

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Training Needs of the National Agricultural Research System Scientist of Bangladesh

M. Harunur Rashid¹, M. Abul Kashem², Hasan Mahmud³

¹Bangladesh Agricultural Research Council (BARC), ²Bangladesh Agricultural University, ³Project Implementation Unit-BARC, NATP-2, BARC

Abstract

Knowledge, skills and attitude are components for increasing the job efficiency and performances of the employees for increasing productivity in an organization that can achieve through training. Scientist requires knowledge, abilities and skills for better performance that can identified through training need assessment, which is lacking in National Agricultural Research System (NARS) in Bangladesh. Assessing training needs through proper methods is of paramount importance in this regard. Agricultural researches mainly conducted by the researchers of the 13 national research institutes work under the coordination of the Bangladesh Agricultural Council (BARC). The objective of the present study was to identify the types of training needs for the NARS scientists of mono-crop and multi-crop organizations. The empirical data were collected from 25 September to 01 November 2022 from the individuals through online survey and face to face sessions on the training need assessments (TNAs) in each of the NARS institutes. During the TNA sessions, job and task analyses exercised, and skill-gap analyses conducted to identify the types of training required for the scientists. The present article highlighted the training needs which are significant to design training programs in achieving scientist's efficiency, and lead to achieve objectives of the organizations.

Keywords: Training Requirement, Scientists, Agricultural Research, Job And Task Analysis, Skill-Gap Analysis

1. Introduction

Human resources serve the needs of organizations with their up-to-date expertise. In the present radical technological changes efficient workforce is urgently needed. It is realized that employee expertise is meaningless unless an organization can develop it such a ways that respond to the organizational needs (Lacsamana et al., 2018). Any organization wants to train and develop its workforce should first learn how to properly identify and assess training needs which is the single most important thing that helps organizers to address the gaps between the existing training and training which will be required in the future. Effective training or development depends on knowing what is required - for the individual, the department and the organization as a whole.

Simply throwing training at individuals may miss priority needs, or even cover areas that are not essential. Training Need Assessment enables organizations to channel resources into the areas where they will contribute the most to employee development, enhancing morale and organizational performance (Bansal and Tripathi, 2017).

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

In Bangladesh, Agricultural research is conducted mainly in 13 research institutes under the National Agricultural Research System (NARS) coordinated by the Bangladesh Agricultural Research Council (BARC). The NARS institutes working under the umbrella of BARC are Bangladesh Agricultural Research Institute (BARI), Bangladesh Rice Research Institute (BRRI), Bangladesh Jute Research Institute (BJRI), Bangladesh Institute of Nuclear Agriculture (BINA), Bangladesh Sugarcrop Research Institute (BSRI), Bangladesh Wheat and Maize Research Institute (BWMRI), Soil Resources Development Institute (SRDI), Bangladesh Tea Research Institute (BTRI), Bangladesh Forest Research Institute (BFRI), Cotton Development Board (CDB), Bangladesh Sericulture Research and Training Institute (BSRTI), Bangladesh Fisheries Research Institute (BFRI) and Bangladesh Livestock Research Institute (BLRI). Research on crop varieties are conducted by 10 commodity based research institutes except BARI and BINA, while there are separate institutes for conducting research for livestock, fisheries and forestry. Each of these research institutes has developed a considerable number of technologies. The institutes under NARS have so far developed 655 high yielding varieties and 591 advanced technologies since 2009 (Rashid, et al., 2023). A considerable progress has also been made in case of digitalization in agriculture. The notable agricultural digitalization are: mobile apps of agricultural technology, community rural radio, agricultural call center, agri-website, e-book, ICT lab and agricultural information (e.g. kiosk). Print media, radio and television are working as co-actors of these activities. However, while narrating the 100 years of agricultural development in Bangladesh Bohktiar et al. (2021) have identified the major emerging challenges in agriculture are: i) reduction of cultivable lands and natural resources, ii) soil degradation, iii) limitations of agro-processing industries, iv) narrowing diversity of agricultural production, v) shortage of agricultural labourer, vi) climate change impacts, vii) skill gap in scientists and academicians in agricultural research and education. Rahman (2017) has also identified the following upcoming challenges in agricultural sector: i) increasing agricultural production through sustainable use of resources, ii) promoting agricultural research for enhancing productivity, iii) commercialization of agriculture, iv) sustaining self-sufficiency in rice production, v) diversification towards high value crops, vi) farm mechanization, vii) overcoming the socioeconomic constraints, viii) managing open water fisheries, ix) sustainable development of shrimp farming, x) conserving marine fishery resources and expanding marine fishing zone, xi) developing and preserving improved breeds of livestock, xii) conservation of forest resources. In order to cope with the emerging challenges in agricultural sector, the researchers working under the NARS need rigorous training on various aspects of agriculture for conducting need-based research to generate appropriate technologies for increasing productivity for sustainable agricultural development.

The NARS institutes have been running with 1,722 scientists since 2022 but with shortage of 842 scientists compared to the approved position of 2,564 scientists indicating significant vacancies (32.8%). Almost half of the NARS institutes viz., BWMRI, SRDI, BFRI- Forest, CDB, BSRTI and BFRI-Fisheries have been suffering seriously due to higher vacancies of scientists (44.3%, 50.4%, 58.9%, 69.2%, 75% and 44.4%, respectively) compared to the other institutes. Across the position, vacancies were significant in the level of Scientific Officer (40.7%) who are the frontline researchers (Rashid et al., 2023). The vacancies often increased workload to the onboard scientists. The overall shortage of scientists in NARS institutes due to vacancies could be a big challenge for technology development to make the country self-sufficient in the deficit areas of agricultural production and continue maintaining the self-sufficiency and surplus in the production areas being achieved. Therefore, existing scientists are to be trained appropriately to make scientists more efficient.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Skilled and efficient human resources are a prerequisite to meet the requirements of NARS institutes. Training is one of the methods of employee's development which is the ideal approach for preparing employees with certain skills or giving them the ability to fill the gaps in their efficiency (Shree, 2017). The more training provided to the researcher, the further enhanced skills and capabilities, and the more advantages reflected back to the organization. Thus training can be considered as a way to improve their efficiency through the systematic acquisition of knowledge and skills, and improving on existing expertise to change researcher's behaviour (Ibrahim et al., 2017; Nazli et al., 2014). Training Needs Analysis (TNA) provides information about the current researchers' efficiency level, the skill gap areas to be minimized and the ways in which this might best be achieved (Denby, 2010). Training need assessment is urgent to develop a futuristic human resource development program. Hence, the present study was undertaken to identify the training needs of the scientists working in the NARS of Bangladesh.

2. Theoretical background

Training need can be considered a condition in which there is a difference between "what is" and "what should be". The difference can be in terms of knowledge, skills or attitudes that trainees need to more effectively perform their jobs (Swanson et al., 1997). A need assessment is a method of identifying this gap. Hence, training need assessment is the process of identifying training intervention(s) that would address a performance problem. It indicates what the training should focus. In other words, it guides the formulation of training objectives and the selection of training activity content. Prior to identify the discrepancy or gap it is necessary to determine the cause of the discrepancy. This discrepancy has been stated in a form as follows:

Through training needs assessment, the existing activity, training contents and methods are also evaluated for improved planning. This can be shown as below:

The training needs assessment (TNA) process can be divided into three distinct analytical phases:

- 1. Job analysis
- 2. Task analysis
- 3. Knowledge and skill-gap analysis

Job analysis is a method of determining major areas of tasks where training may be needed. It involves the dissecting of a job into its component events. This analysis allows a trainer to better understand what an employee does in an organization. In doing job analysis (a) identifying activity areas and (b) task breakdown or division of activity areas into specific tasks are determined. A job analysis involves dissecting a job or major work event into its component parts. Jobs usually include a number of different general activity areas. Each activity area consists of a number of specific tasks which must be performed. Analysis of each specific task identifies a number of actions required to complete it. Analysis of each action identifies a number of

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

individual steps. After the component parts have been identified it is necessary to determine the frequency, relative importance and learning difficulty for each component which has been identified. One can systematically work through this process by using a set of worksheets designed to assist documenting and analyzing each component. The worksheets can be included:

- 1. Activity Breakdown Worksheet
- 2. Task Breakdown Worksheet
- 3. Action/Step Listing Worksheet
- 4. Action Analysis Worksheet
- 5. Step Analysis Worksheet
- 6. Gap Analysis Worksheet

Knowledge, skills and attitudes are the three vital components of job performance of the employees in an organization vis-à-vis the productivity of the organization (Kashem, 2004). The interlinked components are depicted in **Figure 1.**

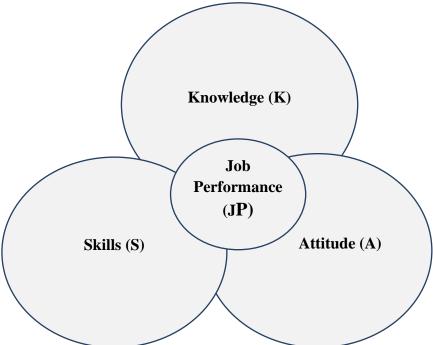


Figure 1. Integration of knowledge, skills and attitude towards increasing job efficiency and productivity

For overall agricultural development of the country, the scientists working in the agricultural research institutes (ARIs) need to have not only the latest scientific knowledge on the subject but also should have adequate skills for conducting research activities and favourbale attitude to work whole-heartedly for the institutes. Personal thinking, attitude and mindset is very important for a person to work for the organization. A person having sufficient knowledge, expertise and adequate skills may not be willing to show him as an effective and efficient researcher unless he mentally prepares him to contribute as much as he can do. Thus, without the integration of these three components: (a) knowledge, (b) skills, and (c) attitude (KSA), the researchers may not be able to contribute significantly and prove his worth in research and development (R & D) activities. It is quite likely that lower is the integration of KSA, lower would be the job performance. The individual NARS institute should take initiatives for Human Resource Development (HRD) in their own way. Anyway, apart from strong knowledge base, arrangements should

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

be made for providing training in increasing skills to the researchers in their respective disciplines/areas and motivate them in forming favourable attitudes to work for the institutes. However, prior to offer training to the researchers it is indeed essential to identify their training needs through proper training need assessment (TNA).

3. Methodology

Training needs of the scientists of NARS institutes were identified through Training Need Assessment (TNA) that were conducted in each and every NARS institute during 25 September to 01 November 2022 as shown in **Table 1**. The TNAs were conducted by using standard tools. The tools are composed of three sets of Worksheets: (a) Job Analysis Worksheets, (b) Task Analysis Worksheets, and (c) Skill-Gap Analysis worksheets. The TNA worksheets have been presented in **Table 2**. In the TNAs, nominated scientists from different disciplines of each institute participated.

Table 1. Date and time of conducting Training Needs Assessments in the NARS institutes

Sl	Name of the institute	Date	Nr. of scientists
No.		25/00/2022	participated
1.	Soil Resources Development Institute (SRDI),	25/09/2022	30
	Farmgate, Dhaka		
2.	Cotton Development Board (CDB), Farmgate, Dhaka	26/09/2022	08
3.	Bangladesh Jute Research Institute (BJRI), Manik Mia	27/09/2022	35
	Avenue, Dhaka		
4.	Bangladesh Institute of Nuclear Agriculture (BINA),	29/09/2022	39
	Mymensingh		
5.	Bangladesh Fisheries Research Institute (BFRI),	29/09/2022	30
	Mymensingh		
6.	Bangladesh Livestock Research Institute (BLRI),	04/10/2022	28
	Savar, Dhaka		
7.	Bangladesh Agricultural Research Institute (BARI),	06/10/2022	36
	Joydebpur, Gazipur		
8.	Bangladesh Rice Research Institute (BRRI),	06/10/2022	33
	Joydebpur, Gazipur		
9.	Bangladesh Wheat and Maize Research Institute	16/10/2022	26
	(BWMRI), Noshipur, Dinajpur		
10	Bangladesh Sericulture Research and Training Institute	17/10/2022	06
	(BSMRTI), Rajshahi		
11		18/10/2022	34
	Ishurdi, Pabna		
12	·	20/10/2022	09
	Sreemangal, Mouluvibazar		
13	Bangladesh Forest Research Institute (BFRI),	24/10/2022	32
	Soloshahar, Chattagram		-
14	Bangladesh Agricultural Research Council (BARC),	01/11/2022	26
	Farmgate, Dhaka	01/11/2022	20

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Sl	Name of the institute	Date	Nr. of scientists
No.			participated

Table 2. Tools used for conducting Training Need Assessment at the NARS Institutes

	Job Analysis Worksheet							
Job: SO/SSO/PSO/CSO/CS	O and Head							
Activity Area (tasks)	Frequency	Importance b	Learning	Total	Focus			
	Performed ^a		Difficulty ^c	score	(9-12)			
1.								
2.								
3.								
4.								
5.								
•••								
A: 1= Seldom	b: 1= Marginally im	portant	c: 1= Easy					
2= Occasionally	2= Moderately im	portant	2= Mode	2= Moderately difficult				
3= Weekly to monthly	3= Extremely imp	3= Very difficult						
4= Daily to weekly		4= Extre	nely diffic	cult				
5= Daily								

SO = Scientific Officer, SSO = Senior Scientific Officer, PSO = Principal Scientific Officer, CSO = Chief Scientific Officer, Head = Chief of Division (discipline)/ Regional Station

	Task Analys	is Worksheet					
Job: SO/SSO/PSO/CSO/CSO and Head							
Tasks:							
Components/Steps	Frequency	Importance b	Learning	Total	Focus		
	Performed ^a		Difficulty ^c	score	(9-12)		
1.							
2.							
3.							
4.							
5.							
•••							
a: 1= Seldom	b: 1= Margin	ally important	c: 1= Easy	•	1		
2= Occasionally	2= Modera	tely important	2= Moderately difficult				
3= Weekly to monthly	3= Extremely important		3= Very difficult				
4= Daily to weekly			4= Extren	nely diffic	cult		
5= Daily							

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

	Skill-Gap Analysis Worksheet							
Job: SO/	SSO/PSO/CSO/CSO and	Head						
Sl. No.	(Scores)	Level of	Is proficiency a	Can the problem be				
	Tasks	Proficiency	problem?	solved by training?				
		(1 2 3 4 5)*	[Y /N]	[Y /N]				
1.			[]	[]				
2.			[]	[]				
3.			[]	[]				
4.			[]	[]				
5.			[]	[]				

^{*1 =} Cannot do at all

- 2 =Can do less than half of the task
- 3 =Can do more than half but less than total
- 4 = Can do total but cannot maintain time schedule
- 5 =Can do within time schedule

Skill-Gaps of NARS scientists identified through conducting TNA

Training need assessment (TNA) sessions for identifying the skill-gaps were conducted in each of the NARS institutes including BARC. Skill-gaps analysis was determined through using Job Analysis (JA) and Task Analysis (TA) of the scientists. Job Analysis and Task Analysis scores ranged from 3 – 12; however, the job and tasks having scores ranging from 9 - 12 were considered for Skill-Gap Analysis. The scientists of all the NARS institutes identified their skill-gaps. The skill-gaps were identified based on the tasks they perform in their daily routine activities. Finally the training needs of scientists of NARS institutes were identified considering their skill-gaps (Rashid et. al., 2023).

4. Findings and Discussions

4.1 Agricultural Scientists in Bangladesh by Degrees

Agricultural research is mainly conducted by the NARS institutes under the leadership of BARC. However, apart from this, agricultural research studies are also being conducted by the higher educational institutions (especially the agricultural universities and science and technology universities). The percent distribution of agricultural researchers among the research institutes and higher agricultural educational institutions are shown in **Table 3.** The table depicts that the PhD degree holders are far higher at the educational institutions than the research institutes.

Table 4. Percent distribution of agricultural researchers in Bangladesh by degrees

	NARS institute					Researchers in Higher Agricultural			
Year		BARI		Other than BARI		Educational institutions			
	B.Sc.	M.Sc.	Ph.D.	B.Sc.	M.Sc.	Ph.D.	B.Sc.	M.Sc.	Ph.D.
2000	19	59	22	19	60	22	7	40	53
2009	15	59	27	8	64	29	4	52	44
2012	2	62	36	9	61	30	0.4	53	47

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

2016	24	44	32	4	63	33	0.8	49	52

Source: 1) Stads et al., 2019, 2) Stads et al. 2014, 3) Rahija et al., 2011

At present there are 53 public universities in Bangladesh out of which 46 are in operation and the remaining is yet to start their academic programs. The degree-wise teachers in the public universities in Bangladesh are presented in **Table 4.** The table exhibits that PhD degree holders in all the public universities is higher than the same degree holders at the research institutes. On the contrary, the MS or MSc degree holders are higher in NARS institutes compared to researchers in higher agricultural educational institutions and public universities. There is some portion of freshly recruited scientific officers with BS or B.Sc. need to go for master degree just after confirmation of their service for understanding of research and basics of research methodology.

Table 4. Degree-wise teachers in public universities in Bangladesh from 2015 to 2019

Year	PhD		Other Higher De	egrees	Excluding Higher Degrees		
		(MS/MSc)		(BS/BSc			Total
	Number	%	Number	%*	Number	%*	(Number)
2015	4299	33	1013	8	6856	57	12047
2016	4380	35	870	7	7281	58	12531
2017	4766	35	985	7	7829	58	13580
2018	5015	35	766	6	8538	59	14322
2019	5347	34	338	22	6796	44	15524

Source: UGC, 2020; * % (approx.)

Total number of teachers in the 46 public universities in Bangladesh is 15,524 in 2019 out of which 6,685 have either M.Phil. or Ph.D. degrees (UGC, 2020), i.e., about 56 per cent of the public university teachers have higher degrees.

There was a significant skill gap in NARS institutes as of June 2022 due to poor proportion of scientists with PhD degree (41.2%; 709 out of 1,722 existing scientists). Among the NARS institutes, BARI had the highest PhD holders (61.37%) and SRDI held the lowest proportion (8.33%) although BARC (95.65% PhD holders) being the apex of NARS institutes remained top of all institutes (Table 5). As per the report of Agricultural Science and Technology Indicators (ASTI), in 2016 the share of scientists with PhD degree in Nepal and Sri Lanka were 12.2 and 28.5, respectively, while in India it was 77.5 in 2018 (ASTI, 2022). Therefore, NARS institutes having 41.2% PhD holders remained far below that of ICAR in India (77.5%). For achieving this goal there will be needed PhD scholarships for the improvement of the quality of scientists by fetching advanced knowledge so that they can conduct research effectively and mentor fresh recruited scientists for maintaining self-sufficiency and even surplus in agricultural production under continued risks and vulnerabilities in future.

Table 5: Total number of scientists and % of PhD degree holders in NARS institutes in 2022

NARS Institute	Total scientists	Scientists with PhD	% of PhD degree	
	(no.)	degree	holders	
BARI	554	340	61.37	
BRRI	248	107	43.15	

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Total	1722	709	41.2
BARC	23	22	95.65
BLRI	98	40	40.82
BFRI (Fisheries)	125	20	16.00
BSRTI	5	3	60.00
CDB	8	3	37.50
BFRI (Forest)	65	15	23.08
BTRI	22	8	36.36
SRDI	204	17	8.33
BWMRI	49	25	51.02
BSRI	51	16	31.37
BINA	132	47	35.61
BJRI	138	46	33.33

4.2 Skill-Gaps of NARS scientists identified through conducting TNAs

The training needs of scientists of NARS institutes were identified considering their skill-gaps. The training needs of the different level of scientists of NARS institutes have been presented in **Table 6.** Training Need Assessment should be done hierarchical level of an organization opined by Sharma (2018). Table 6 shows that the scientists required to improve their administrative skills, some general and professional aspects which varied at different level of scientists and different institutes due to differences in mandates of institutes, skills and ability.

Table 6. Identified Training needs for the NARS scientists 6a. Training needs of the different level scientists of Bangladesh Agricultural Research Institute

	Chief Scientific Officers (CSOs)							
Score	Areas	Score	Areas					
10	Human resource management	11	Confined field trial biosafety					
10	Contain trial biosafety	11	Integrated farming systems					
9	Impact analysis	12	Hybrid research					
12	Agro-processing, value chain and	12	Climate smart and nutrition sensitive					
	marketing		agriculture					
	Principal Scientific Officers (PSOs)							
10	Projection of Demand Supply Analysis	11	Food and nutrition based biological					
			research using mammals					
12	Agro-processing, value chain and	11	Integrated farming systems					
	marketing							
12	Hybrid research	11	Morphological, bio-chemical and					
			serological study of pathogens					
12	Climate smart and nutrition sensitive	10	Molecular marker design and marker					
	agriculture		assisted selection					
11	Integrated water, nutrient, pest and	12	Sanger sequencing and analysis					
	disease management							

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

10	Biosafety and stewardship of	_	-
	transgenic crop		
	Senior Scientific	Officer	rs (SSOs)
10	Software based analysis (AI, IoT)	12	Molecular characterization of
			pathogens
12	Polymerase chain reaction (PCR)	12	Gene cloning
11	Integrated water, nutrient, pest and	11	Next generation sequencing and
	disease management		computation (Genetics and
			Bioinformatics data analysis)
11	Gene identification and	11	DNA/RNA/Protein extraction and
	Characterization		quantification
12	Artificial intelligence (AI) and internet	11	Cloud computing
	of things (IoT) application		
9	Research report writing (journal and	11	Gene mapping/genomic prediction
	popular)		
11	Stress management in major crops	9	Machine maintenance
12	Crop bioinformatics and genomics	11	Molecular data analysis
11	Captive animal management	11	Genetic transformation and gene
			editing
	Scientific Of	fficers (*
10	Sample preparation	9	Machine maintenance
10	Chemical analysis of sample	11	GIS, remote sensing and crop
			modeling
9	Data collection, analysis and report	10	Rodent capture and management
	writing		
11	Gene identification and	12	Polymerase chain reaction (PCR)
	characterization		
9	Scientific report writing	11	Molecular breeding

6b. Training needs of the different level scientists of Bangladesh Rice Research Institute

Chief Scientific Officers			
10	Genomic analysis of abiotic and biotic stress tolerance	9	Monitoring and execution
11	Seed production and dissemination	9	Financial / budget management
9	Accountability for the actions	11	Application of cutting-edge techniques in breeding like bioinformatics
	Principal Scie	ntific O	fficers
10	Genomic analysis of abiotic and biotic stress tolerance	11	Breeding value estimation for rice, SNP marker design, high throughput DNA, RNA or protein sequence analysis

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

11	Application of cutting-edge techniques	10	Genomic analysis of abiotic stresses
11	in breeding like bioinformatics	10	(QTL mapping, GWAS and genomic
	in orecasing like bioinformaties		prediction)
9	Postharvest processing and grain	9	Maintenance of the machine (LC-MS)
	storage technology		
10	Research budget preparation and	11	Rice based machinery design and
	mangement		development
9	Administrative and Financial	11	Efficient nutrient, water and energy
	management		management
11	Managing laborers in experimental	11	Cutting edge technology in farming
	farms		systems
	Senior Scien	tific Of	ficers
10	Team Building	11	Farming in meta verse
10	Fixing of the dose of insecticide	10	Equipment operation
11	Modification of developed machinery	9	Collection of rice germplasm
11	Molecular breeding	11	Integrated farming systems
10	Research on renewable energy	11	Quality of chemicals
10	Physico-chemical analysis of rice	10	Machine maintenance
10	Breeding value estimation for Rice,	10	Application of Bioinformatics tools
	SNP marker design, high throughput		(e.g., R, Python, Big data management,
	DNA, RNA or protein sequence		Linux based operating system)
	analysis		
12	Biofortification in rice	10	Review of research works and results
			for research planning
9	Storage/conservation of rice	9	Evaluation of rice germplasm
	germplasm		
9	Regeneration/multiplication of rice	9	Morphological and molecular
	germplasm		characterization of rice germplasm
	Scientific		
11	Research methodology	9	Manner and etiquette
9	Data analysis using software	10	Data interpretation and report writing
11	Sample preparation	10	Soil and plant sample analysis
10	Chemical analysis	10	Microscopic work
10	Sample isolation, preservation and	11	Surveying insect pest incidence
	inoculation		
10	Data collection by sample analysis	10	Scoring of the damage
	using machines		
9	Sample preparation	10	Data analysis for interpretation
11	Scientific report writing	10	Breeding value estimation for rice,
			SNP marker design, high throughput
			DNA, RNA or protein sequence
			analysis

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

11	Advanced line adaptive research trial	9	Experimental design and layout
	(ALART)		
10	Treatments selection and testing,	10	Breeding value estimation for rice,
	analyzing and reporting		SNP marker design, high throughput
			DNA, RNA or protein sequence
			analysis

6c. Training needs of the different level scientists of Bangladesh Jute Research Institute

	Chief Scient	tific Off	icers
10	Project development and management	10	Office administration and finance management
10	Action plan for implementing delta plan	9	Evaluate project progress and identify the problem during Project implementation
9	Adjustment and adaptation with 4IR	11	National social safety strategy work plan formulation
	Principal Scie	ntific O	fficers
11	Blending technology for natural and synthetic fiber like acrylic, rayon, wool, viscose, coir, banana, pineapple etc. by using Hopper Feeder machine.	11	Improvement of jute cuttings and low- grade jutes through microbial process
12	Environmental impact assessment	11	Project development and management
10	Automatic data monitoring	11	Production of nucleolus & breeder seed of jute and allied fibre (JAF) crops
10	Collection, characterization, evaluation, documentation and conservation of jute and allied fiber germplasm	9	Improvement of jute fiber, yarn and fabric through biochemical modification
9	Speed breeding	9	Robotic management
10	Development Project Proposal (DPP) preparation	9	Market research on JAF crops
12	Production of bio-plastic, paper and pulp from jute fiber	11	Regeneration and viability assessment of jute and allied fiber germplasm
11	Determination and improvement of jute and allied fiber quality (physical and chemical) properties	10	Breeder seed production and distribution to different seed producing agencies
10	Isolation and identification of effective jute retting bacteria	11	Nucleus seed production and maintenance
10	Molecular characterization of jute retting bacteria	11	Molecular analysis of jute and allied fiber germplasm

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

	T	•	
11	Action plan on grievance and redress	10	Bio-informatics analysis of jute
	service (GRS) work plan to mitigate		
	the problems of BJRI		
9	Optimization of plant regeneration	9	Adjustment and adaptation with 4IR
	system for <i>C. olitorius</i> for establishing		
	tissue culture plants into the field		
9	Drought management	-	-
	Senior Scien	tific Off	icers
11	Nucleus seed production and	12	Computer, router, switch, access
	maintenance		switch and network equipment
			maintenance
10	Molecular analysis of jute and allied	12	Data Management
	fiber germplasm		
9	Bio-informatics analysis of jute	12	E-filing
10	Development and modifications of	11	Sample characterization technique
	machinery and equipment for jute and		
	jute products.		
10	Adopting and implementing programs	9	Molecular characterization of jute
	for manufacturing jute fabrics of		germplasm through DNA finger
	various weave design.		printing
10	Isolation and identification of effective	10	DPP preparation
	jute retting bacteria		
	Scientific	Officer	rs
10	Experimental design	11	Data management
9	Physical analysis of raw materials	9	Scientific report writing
10	Chemical analysis of raw materials	9	Sample preparation technique
9	Identification of microorganism	10	Composite fabrication technique
10	Assay/activity test of the enzymes	11	Research Methodology

6d. Training needs of the different level scientists of Bangladesh Jute Research Institute

	Chief Scientific Officers		
12	Research project development,	11	Research strategies development for
	execution and management		sustainable crop production and food
			security
9	Leadership development	12	4IR based Agricultural research
11	National policy and plans such as	9	Quality project management
	SDGs, NIS, Perspective Plan-2041,		
	Delta Plan-2100 etc.		
9	Quality advance scientific reviewer	9	Ways to develop early career scientist
10	Qualitative evaluation and monitoring	10	Advance financial management
	of research work		practices

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

11	Quality Research Management	11	Administrative management
11	Quanty Research Management	11	
0	Effection Territor for Territor on Terri		procedures
9	Effective Training for Trainers ToT)	- 4'6' - O	-
10	Principal Scie		
10	Preparation of Development Project	11	National policy such as SDGs, NIS,
	Proposal (DPP)		Perspective Plan-2041, Delta Plan-
10		0	2100 etc.
10	Techniques for baseline study for	9	Qualified advance scientific reviewer
10	project initiation	0	
10	How to prepare PCR (Project	9	Quality evaluation and monitoring of
- 10	Completion Report)		research work
12	4IR based Agricultural research	9	Scientific paper presentation skills
	Senior Scien		1
10	Advance Data Analysis for quality	12	Estimate nutrient use efficiency using
	interpretation and presentation		¹⁵ N isotope
9	Scientific paper /report writing	11	C- sequestration studies using ¹³ C and
			¹⁵ N isotope
11	Quality laboratory analysis (molecular,	10	Water hydrology studies using ¹⁸ O and
	analytical, biochemical)		² H isotope
9	Research laboratory equipment	11	Measurement of critical limit using
	maintenance		⁶⁵ Zn and ³⁵ S
10	Use of nuclear techniques	9	Use of different modeling for scientific
			research results
11	Use of gene editing tool: CRISPR cas-	9	Scientific paper presentation skills
	9		
12	Gene sequencing	12	Use of Nanotechnology
	Scientific	Office	rs
12	Mutation breeding (basic experimental	10	Molecular technology (MAS, MABC,
	procedures and methods specially in		Mapping, QTL and gene identification)
	radiation and chemical mutation,		
	mutation mapping, tilling)		
12	Basic foundation training for newly	11	Biochemical (protein, micronutrients,
	recruited scientists		ROS, hormone) analysis of crop/plant
12	Foundation training on Nuclear	10	Abiotic stress breeding (screening
	Techniques for Agriculture		protocol/methods)
11	Statistical Data analysis	11	Hybrid breeding (basic methodology)
			techniques for cereal and horticultural
			crops.
12	Scientific report writing	11	Bioinformatics (SNP to GWS)
10	Research result / data interpretation	12	Crop improvement through genome
	and management		sequencing
12	Research methodology	12	Speed breeding

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

6e. Training needs of the different level scientists of Bangladesh Sugarcrop Research Institute

Chief Scientific Officers			
10	Policy Analysis	11	Procurement management
12	Research program related to 4IR	12	Supply chain development
11	DPP/TAPP formulation		
Principal Scientific			fficers
12	Precision Agriculture	12	Genomics, QTL mapping and
			CRISPR-Cas9 based genome editing
12	DPP/TAPP formulation	12	4IR in agriculture
10	Supply chain development	11	Research proposal reparation
Senior Scientific (ficers
11	Genomics, QTL mapping and	12	Data Management
	CRISPR-Cas9 based genome editing		
10	Research proposal preparation	11	GIS in agriculture
	Scientific Of	fficers (SOs)
10	Scientific report writing	9	Android App development
11	Genomics, QTL mapping and	12	Data Management
	CRISPR-Cas9 based genome editing		

6f. Training needs of the different level scientists of Wheat and Maize Research Institute

rision ng, storage
ng, storage
ng, storage
ed gene
ırity
operation
released

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

6g. Training needs of the different level scientists of Soil Resources Development Institute

	Chief Scientific Officers				
10	Project formulation	11	Office management		
	Principal Scientific Officers				
11	Project formulation	11	Problem soil management		
12	Instrument maintenance and trouble	12	Quality control of chemical analysis		
	shooting				
11	Lab management	9	Data interpretation		
	Senior Scientific Officers				
12	Chemical, physical and biological	10	Field survey		
	parameter of soil/fertilizer/ water/ plant				
	analysis				
10	Soil map preparation	10	Preparation of Upazila Nirdeshika		
10	Heavy metal analysis		Data interpretation		
	Scientific Officers				
9	Technical report writing	11	Field survey		
11	Data management and interpretation	10	Soil map preparation		

6h. Training needs of the different level scientists of Bangladesh Tea Research Institute

	Chief Scientific Officers				
12	Procurement work following PPR	11	Pesticide residue in tea		
9	Project management	11	Factory labor management		
11	Farm/campus security management	9	Office management		
	Principal Scie	ntific O	fficers		
11	Safe tea production and processing	10	Identification of pesticide components		
11	Crop loss assessment of the new insect pest species	10	Determination of ETL of insect pests		
12	Development of high yielding clone	10	Development of mass rearing		
			technique		
Senior Scientific Of			ficers		
10	Preliminary selection process for	9	Insect and diseases management		
	promising vegetative clones				
11	Breeding for selecting suitable parent	10	Factory machineries maintenance and		
	line		troubleshooting		
9	Data collection, compilation and	11	Field machineries maintenance and		
	analysis		troubleshooting		
12	Quantification of different components	9	Irrigation and drainage management		
	through HPLC/ UV-VIS				
	spectrophotometer				
	Scientific	Officer	rs		
11	Research methodology	10	Profitability analysis of different		
			methods		

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

10	Preparation of extracts	10	Crop (leaf) harvesting
11	Labor payment management		

6i. Training needs of the different level scientists of Bangladesh Forest Research Institute

Divisional Officers					
11	Mapping climate change and	12	Meta data analysis, bioacoustics,		
	biodiversity conservation		biotechnology and genetic analysis		
10	DNA sequencing	11	DNA/RNA extraction and		
			quantification		
11	Gene detection, expression and	10	Research planning		
	exploitation				
9	Research coordination	11	Budget execution and monitoring		
	Senior Research Officers				
11	Forest pathology	12	Identification of DNA/RNA		
11	Meta data analysis, bioacoustics,	12	Gene detection, expression and		
	biotechnology and genetic analysis		exploitation		
Research Officers					
11	Data analysis and report writing	10	Microbiology		
10	Report writing	9	Media preparation and inoculation		
10	Field data collection	12	e-file management		

6j. Training needs for the different level scientists of Cotton Development Board

	0		*		
Chief Scientific Officers					
9	Policy analysis and formulation	10	Field inspection		
	Principal Scientific Officers				
11	Transgenic cotton development	11	Stress tolerant hybrid cotton		
			development		
11	Pathological identification and	9	Gene editing		
	monitoring				
Senior Scientific Officers					
10	Stress physiology	9	Pathogenic analysis in lab		
11	Cotton based farming	10	Herbicide effect		
Scientific Officers					
10	Farmers motivation	9	Chemical analysis		
9	Fiber analysis	10	Pest identification and management		

6k.Training needs for the different level scientists of Bangladesh Sericulture Research and Training Institute

Senior Research Officers					
11 Improvement of mulberry and 11 Management of mulberry plant					
	silkworm				
9	Research management	11	Silkworm disease management		

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Research Officers				
11	Scientific report writing	11	Research methodology	
10	Office management	9	ToT training	

6k. Training needs of the different level scientists of Bangladesh Fisheries Research Institute

Chief Scientific Officers				
11	Climate smart aquaculture and mericulture	10	Domestication of wild fish	
12	Bivalves ecology, breeding, culture	10	AMR, heavy metal toxicity	
	Principal Scie	ntific O		
11	Fish stock assessment/population	10	Mapping pollution, heavy metal	
	dynamics/ remote sensing		toxicity and food safety	
11	Bio-flock technology in fish and	11	Non-conventional fisheries	
	shrimp culture			
12	Fish geonomics, phenomics and	11	Bioinformatics, data management and	
	improvement		machine learning	
11	Marine aquaculture and breeding	10	AMR and climate change	
	Senior Scien	tific Off	icers	
11	Bio-flock technology in fish and	11	Pearl culture	
	shrimp culture			
10	Tagging in aquaculture	11	Fish health management	
09	Training co-ordination and			
	management			
	Scientific Officers			
11	Tagging in aquaculture	09	Research methodology including data	
			analysis & interpretetation	

6m. Training needs of the different level scientists of Bangladesh Livestock Research Institute

Chief Scientific Officers					
10	Pollution and waste management	9	Finance management		
9	Office management	9	Leadership development		
	Principal Scientific Officers				
11	Precision animal farming	11	AMR and Vaccine development		
10	Climate smart fodder and cost	11	Livestock product processing, value		
	effective feed production		chain analysis and marketing		
11	Molecular biology	-	-		
	Senior Scien	tific Of	ficers		
11	Blood/tissue/samer sample analysis	11	Genomics, phenomics and		
			bioinformatics		
9	Software handling	11	Climate smart livestock development		
Scientific Officers					

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

11	Research methodology	11	Scientific report writing
10	Data analysis		

6n. Training needs for the different level scientists of Bangladesh Agricultural Research Council

	Chief Scientific Officers				
10	Office management	11	Improvement of research activities of		
			NARS institutes		
9	Research recommendation preparation	11	Genomics, phenomics &		
			bioinformatics		
12	Feedback in action	10	Preparation of MoU		
11	Monitoring research activities	11	Project Management		
10	Evaluation of technologies	11	Training need assessment for local and		
			overseas training		
11	Evaluation of projects	12	Good governance in agriculture		
10	Policy brief preparation	11	Scientific report writing		
11	Research need identification	10	Policy updating		
11	Research management	9	Capacity development for acting as		
			resource person		
11	DPP preparation	10	Action plan preparation		
9	Budget preparation and allocation	11	PCR preparation		
	Principal /Senior	Scientif	ic Officers		
11	Research need assessment	9	Skill in recommendation to action for		
			ATECC meeting		
9	Research prioritization	10	Preparation of training module		
10	Research methodology	10	Impact analysis of transferred		
			technology		
10	Concept note preparation	10	Knowledge management		
9	Log frame and theory of change	11	Climate smart agriculture		
9	Budget preparation	9	Sample analysis, field trial		
10	DPP preparation	10	Project implementation		
9	Research coordination	11	Policy document preparation		
10	Preparation of policy brief	10	Input for foreign policy		
10	MoU preparation	10	Conduction of meeting/seminar/		
			workshop for policy formulation		
10	Bilateral meeting conduction and input	9	Coordination of sample analysis and		
	support		field trial.		
10	Consulting support to service provider	9	Event management in research		
11	Modern biotechnological techniques in	10	Opinion and feedback collection		
	crops, livestock and fisheries				

Score range: 9-12, indicating low to high priority of training needs

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

5. Conclusions

The training needs of the each of the NARS institutes have been identified with the present study. The institutes individually or BARC as a whole can make a road map for conducting training on the identified skill gap areas. However, based on the findings some recommendations are presented below:

- 1. HRD Plan at institute level and implementation strategy: Each of the NARS institutes should have its own strategic plan for HRD. Human resource development plans for the scientists as well as for other managerial staff (supporting staff) should be developed and maintained at the NARS institutes. After thorough TNA (Training Need Assessment) analysis, regular skill-based training should be offered to the scientists. The training should be followed by the feedback and impact studies in order to make the future training programs more fruitful and effective.
- 2. Research Studies on institutional HRD plan: In order to make the NARS institutes more dynamic, active and productive, research studies on the internal resource management, increasing managerial abilities, capacity building, and leadership development, team building among the scientists, internal conflicts, and conflict resolution are required. Some of the NARS institutes are now suffering due to weak leadership, inadequate managerial ability and lack of teamwork spirit. Training programs need to be strengthened in order to address and mitigate the burning issues.
- 3. Local and overseas training: Strategic and common training for all the institutes such as Post Doc., PhD, can be organized by the BARC. The responsibilities of training on advance sciences can also be shouldered by the BARC. The sector specific training should be conducted by the NARIs.
- 4. Collaboration, networking with international community and private sector: For human resource development at the research institutes, team work with international partnership, private sector participation, and collaborative research with international centers are required. Through these practices the scientists would get more scope to improve their knowledge base and skills and would get a unique opportunity to build their professional career towards desired destination.
- 5. Implication of present study: Needs of training (short, medium and long) of all the NARS institutes identified from the individual scientists and skill-gap analyses by the scientists themselves. Hence, for any future training program, these aspects of training should duly be considered for implementation by the concerned authority.

Acknowledgements

The authors are grateful to the Executive Chairman, BARC for arranging the financial assistance of this study through PIU-BARC, NATP-2 funded by the IDA-World Bank and IFAD. The authors also gratefully acknowledge the help and cordial cooperation received from the Director Generals/Executive Director, Directors and scientists of the NARS institutes in materializing this study.

Conflicts of Interest

The authors declare no conflict of interest

References

- 1. ASTI, 2022. Agricultural Science and Technology Indicators. AST Database. International Food Policy Research Institute. http://www.asti.cgiar.org/
- 2. Bansal, A. and Tripathi, J. P. 2017. A literature review on training need analysis. IOSR Journal of Business and Management, 19 (10): 50-56.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

- 3. Bokhtiar, S., Samsuzzaman, S. and Biswas, J.K. 2021. 100 Years of Agricultural Development in Bangladesh. Bangladesh Agricultural Research Council. New Airport Road, Farmgate Dhaka-1215.
- 4. Denby, S. 2010. The importance of training needs analysis. Industrial and Commercial Training, 42(3):147-150.
- 5. Ibrahim, R., Boerhannoeddin, A., Bakare, K.K. 2017. The effect of soft skills and training methodology on employee performance. European Journal of Training and Development, 41(4):388-406.
- 6. Kashem, M. A. 2004. Fundamentals of Extension Education. Mymensingh, Bangladesh: Lima Printing Press.
- 7. Lacsamana, R.M., Portugal, L. and Reyes, E.F.D, 2018. Learning needs assessment of non-teaching personnel as input to human resource development plan. Asia Pacific Journal of Education, Arts and Sciences, 5(3): 27-35.
- 8. Nazli, N.N.N., Sipon, S., Radzi, H.M. 2014. Analysis of training needs in disaster preparedness. *Procedia Social and Behavioral Sciences*, 140: 576-580.
- 9. Rahija, M., S.M.M. Hossain, M. M. Rahman and G. Stads. 2011. Bangladesh: Recent Developments in Public Agricultural Research. Agricultural Science and Technology Indicators. Country Note: December, 2011.
- 10. Rahman, 2017. Role of Agriculture in Bangladesh Economy. International Journal of Business and Management Invention, 6(7):36-46.
- 11. Rashid, M.H., Bokhtiar, S.M. Kashem, M. A. 2023. Human Resource Development Plan for National Agricultural Research System (NARS): 2023-2041. National Agricultural Technology Project (NATP-2), Bangladesh Agricultural Research Council (BARC), Farmgate, Dhaka.
- 12. Sharma, R. 2018. A study on training need analysis of employees. Amity Journal of Training and Development, 3(1): 22-35.
- 13. Shree, S. 2017. Investigating training through the lens of dramatic possibilities, *Industrial and Commercial Training*, 49(4):157-163.
- 14. Stads, G., Rahman, M. M., Nin-Pratt, A. and Gao, L. 2019. Bangladesh: Agricultural Science & Technology Country Brief. July 2019.
- 15. Stads, G., Rahman, M. M. and Gao. L. 2014. Bangladesh: Key Indicators, 2000 2012. Agricultural R&D Factsheet, December, 2014. Agricultural Science and Technology Indicators (ASTI).
- 16. Swanson, B. E., Bentz, R. P. and Sofranko. A. J. 1997. Improving Agricultural Extension: A Reference Manual. Rome: Food and Agriculture Organization of the United Nations.
- 17. UGC.2020. *46th Annual Report (Executive Summary)*. University Grants Commission of Bangladesh. UGC Building, Plot # E-18/A, Agargaon Administrative Area, Sher-e-Bangla Nagar, Dhaka-1207.