service level, and inventory. 

Only recently has the predictive production system used cyber-physical systems (CPS) technology [14]. 

An example of a cyber-physical system (CPS) in manufacturing would be a cyber-physical production 

system (CPS) for process automation and dynamic system control [15]. To stimulate the adoption of 

cleaner production strategies, we have built an optimized planning model to identify the low-carbon 

production paths for the EIMIs and introduced energy-CPS enabled management power industry of the 

country [16]. Adding to that, the IoT may be integrated into manufacturing processes to create the 

Internet of Manufacturing. The Manufacturing Process. Using a model-based approach made possible by 

the internet of things is one strategy to increase the energy efficiency of aluminum die casting. 

[17]Traditional predictive analytics are finding it increasingly difficult to meet the expectations of 

predictive production. Big data analytics combined with predictive analytics is a new technology that 

businesses may use to increase energy and resource efficiency. With the innovative usage of RFID-
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cuboids to build a data warehouse, the logistical data that is enabled by RFID may be highly integrated 

in terms of tuples, logic, and operation [18]. In its most basic form, PPC deals with the problem of 

controlling uncertainty in production systems by stabilizingit (as is common with lean approaches) or by 

precisely predicting and reacting quickly to events and changes in the system's status. [19] The 

requirement to reschedule the latter depends on the kind and frequency of operations, the stability of the 

production environment, and other factors. Process logics and methodologies have been developed to 

achieve these goals based on extensive research in various areas and levels of complexity (hierarchical 

systems). [20] Some examples of these areas and levels of detail include algorithmic research, strategic 

selection of PPC systems, and implementation challenges and restrictions. The range and depth of the 

themes and topics examined have led to the emergence of various areas of investigation. [21] Other 

settings include small and medium enterprises (SMEs) and dynamic market environments. Research in 

this area is often motivated by the perceived limitations and shortcomings of ERP systems when it 

comes to supporting activities related to production planning and control. The most common gripe with 

enterprise resource planning (ERP) systems is the endless capacity scheduling that leads to unrealistic or 

unachievable production plans. 

  

III. PROPOSED SYSTEM 

Modern supply chains rely heavily on demand forecasting capabilities, which allow for extremely 

precise inventory management in response to customer demands. Without accurate forecasting, it is very 

difficult to plan effectively and efficiently. It is worth noting that no specific method is recommended as 

the best for prediction based on the reviewed research. This is because a wide variety of forecasting 

approaches and selection criteria are at your disposal. 

 

 

Fig. 1. An Automated Demand Forecasting System Design Proposal 

This section provides a concise description of the materials and process that were employed. You can 

see the suggested structure in Figure 1. 
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A.  Data  Preprocessing: 

The preparation phase includes data manipulation and missing value imputation. Raw data must have 

some missing attributes filled up from various features before any ML technique can be used. A number 

of imputation methods are available for use in filling in missing variables. To fill in the missing value, 

we recommend the mean-based imputation process, which entails averaging the properties of all 

features. [22]Following the imputation of missing or null values, this data power transformation is 

executed. Regression analysis relies heavily on transformations. Parametric monotonic transformations, 

also known as power transformations, can be used to make data more Gaussian-like. This approach is 

useful when dealing with heteroscedasticity or when data normality is required[23]. Notable methods for 

power transformations include the Box-Cox and Yeo-Johnson transformations. Here we utilize the Box-

Cox transformation instead of the Yeo-Johnson transformation as the former accepts only positive data 

and the latter only negative data. A description of the Yeo-Johnson transformation using 

𝑚∗ =

{
  
 

  
 

((𝑚 + 1)𝛿 − 1)

𝛿
𝑖𝑓𝛿 = 0,𝑚 ≤ 0

log(𝑚 + 1) 𝑖𝑓𝛿 = 0,𝑚 ≥ 0

−
[(−𝑚 + 1) ∧ {2 − 𝛿} − 1]

(2 − 𝛿)

log(−𝑚 + 1)

𝑖𝑓𝛿 ≠ 2,𝑚 < 0
𝑖𝑓𝛿 = 2,𝑚 < 0

    (1) 

 

The transformed value is denoted by 𝑚∗ ,𝑚  is a set of 𝑝  strictly positive values, and 𝛿  is a 

hyperparameter that controls the transformation. Here, the Power Transformer implementation in Scikit-

learn is used to carry out the Yeo-Johnson power transformation operation. The transformed output is 

normalized to zero with a unit variance using implicit data processing. 

 

B. Feature Selection: 

From the available historical data, the most suitable attributes are chosen using a strong GA algorithm. 

Grasshopper swarming behavior, which is affected by social relationships, gravity, and wind forecast, 

served as inspiration for the GOA, a meta-heuristic optimization approach. The reviewed work provides 

a detailed description. The pseudocode of the algorithm is shown. The position of the ith grasshopper, 

denoted as 𝑅𝑏, is determined using Eq. 2: 

𝑅𝑏 = 𝐸𝑏 + 𝐷𝑏+𝐹𝑏                                (2) 

 

In these equations, 𝐸𝑏  represents social interaction, 𝐷𝑏  represents gravity, and 𝐹𝑏  represents the 𝑏 th 

grasshopper's wind forecast[24]. Interactions with others are the most important factor in determining 

one's status. Equations 3-6 allow us to determine: 

𝐷𝑏 =∑𝑒(𝑔𝑏𝑙)

𝑃

𝑙=1

𝑔̂𝐵𝐿                           (3) 

𝑔𝑏𝑙 = |𝑦𝑙 − 𝑟𝑏|                               (4) 

𝑔̂𝐵𝐿 = (𝑦𝑙 − 𝑟𝑏) 𝑔𝑏𝑙⁄                           (5) 

                                       𝑒(𝑥) = 𝑎𝑒−𝑥 𝑗⁄ − 𝑒−𝑥                     (6) 
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In these equations, the distance between the 𝑏th and 𝑙th grasshopper is represented as 𝑔𝑏𝑙, and a unit 

vector between the two is represented as 𝑔̂𝐵𝐿. In addition, the function s defines social forces. Adjust it 

with the 𝑎 and l keys. For this force to be exerted, the distance between any two grasshoppers must be 

larger than. Grasshoppers' gravity is also determined by Equation 7: 

𝐷𝑏 = −𝑑𝑠̂𝑑                                    (7) 

 

The gravitational constant is denoted by 𝑑  and the unit vector heading toward the Earth's center is 

denoted by 𝑠̂𝑑 in this context.Grasshoppers utilize Equation 8 to forecast the wind: 

𝐹𝑏 = −𝑤𝑠̂𝑢                                      (8) 

 

where 𝑤 stands for the continuous drift and 𝑠̂𝑢 for the unit vector perpendicular to the wind's direction, 

respectively.Here is the mathematical model that follows from this: 

𝐸𝑏 =∑𝑒(|𝑦𝑙 − 𝑟𝑏|) (𝑦𝑙 − 𝑟𝑏) 𝑔𝑏𝑙⁄ − 𝑑𝑠̂𝑑 + 𝑤𝑠̂𝑢

𝑃

𝑙=1

    (9) 

 

where 𝑃 represents the count of grasshoppers. In order to enhance the extraction and exploration of the 

proposed model, it is presumed that grasshoppers are marginally impacted by gravity and that the wind 

is blowing in the direction of the optimal solution 𝐶̂𝑔. So, to sum up, the final mathematical model 

becomes: 

𝑅𝑏
𝑔
= 𝑡 (∑𝑡

𝑤𝑖𝑔 − 𝑏𝑖𝑔

2
𝑒(|𝑟𝑙

𝑔
− 𝑟𝑏

𝑔
|)

𝑃

𝑙=1

(𝑦𝑙 − 𝑟𝑏) 𝑔𝑏𝑙⁄ ) + 𝐶̂𝑔                                                        (10) 

In this paradigm, the ideal solution up to this point is represented by 𝐶̂𝑔, where 𝑔 is the 𝑔 th dimension 

and 𝑏𝑖𝑔 and 𝑤𝑖𝑔 are the lower and upper bands of the dth dimension, respectively. Further, exploration 

and extraction are both affected by the value of 𝑡. Iterations of the following equation yield the answer: 

 

                             𝑡 = 𝑡𝑚𝑎𝑥 − 𝑗
𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛

𝐽
                     (11) 

 

The two extremes of this equation are 𝑡𝑚𝑎𝑥and 𝑡𝑚𝑖𝑛, respectively. The current iteration index is also 

represented by 𝑗, with 𝐽 being the maximum iteration number. 

 

C. Model Training: 

1) Parallel LSTM-CNN: 

This proposed delves into a novel approach to load prediction that combines CNN and LSTM, 

dubbed parallel LSTM-CNN Network (PLCNet). The methodology offered here is totally distinct from 

previous attempts, such as the ones discussed in the introduction, which integrated the two 

methodologies. For instance, in their proposed CNN-LSTM model, the authors utilize CNN to extract 

characteristics from input data before feeding it into an LSTM. The issue with this model is that the 

training of LSTM is impacted by the extracted features. To address this issue, the PLCNet employs 

LSTM and CNN networks in independent pathways, with no correlation between them. It is 

demonstrated that two paths are first utilized to process input signals; these paths are LSTM and CNN. 
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In order to prepare the input data for the final prediction, these two paths extract the features and long 

dependency inside the data. The final prediction was carried out by comparing data using a fully linked 

path that included dense and dropout layers. The path also predicted real values.Acquiring the local 

trend feature is the primary goal in the CNN path. Under this route, the data is passed through a 60-unit, 

2-filter Conv-1D layer. The Maxpooling layer retains data quality after downsampling to reduce data 

dimensionality following the convolution layer. The following layer incorporates yet another Conv-1D 

layer, this time situated within 36 units. Flatten layer data continues from last layer. The Rectified Linear 

Unit (ReLU) energizes each and every one of the constituent parts. For the LSTM path to pick up on 

data's long-term dependencies, data must first pass through a flatten layer before it can begin to interact 

with the network. Data is prepared to be input into the LSTM layer after it has passed through the flatten 

layer. An LSTM layer training on a ReLU activation function with 48 units.The fully connected layer is 

ready to receive processed data after it has passed through the LSTM and CNN pathways. The two paths 

are completely unconnected, as we have already established. Thus, in order to prepare the data for 

prediction, the outputs are pooled in a merge layer. To learn the long-dependency within the output data 

from two pathways, we feed the output of one dense layer into another, and then we mix the data and 

feed it into an LSTM layer with 280 units and a ReLU activation function. Then, 40% of the total goes 

toward preventing overfitting via a dropout layer. With the help of two more dense layers, the data is 

ready for the final forecast. Each thick layer has its own unique number of units because this model is 

attempting to predict two types of data over separate time horizons. But what the sigmoid function 

actually does is turn on all of the units in the linked circuit. The unit count of the LSTM-Dense path can 

vary because the PLCNet model needs to be validated across different time horizons. Depending on the 

goal of the prediction, the figure indicates that the quantity of data in each batch might change. The 

quantity of look-back steps, in its simplest form, changes over time horizons. After the look back 

number is chosen, load data batches of the same size are generated. Assuming a look-back step count of 

25, the first batch will have data points 0–24, the second batch will contain data points 1–25, the third 

batch will contain data points 2–26, and so forth. The target data may also change as a function of the 

prediction horizon. 

 

2) CNN: 

A big family of ANNs created to extract features from input data are CNNs. Their wide application 

across numerous disciplines is a result of their versatility in handling data with different 

dimensionalities. As an example, it is well-known that two- and three-dimensional CNNs are powerful 

networks for computer vision, picture processing, and classification.Furthermore, they have recently 

discovered additional applications in fields like load forecasting, medical, speech recognition, and 

Natural Language Processing (NLP). Problems may develop if CNN networks are used with load 

profiles that already differ. The nuances of human behavior, workdays, times, and weather conditions 

have a profound impact on load profiles. To learn all of its parameters, CNN need vast volumes of input 

data[25]. This allows them to bypass the complexity of load profiles.From a strictly mathematical 

standpoint, equation 12 shows that convolution is the building block of CNNs. If you plug in 𝑟 and 𝑀 

into equation 12, you get 𝑀 as the result. Also, 𝑢 is the symbol for the kernel. The 𝑏-th output can be 

obtained by following these steps: 

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com   ●   Email: editor@ijfmr.com 

 

IJFMR240141303 Volume 6, Issue 1, January-February 2024 8 

 

                               𝑀(𝑏) =∑ 𝑟(𝑏 − 𝑙)𝑢(𝑙)
𝑏,𝑙

                (12) 

 

When 𝑙is between 0 andℎ − 1, 𝑀 is changed such that it has 𝑝 − ℎ + 1 dimensions, where n is the input 

dimension.The kernel and filter are convolved in the convolution procedure, and the outcome is added to 

a bias term. This arithmetic procedure is finished when the feature map is finished. Equations (13) and 

(14), which show the complete convolution process in ANNs, are: 

 

𝑀𝑏𝑙
𝑦
= 𝑠𝑢𝑚(ℎ𝑦⊛𝑟𝑎𝑏𝑙) + 𝑖𝑦                     (13) 

𝑎𝑦 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑀𝑦)                      (14) 

 

Here are the key points: 𝑀𝑦  stands for the output, 𝑦 for the 𝑦-th feature maps, 𝑏 𝑎𝑛𝑑 𝑙 for the filter 

steps, 𝑟𝑎𝑏𝑙 for the filter matrix, ℎ𝑦 for the kernel matrix, 𝑖𝑦 for the bias term, and f m for the activation 

function output. Equation 13 shows the convolution operation formula, and equation 14 shows the 

activation function for the 𝑦-th output. 

 

IV. RESULT AND DISCUSSION 

Garment manufacturers have resorted to aggregate planning as a means of optimizing profitability by 

determining the optimal level of sales growth relative to production cost reduction. In order to respond 

to changes in demand, smaller garment makers often employ what is known as the "chase strategy," 

which entails regularly adjusting production rates. However, without precise demand estimates and 

careful production planning, this method does not take into consideration the unexpected demand, which 

increases the likelihood of product shortages and unmet customer requests. 

 

 

Fig. 2. Learning Curve for Different Methods 

The graphs below show the three models' learning curves. The validation set's learning curve is shown 

by the olive line and the blue line, respectively. The learning curves for the CNN model are plotted in 

Figure 2. 
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TABLE I.  MODEL PERFORMANCE(%) 

Models RMSE 
Cross 

Validation 

CNN 0.8712 0.8871 

LSTM 0.8924 0.9054 

Parallel 

LSTM-

CNN 

0.9216 0.9352 

 

Using root-mean-squared error (RMSE), it assessed how well each of the three methods predicted. In the 

introductory section, to discussed the performance measures and how they were implemented. Table I's 

data makes the case for Parallel LSTM-CNN as the best model. Conversely, CNN performs better than 

LSTM. 

 

 

Fig. 3. Deviation in Parallel LSTM-CNN 

The reason behind the particular material's forecast deviation in this investigation is discussed in the 

analysis. The forecast metric unique to each material is used to identify deviating materials. Three 

models are used to create plots of the forecast deviation for a particular material. Figure 3 shows the 

deviation graph for the CNN-LSTM model. 
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Fig. 4. Convergence Rate 

When compared to the outcomes of CNN and LSTM, Parallel LSTM-CNN performs better because to 

exponential crossover between neighboring decision variables. LSTM and Parallel LSTM-CNN have 

consistently demonstrated a capacity to advance, but Fig. 4 shows that CNN has not improved since the 

beginning of the iteration process. 

 

V. CONCLUSION 

Although demand forecast information has been extensively studied in the inventory literature, it has 

received little attention when it comes to production planning. By combining concepts from forecast 

evolution and inventory theory, this paper tackles the problem of planning work releases into a 

manufacturing facility while dealing with stochastic demand.The data preparation stage includes data 

transformation and the imputation of missing variables. Feature selection uses a strong GOA algorithm 

to find the best features from historical data. The Parallel LSTM-CNN approach is used to train the 

model. The accuracy of the suggested technique consistently beats that of the CNN and LSTM models 

(96.52 percent). 
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