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Abstract 

Let 𝐺 be a connected simple graph. A subset 𝑆 of 𝑉(𝐺) is a dominating set of 𝐺 if for every 𝑣 ∈

𝑉(𝐺)\𝑆, there exists 𝑥 ∈ 𝑆 such that 𝑥𝑣 ∈ 𝐸(𝐺). An identifying code of a graph 𝐺 is a dominating 

set 𝐶 ⊆ 𝑉(𝐺) such that for every 𝑣 ∈ 𝑉(𝐺), 𝑁𝐺[𝑣] ∩ 𝐶 is distinct. An identifying code of a graph 𝐺 

is an identifying secure dominating set if for each 𝑢 ∈ 𝑉(𝐺)\𝐶, there exists 𝑣 ∈ 𝐶 such that 𝑢𝑣 ∈

𝐸(𝐺) and the set (𝐶\{𝑣}) ∪ {𝑢} is a dominating set of 𝐺. The minimum cardinality of an identifying 

secure dominating set of 𝐺, denoted by 𝛾𝑠
𝐼𝐷, is called the identifying secure domination number of 𝐺. 

In this paper, the researchers initiate the study of the concept and give some important results. In 

particular, the researchers show some properties of the identifying secure dominating sets in the 

Cartesian product and lexicographic product of two connected graphs. 

 

Mathematics Subject Classification: 05C69 

 

Keywords: domination, secure, identifying, Cartesian, lexicographic 

 

1 Introduction 

Claude Berge in 1958 and Oystein Ore in 1962 [1] introduced the domination in graphs. Domination in 

graphs started to flourish in 1977 when Ernie Cockayne and Stephen Hedetniemi published an article 

"Towards a theory of domination in graphs" [2]. Accordingly, a subset 𝑆 of 𝑉(𝐺) is a dominating set of 𝐺 

if for every 𝑣 ∈ 𝑉(𝐺)\𝑆, there exists 𝑥 ∈ 𝑆 such that 𝑥𝑣 ∈ 𝐸(𝐺), that is 𝑁[𝑆] = 𝑉(𝐺). The domination 

number 𝛾(𝐺) of 𝐺 is the smallest cardinality of a dominating set of 𝐺. Some studies on domination in 

graphs were found in the papers [3 - 31]. 

One type of domination parameter is identifying code of a graph. This was studied in 1998 by Karpovsky, et al in 

their paper "On a new class of codes for identifying vertices in graphs"[32]. They observed that a graph is 

identifiable if and only if it is twin-free. An Identifying code of a graph 𝐺 is a dominating set 𝐶 ⊆ 𝑉(𝐺) such that 

for every 𝑣 ∈ 𝑉(𝐺), 𝑁𝐺[𝑣] ∩ 𝐶 is distinct. The minimum cardinality of an identifying code of 𝐺, denoted by 

𝛾𝐼𝐷(𝐺), is called the identifying code number of 𝐺. An identifying code of cardinality 𝛾𝐼𝐷(𝐺) is called a 𝛾𝐼𝐷 −

𝑠𝑒𝑡 of 𝐺. Identifying code in graphs is also found in the paper [33]. 

One of the prominent extension topics of dominating sets is secure dominating sets [34]. A dominating set 𝑆 is a 
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secure dominating set of 𝐺 if for each 𝑢 ∈ 𝑉(𝐺)\𝑆, there exists 𝑣 ∈ 𝑆 such that 𝑢𝑣 ∈ 𝐸(𝐺) and the set (𝑆\{𝑢}) ∪

{𝑢} is a dominating set of 𝐺. The minimum cardinality of a secure dominating set of 𝐺, denoted by 𝛾𝑠(𝐺), is called 

the secure domination number of 𝐺. Secure domination in graphs is studied in the papers [35 - 43]. 

The identifying code and secure domination in graphs motivate the researchers to introduce a new 

domination parameter, the identifying secure domination in graphs. An identifying code of a graph 𝐺 is 

an identifying secure dominating set 𝐶 if for each 𝑢 ∈ 𝑉(𝐺)\𝐶, there exists 𝑣 ∈ 𝐶 such that 𝑢𝑣 ∈ 𝐸(𝐺) 

and the set (𝐶\{𝑣}) ∪ {𝑢} is a dominating set of 𝐺. The minimum cardinality of a identifying secure 

dominating set of 𝐺, denoted by 𝛾𝑠
𝐼𝐷(𝐺), is called the identifying secure domination number of 𝐺. In this 

paper, the researchers initiate the study of the concept and give some important results. In particular, the 

researchers show some realization problems of identifying secure dominating sets and give some 

properties of the identifying secure dominating sets in the Cartesian product and lexicographic product of 

two connected graphs. 

For the general terminology in graph theory, readers may refer to [44]. 

 

2 Results 

From the definitions, the following result is immediate. 

 

Remark 2.1  Let G be a nontrivial connected graph of order n. Then 

   1 ≤ 𝛾(𝐺) ≤ 𝛾𝑠
𝐼𝐷(𝐺) ≤ 𝑛 − 1. 

 

Let 𝐺 be a nontrivial connected graph and  𝐶 = {𝑣} be a dominating set in 𝐺. Then, 𝑁𝐺[𝑣] ∩ 𝐶 = {𝑣} and 

𝑁𝐺[𝑥] ∩ 𝐶 = {𝑣} for all 𝑥 ∈ 𝑉(𝐺)\ {𝑣}. This implies that 𝑁𝐺[𝑣] ∩ 𝐶 is not distinct and hence 𝐶 is not an 

identifying secure dominating set of 𝐺. Thus, the following remark holds. 

 

Remark 2.2 If 𝐺 has an identifying code, then 𝛾𝑠
𝐼𝐷(𝐺) ≥ 2. 

 

Theorem 2.3 Let a, b, and n be positive integers such that 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑛 − 1. Then, there exists a 

connected nontrivial graph G with |𝑉(𝐺)| = 𝑛 such that 𝛾(𝐺) = 𝑎 and 𝛾𝑠
𝐼𝐷(𝐺) = 𝑏. 

 

Proof: Consider the following cases: 

 

 Case1. Suppose that 1 = 𝑎 < 𝑏 < 𝑛 − 1. 

 Let 𝑛 ≅ 1( mod 5) and 5𝑏 = 2𝑛 + 3. Consider the graph 𝐺 ≅ 𝐹𝑛 where 𝐹𝑛 = 𝐾1 + 𝑃𝑛−1 and 

𝑃𝑛−1 = [𝑣1, 𝑣2, … , 𝑣𝑛−1]. Then the set 𝐴 = 𝑉(𝐾1) is the 𝛾 − 𝑠𝑒𝑡 and the set 𝐵 = {𝑣5𝑘−4, 𝑣5𝑘−1: 𝑘 =

1, 2, . . . ,
𝑛−1

5
} ∪ {𝑣𝑛−1} is a 𝛾𝐼𝐷 − 𝑠𝑒𝑡 in 𝐺. Thus, |𝑉(𝐺)| = 𝑛, 𝛾(𝐺) = |𝐴| = 1 = 𝑎, and 𝛾𝑠

𝐼𝐷(𝐺) = |𝐵| =

𝑛−1

5
+

𝑛−1

5
+ 1 =

2𝑛+3

5
= 𝑏. 

 Case2. Suppose that 1 < 𝑎 = 𝑏 < 𝑛 − 1. Let 𝑛 = 2𝑎. Consider the graph 𝐺 = 𝑃𝑎 ∘ 𝐾1 (see Figure 

2.1).  
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Figure 2.1: A graph 𝐺 with 𝛾(𝐺) = 𝑎 = 𝛾𝑠
𝐼𝐷(𝐺) 

 

  

The set 𝐴 = {𝑣1, 𝑣2, … , 𝑣𝑎} is a 𝛾 − 𝑠𝑒𝑡 and 𝛾𝑠
𝐼𝐷 − 𝑠𝑒𝑡 in 𝐺. Thus, |𝑉(𝐺)| = 2𝑎 = 𝑛, 𝛾(𝐺) = |𝐴| = 𝑎, and 

𝛾𝑠
𝐼𝐷(𝐺) = 𝑎 = 𝑏. 

Case3. Suppose that 1 = 𝑎 < 𝑏 = 𝑛 − 1. Consider the graph 𝐺 ≅ 𝑆𝑛 where 𝑆𝑛 = 𝐾1 + �̅�𝑛−1 (see Figure 2.2). 

 

 

Figure 2.2: A graph 𝑮 with 𝜸(𝑮) = 𝟏 and 𝜸𝒔
𝑰𝑫(𝑮) = 𝒏 − 𝟏 

 

The set 𝐴 = {𝑣} is the 𝛾 − 𝑠𝑒𝑡 and the set 𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑛−1} is the 𝛾𝑠
𝐼𝐷 − 𝑠𝑒𝑡 in 𝐺. Thus, |𝑉(𝐺)| = 𝑛, 

𝛾(𝐺) = |𝐴| = 1 = 𝑎, and 𝛾𝑠
𝐼𝐷(𝐺) = |𝐵| = 𝑛 − 1 = 𝑏.  

 

Case4. Suppose that  1 < 𝑎 < 𝑏 = 𝑛 − 1. Consider the graph 𝐺 with 𝐶4 = [𝑣1, … , 𝑣4], vertices 

𝑥1, … , 𝑥𝑛−4, and edges 𝑣4𝑥1, … , 𝑣4𝑥𝑛−4 (see Figure 2.3).  

  

 

Figure 2.3: A graph 𝑮 with 𝜸(𝑮) = 𝟐 and 𝜸𝒔
𝑰𝑫(𝑮) = 𝒏 − 𝟏 
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The set 𝐴 = {𝑣1, 𝑣4} is the 𝛾 − 𝑠𝑒𝑡 and the set 𝐵 = {𝑣1, 𝑣2, 𝑣3, 𝑥1, 𝑥2, … , 𝑥𝑛−4} is the set 𝛾𝑠
𝐼𝐷 −

𝑠𝑒𝑡 in 𝐺. Thus, |𝑉(𝐺)| = 𝑛, 𝛾(𝐺) = |𝐴| = 2 = 𝑎, and  

 

𝛾𝑠
𝐼𝐷(𝐺) = |𝐵| = 3 + (𝑛 − 4) = 𝑛 − 1 = 𝑏. 

  

 Case5. Suppose that 1 < 𝑎 < 𝑏 < 𝑛 − 1. Let 𝑏 = 𝑛 − 4 and consider the graph 𝐺 with 𝐶6 =

[𝑣1, … , 𝑣6], vertices 𝑥1, … , 𝑥𝑛−6, and edges 𝑣6𝑥1, … , 𝑣6𝑥𝑛−6 (see Figure 2.4). 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.4: A graph 𝑮 with 𝜸(𝑮) = 𝟐, and 𝜸𝒔
𝑰𝑫(𝑮) = 𝒏 − 𝟑 

 The set 𝐴 = {𝑣3, 𝑣6} is the set 𝛾 − 𝑠𝑒𝑡 and the set 𝐵 = {𝑣2, 𝑣4, 𝑥1, 𝑥2, … , 𝑥𝑛−6} is the 𝛾𝑠
𝐼𝐷 − 𝑠𝑒𝑡 in 𝐺. 

Thus, |𝑉(𝐺)| = 𝑛, 𝛾(𝐺) = |𝐴| = 2 = 𝑎, and  

𝛾𝑠
𝐼𝐷(𝐺) = |𝐵| = 2 + (𝑛 − 6) = 𝑛 − 4 = 𝑏. 

 This completes the proofs. ∎ 

 The following corollary is an immediate consequence of Theorem 2.3. 

 

Corollary 2.4 The difference 𝛾𝑠
𝐼𝐷(𝐺) − 𝛾(𝐺) can be made arbitrarily large. 

Proof: Let 𝑛 = 5𝑘 + 1 where 𝑘 is a positive integer. By Theorem 3.3, there exists a connected graph 𝐺 such that 

𝛾𝑠
𝐼𝐷(𝐺) =

2𝑛+3

5
 and 𝛾(𝐺) = 1. As a result, we have, 𝛾𝑠

𝐼𝐷(𝐺) − 𝛾(𝐺) =
2𝑛+3

5
− 1 =

2(𝑛−1)

5
=

10𝑘

2
= 2𝑘, 

showing that 𝛾𝑠
𝐼𝐷(𝐺) − 𝛾(𝐺) can be made arbitrarily large. ∎ 

 The lexicographic product of two graphs 𝐺 and 𝐻 is the graph 𝐺[𝐻] with vertex-set 𝑉(𝐺[𝐻]) =

𝑉(𝐺) × 𝑉(𝐻) and the edge-set 𝐸(𝐺[𝐻]) satisfying the following conditions: (𝑥, 𝑢)(𝑦, 𝑣) ∈ 𝐸(𝐺[𝐻]) if and 

only if either 𝑥𝑦 ∈ 𝐸(𝐺) or 𝑥 = 𝑦 and 𝑢𝑣 ∈ 𝐸(𝐻). 

Note that a non-empty subset 𝐶 of 𝑉(𝐺[𝐻]) = 𝑉(𝐺) × 𝑉(𝐻) can be written as 𝐶 = ⋃ ({𝑥} × 𝑇𝑥)𝑥∈𝑆 , 

where 𝑆 ⊆ 𝑉(𝐺) and 𝑇𝑥 ⊆ 𝑉(𝐻) for every 𝑥 ∈ 𝑆. In the following results, we shall be using this form to denote 

any non-empty subset 𝐶 of 𝑉(𝐺[𝐻]). 

 

Theorem 2.5 Let 𝐺 = 𝑃𝑚 and 𝐻 = 𝑃𝑛 with 𝑚 ≥ 3 and 𝑛 = 2𝑘 + 3 for some positive integer 𝑘. If 𝐶 =

⋃ ({𝑥} × 𝑇𝑥)𝑥∈𝑉(𝐺)  where 𝑇𝑥 is an identifying secure domination set of 𝐻 and 𝑁𝐻[𝑢] ∩ 𝑇𝑥 ≠ 𝑇𝑥 for each 𝑥 ∈

𝑉(𝐺) and for some 𝑢 ∈ 𝑉(𝐻), then 𝐶 is an identifying secure domination set of 𝐺[𝐻]. 

Proof: Suppose that 𝐶 = ⋃ ({𝑥} × 𝑇𝑥)𝑥∈𝑉(𝐺)  where 𝑇𝑥 is an identifying secure dominating set of 𝐻 = 𝑃𝑛 =

[𝑢1, 𝑢2, … , 𝑢𝑛] for each 𝑥 ∈ 𝑉(𝐺) and 𝑁𝐻[𝑢] ∩ 𝑇𝑥 ≠ 𝑇𝑥 for some 𝑢 ∈ 𝑉(𝐻). If 𝑛 = 2𝑘 + 3 for some positive 
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integer 𝑘, then 

Case1. Consider 𝑇𝑥 = {𝑢2𝑘−1: 𝑘 = 1, 2, 3, … ,
𝑛+1

2
} for all 𝑥 ∈ 𝑉(𝐺). 

𝐶 = ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

 

= ⋃ ({𝑥} × {𝑢2𝑘−1: 𝑘 = 1, 2, 3, … ,
𝑛 + 1

2
} )

𝑥∈𝑉(𝐺)

 

= ⋃ {(𝑥, 𝑢2𝑘−1): 𝑘 = 1, 2, 3, … ,
𝑛 + 1

2
}

𝑥∈𝑉(𝐺)

 

 Let (𝑣, 𝑢) ∈ 𝑉(𝐺[𝐻])\𝐶. Then (𝑣, 𝑢) = (𝑣, 𝑢2𝑘) for any 𝑘 ∈ {1, 2, 3, … ,
𝑛−1

2
} and 𝑣 ∈ 𝑉(𝐺). Further, 

there exists (𝑣, 𝑢2𝑘−1) ∈ 𝐶 for some 𝑘 ∈ {1, 2, 3, … ,
𝑛+1

2
} such that (𝑣, 𝑢)(𝑣, 𝑢2𝑘−1) ∈ 𝐸(𝐺[𝐻]) and 

(𝐶\{(𝑣, 𝑢2𝑘−1)}) ∪ {(𝑣, 𝑢)} is a dominating set of 𝐺[𝐻]. Hence, 𝐶 is a secure dominating set of 𝐺[𝐻] be 

definition.  

 Let 𝐺 = [𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑚] and (𝑣, 𝑢), (𝑣′, 𝑢′) ∈ 𝑉(𝐺[𝐻]), (𝑣, 𝑢) ≠ (𝑣′, 𝑢′). Then 𝑣, 𝑣′ ∈ 𝑉(𝐺) =

{𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑚} and 𝑢, 𝑢′ ∈ 𝑉(𝐻) = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛}.  

 The 𝑁𝐺[𝐻][(𝑣, 𝑢)] in 𝐺[𝐻] can be expressed as one of the following.  

𝑁𝐺[𝐻][(𝑣1, 𝑢𝑗)] = {{(𝑣1, 𝑢𝑗)} ∪ ({𝑣2} × 𝑇𝑣2
)}  for 𝑗 = 1, 3, 5, … , 𝑛 

                             or {{(𝑣1, 𝑢𝑗−1)} ∪ {(𝑣1, 𝑢𝑗+1)} ∪ ({𝑣2} × 𝑇𝑣2
)}  for 𝑗 = 2, 4, 6, … , 𝑛 − 1 

𝑁𝐺[𝐻][(𝑣𝑖 , 𝑢𝑗)] = {{(𝑣𝑖 , 𝑢𝑗)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

)} 

                                               for 𝑖 ≠ 1 or 𝑖 ≠ 𝑚 and 𝑗 = 2𝑘 − 1, 𝑘 = 1, 2, … ,
𝑛 + 1

2
 

                             or {{(𝑣𝑖 , 𝑢𝑗−1)} ∪ {(𝑣𝑖 , 𝑢𝑗+1)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

)} 

                                               for 𝑖 ≠ 1, or 𝑖 ≠ 𝑚 and 𝑗 = 2𝑘, 𝑘 = 1, 2, … ,
𝑛 − 1

2
 

𝑁𝐺[𝐻][(𝑣𝑚, 𝑢𝑗)] = {{(𝑣𝑚, 𝑢𝑗)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
)} for 𝑗 = 2𝑘 − 1, 𝑘 = 1, 2, … ,

𝑛 + 1

2
 

                              or {{(𝑣𝑚, 𝑢𝑗−1)} ∪ {(𝑣𝑚, 𝑢𝑗+1)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
)}  

 for 𝑗 = 2𝑘 and 𝑘 = 1, 2, . . . ,
𝑛−1

2
 

 Subcase 1. Consider (𝑣, 𝑢) = (𝑣1, 𝑢𝑗) for some 𝑗 ∈ {1, 3, 5, … , 𝑛} and 𝑞 ∈ {2, 4, 6, … , 𝑛 − 1}. Then  

𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 = 𝑁𝐺[𝐻][(𝑣1, 𝑢𝑗)] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= {{(𝑣1, 𝑢𝑗)} ∪ ({𝑣2} × 𝑇𝑣2
)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= {{(𝑣1, 𝑢𝑗)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)} ∪ [({𝑣2} × 𝑇𝑣2
) ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] 
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= {(𝑣1, 𝑢𝑗)} ∪ ({𝑣2} × 𝑇𝑣2
) 

≠ {(𝑣1, 𝑢𝑞−1)} ∪ {(𝑣1, 𝑢𝑞+1)} ∪ ({𝑣2} × 𝑇𝑣2
) 

= {{(𝑣1, 𝑢𝑞−1)} ∪ {(𝑣1, 𝑢𝑞+1)} ∪ ({𝑣2} × 𝑇𝑣2
)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= 𝑁𝐺[𝐻][(𝑣1, 𝑢𝑞)] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 with (𝑣, 𝑢′) = (𝑣1, 𝑢𝑞) 

This implies that 𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 ≠ 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 for (𝑣, 𝑢) ≠ (𝑣, 𝑢′). 

 Subcase 2. If (𝑣, 𝑢) = (𝑣𝑚, 𝑢𝑗) for some 𝑗 ∈ {1, 3, 5, … , 𝑛} and 𝑞 ∈ {2, 4, 6, … , 𝑛 − 1}. Then 

𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 = 𝑁𝐺[𝐻][(𝑣𝑚, 𝑢𝑗)] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= {{(𝑣𝑚, 𝑢𝑗)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

≠ {(𝑣𝑚, 𝑢𝑞−1)} ∪ {(𝑣𝑚, 𝑢𝑞+1)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
) ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= 𝑁𝐺[𝐻][(𝑣𝑚, 𝑢𝑞)] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) , 𝑞 = 2, 4, 6, … , 𝑛 − 1 

= 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 with (𝑣, 𝑢′) = (𝑣𝑚, 𝑢𝑞) 

This implies that 𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 ≠ 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 for (𝑣, 𝑢) ≠ (𝑣, 𝑢′). 

 Subcase 3. If (𝑣, 𝑢) = (𝑣𝑖 , 𝑢𝑗) with 𝑖 ≠ 1 or 𝑖 ≠ 𝑚, for some 𝑗 ∈ {1, 3, 5, … , 𝑛} and 𝑞 =

{2, 4, 6, … , 𝑛 − 1}. Then 

𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 = 𝑁𝐺[𝐻][(𝑣𝑖, 𝑢𝑗)] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= {{(𝑣𝑖 , 𝑢𝑗)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

)}  ∩  ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= [{(𝑣𝑖, 𝑢𝑗)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] ∪ [({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)]

∪ [({𝑣𝑖+1} × 𝑇𝑣𝑖+1
) ∩  ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] 

= {(𝑣𝑖, 𝑢𝑗)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

) 

≠ {{(𝑣𝑖 , 𝑢𝑞−1)} ∪ {(𝑣𝑖, 𝑢𝑞+1)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

)} 
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= [{(𝑣𝑖, 𝑢𝑞−1)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] ∪ [{(𝑣𝑖, 𝑢𝑞+1)} ∩  ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)]

∪ [({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∩  ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] ∪ [({𝑣𝑖+1} × 𝑇𝑣𝑖+1
) ∩  ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] 

= {{(𝑣𝑖 , 𝑢𝑞−1)} ∪ {(𝑣𝑖, 𝑢𝑞+1)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

) }

∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= 𝑁𝐺[𝐻][(𝑣𝑖, 𝑢𝑞)] ∩  ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 with (𝑣, 𝑢′) = (𝑣1, 𝑢𝑞) for some 𝑞 ∈ {2, 4, 6, … , 𝑛 − 1} 

This implies that 𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 ≠ 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 for (𝑣, 𝑢) ≠ (𝑣, 𝑢′). 

 Thus, 𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 is distinct. Hence, 𝐶 is an identifying code of 𝐺[𝐻]. Since 𝐶 is also a secure 

dominating set of 𝐺[𝐻], it follows that 𝐶 is an identifying secure dominating set of 𝐺[𝐻]. 

Case2. Consider 𝑇𝑥 = {𝑢4𝑘−2, 𝑢4𝑘−1, 𝑢4𝑘: 𝑘 = 1, 2, 3, … ,
𝑛−1

4
} for all 𝑥 ∈ 𝑉(𝐺). 

 

𝐶 = ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

 

= ⋃ ({𝑥} × {𝑢4𝑘−2, 𝑢4𝑘−1, 𝑢4𝑘: 𝑘 = 1, 2, 3, … ,
𝑛 − 1

4
})

𝑥∈𝑉(𝐺)

 

= ⋃ {(𝑥, 𝑢4𝑘−2), (𝑥, 𝑢4𝑘−1), (𝑥, 𝑢4𝑘): 𝑘 = 1, 2, 3, … ,
𝑛 − 1

4
}

𝑥∈𝑉(𝐺)

 

Let (𝑣, 𝑢) ∈ 𝑉(𝐺[𝐻])\𝐶. Then (𝑣, 𝑢) = (𝑣, 𝑢4𝑘−3) for any 𝑘 ∈ {1, 2, 3, … ,
𝑛+3

4
} and 𝑣 ∈ 𝑉(𝐺). Further, there 

exists (𝑣, 𝑢4𝑘−2) ∈ 𝐶 for some 𝑘 ∈ {1, 2, 3, … ,
𝑛+3

4
} such that (𝑣, 𝑢)(𝑣, 𝑢4𝑘−2) ∈ 𝐸(𝐺[𝐻]) and (𝐶\

{(𝑣, 𝑢4𝑘−2)}) ∪ {(𝑣, 𝑢)} is a dominating set of 𝐺[𝐻]. Hence, 𝐶 is  a secure dominating set of 𝐺[𝐻] by definition.  

 Let 𝐺 = [𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑚] and (𝑣, 𝑢), (𝑣′, 𝑢′) ∈ 𝑉(𝐺[𝐻]), (𝑣, 𝑢) ≠ (𝑣′, 𝑢′). Then 𝑣, 𝑣′ ∈ 𝑉(𝐺) =

{𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑚} and 𝑢, 𝑢′ ∈ 𝑉(𝐻) = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛}. 

 The 𝑁𝐺[𝐻][(𝑣, 𝑢)] in 𝐺[𝐻] can be expressed as one of the following. 

(i) If (𝑣, 𝑢) = (𝑣1, 𝑢𝑗), then 

𝑁𝐺[𝐻][(𝑣1, 𝑢𝑗)] = {(𝑣1, 𝑢𝑗), (𝑣1, 𝑢𝑗+1)} ∪ ({𝑣2} × 𝑇𝑣2
)  

                                         for 𝑗 = 2,6, 10, … , 𝑛 − 3 

                            𝑜𝑟 {(𝑣1, 𝑢𝑗−1), (𝑣1, 𝑢𝑗), (𝑣1, 𝑢𝑗+1)} ∪ ({𝑣2} × 𝑇𝑣2
)  

                                         for 𝑗 = 3, 7, 11, … , 𝑛 − 2 

                            or {(𝑣1, 𝑢𝑗−1), (𝑣1, 𝑢𝑗)} ∪ ({𝑣2} × 𝑇𝑣2
) for 𝑗 = 4, 8, 12, … , 𝑛 − 1 

                            or {(𝑣1, 𝑢𝑗−1), (𝑣1, 𝑢𝑗+1)} ∪ ({𝑣2} × 𝑇𝑣2
)  
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                                         for 𝑗 = 5, 9, 13, … , 𝑛 − 4, (𝑛 ≠ 5) 

                             or {(𝑣1, 𝑢2)} ∪ ({𝑣2} × 𝑇𝑣2
) for 𝑗 = 1 

                             or {(𝑣1, 𝑢𝑛−1)} ∪ ({𝑣2} × 𝑇𝑣2
) for 𝑗 = 𝑛 

 

(ii) If (𝑣, 𝑢) = (𝑣𝑚, 𝑢𝑗), then 

𝑁𝐺[𝐻][(𝑣𝑚, 𝑢𝑗)] = {(𝑣𝑚, 𝑢𝑗+1)} ∪ ({𝑣𝑚−1} ×  𝑇𝑣𝑚−1
) for 𝑗 = 2, 6, 10, … , 𝑛 − 3 

                              or {(𝑣𝑚, 𝑢𝑗−1), (𝑣𝑚, 𝑢𝑗+1)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
)  

                                         for 𝑗 = 3, 7, 11, … , 𝑛 − 2 

                              or {(𝑣𝑚, 𝑢𝑗−1)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
) for 𝑗 = 4, 8, 12, … , 𝑛 − 1 

                              or {(𝑣𝑚, 𝑢𝑗−1), (𝑣𝑚, 𝑢𝑗+1)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
)  

                                          for 𝑗 = 5, 9, 13, … , 𝑛 − 4, (𝑛 ≠ 5) 

                            or {(𝑣𝑚, 𝑢2)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
) for 𝑗 = 1 

                            or {(𝑣𝑚, 𝑢𝑛−1)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
)for 𝑗 = 𝑛 

 

(iii) If (𝑣, 𝑢) = (𝑣𝑖 , 𝑢𝑗) with 𝑖 ≠ 1 or 𝑖 ≠ 𝑚, then 

𝑁𝐺[𝐻][(𝑣𝑖 , 𝑢𝑗)] = {(𝑣𝑖 , 𝑢𝑗+1)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

)  

                                          for 𝑗 = 2, 6, 10, … , 𝑛 − 3 

                            or {(𝑣𝑖 , 𝑢𝑗−1), (𝑣𝑖 , 𝑢𝑗), (𝑣𝑖, 𝑢𝑗+1)} ∪ ({𝑣i−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

)  

                                          for 𝑗 = 3, 7, 11, … , 𝑛 −  2 

                            or {(𝑣𝑖 , 𝑢𝑗−1), (𝑣𝑖 , 𝑢𝑗)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

)  

                                          for 𝑗 =  4, 8, 12, … , 𝑛 −  1  

                            or {(𝑣𝑖 , 𝑢𝑗−1), (𝑣𝑖 , 𝑢𝑗+1)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

)  

                                          for 𝑗 =  5, 9, 13, … , 𝑛 −  4, (𝑛 ≠ 5) 

                            or {(𝑣𝑖, 𝑢2)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

) for 𝑗 = 1 

                            or {(𝑣𝑖, 𝑢𝑛−1)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

 ) for 𝑗 = 𝑛 

Subcase 1. Consider (𝑣, 𝑢) = (𝑣1, 𝑢𝑗) for some 𝑗 ∈ {2, 6, 10, … , 𝑛 − 3} and 𝑞 ∈ {5, 9, … , 𝑛 − 4}. 

Then 

𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 = 𝑁𝐺[𝐻][(𝑣1, 𝑢𝑗)] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= {(𝑣1, 𝑢𝑗), (𝑣1, 𝑢𝑗+1)} ∪ ({𝑣2} × 𝑇𝑣2
) ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= [{(𝑣1, 𝑢𝑗)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)]        

∪ [{(𝑣1, 𝑢𝑗+1)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] ∪ [({𝑣2} × 𝑇𝑣2
) ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] 
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= {(𝑣1, 𝑢𝑗)} ∪ {(𝑣1, 𝑢𝑗+1)} ∪ ({𝑣2} × 𝑇𝑣2
)  

≠ {(𝑣1, 𝑢𝑞−1)} ∪ {(𝑣1, 𝑢𝑞+1)} ∪ ({𝑣2} × 𝑇𝑣2
) 

= {{(𝑣1, 𝑢𝑞−1)} ∪ {(𝑣1, 𝑢𝑞+1)} ∪ ({𝑣2} × 𝑇𝑣2
)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= 𝑁𝐺[𝐻][(𝑣1, 𝑢𝑞)] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

=  𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 with (𝑣, 𝑢′) = (𝑣1, 𝑢𝑞) 

This implies that 𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 ≠ 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 for (𝑣, 𝑢) ≠ (𝑣, 𝑢′). 

 Similarly, if 𝑁𝐺[𝐻][(𝑣1, 𝑢𝑗)] = {(𝑣1, 𝑢𝑗−1), (𝑣1, 𝑢𝑗), (𝑣1, 𝑢𝑗+1)} for 𝑗 = 3, 7, 11, … , 𝑛 − 2, or 

𝑁𝐺[𝐻][(𝑣1, 𝑢𝑗)] = {(𝑣1, 𝑢𝑗−1), (𝑣1, 𝑢𝑗)} ∪ ({𝑣2} × 𝑇𝑣2
) for 𝑗 = 4, 8, 12, … , 𝑛 − 1 or 𝑁𝐺[𝐻][(𝑣1, 𝑢𝑗)] =

{(𝑣1, 𝑢𝑗−1), (𝑣1, 𝑢𝑗+1)} ∪ ({𝑣2} × 𝑇𝑣2
) for 𝑗 = 5, 9, 13, … , 𝑛 − 4, (𝑛 ≠ 5), then 𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 ≠

𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 for (𝑣, 𝑢) ≠ (𝑣, 𝑢′). 

 Subcase 2. Consider (𝑣, 𝑢) = (𝑣𝑚, 𝑢𝑗) for some 𝑗 ∈ {2, 6, 10, … , 𝑛 − 3} and 𝑞 ∈ {5, 9, … , 𝑛 − 4}. 

Then  

𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 = 𝑁𝐺[𝐻][(𝑣𝑚, 𝑢𝑗)] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= {(𝑣𝑚, 𝑢𝑗), (𝑣𝑚, 𝑢𝑗+1)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
) ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= [{(𝑣𝑚, 𝑢𝑗)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] ∪ [{(𝑣𝑚, 𝑢𝑗+1)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)]

∪ [({𝑣𝑚−1} × 𝑇𝑣𝑚−1
) ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] 

= {(𝑣𝑚, 𝑢𝑗)} ∪ {(𝑣𝑚, 𝑢𝑗+1)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
) 

≠ {(𝑣𝑚, 𝑢𝑞−1)} ∪ {(𝑣𝑚, 𝑢𝑞+1)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
) 

= {{(𝑣𝑚, 𝑢𝑞−1)} ∪ {(𝑣𝑚, 𝑢𝑞+1)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= 𝑁𝐺[𝐻][(𝑣𝑚, 𝑢𝑞)] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 with (𝑣, 𝑢′) = (𝑣𝑚, 𝑢𝑞) 

This implies that 𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 ≠ 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 for (𝑣, 𝑢) ≠ (𝑣, 𝑢′).  

 Similarly, if 𝑁𝐺[𝐻][(𝑣𝑚, 𝑢𝑗)] = {(𝑣𝑚, 𝑢𝑗−1), (𝑣𝑚, 𝑢𝑗), (𝑣𝑚, 𝑢𝑗+1)} for 𝑗 = 3, 7, 11, … , 𝑛 − 2, or 

𝑁𝐺[𝐻][(𝑣𝑚, 𝑢𝑗)] = {(𝑣𝑚, 𝑢𝑗−1), (𝑣𝑚 , 𝑢𝑗)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
) for 𝑗 = 4, 8, 12, … , 𝑛 − 1 or 
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𝑁𝐺[𝐻][(𝑣𝑚, 𝑢𝑗)] = {(𝑣𝑚, 𝑢𝑗−1), (𝑣𝑚 , 𝑢𝑗+1)} ∪ ({𝑣𝑚−1} × 𝑇𝑣𝑚−1
) for 𝑗 = 5, 9, 13, … , 𝑛 − 4, (𝑛 ≠ 5), then 

𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 ≠ 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 for (𝑣, 𝑢) ≠ (𝑣, 𝑢′). 

  

 

 

Subcase 3. Consider (𝑣, 𝑢) = (𝑣𝑖 , 𝑢𝑗) for some 𝑗 ∈ {2, 6, 10, … , 𝑛 − 3} and 𝑞 ∈ {5, 9, … , 𝑛 − 4}. 

Then 

𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 = 𝑁𝐺[𝐻][(𝑣𝑖, 𝑢𝑗)] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= [{(𝑣𝑖, 𝑢𝑗), (𝑣𝑖 , 𝑢𝑗+1)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

)]] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= [{(𝑣𝑖, 𝑢𝑗)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] ∪ [{(𝑣𝑖 , 𝑢𝑗+1)} ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)]

∪ [({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] ∪ [({𝑣𝑖+1} × 𝑇𝑣𝑖+1
) ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

)] 

= {(𝑣𝑖, 𝑢𝑗)} ∪ {(𝑣𝑖, 𝑢𝑗+1)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

) 

≠ {(𝑣𝑖, 𝑢𝑞−1)} ∪ {(𝑣𝑖, 𝑢𝑞+1)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

) 

= {{(𝑣𝑖, 𝑢𝑞−1)} ∪ {(𝑣𝑖 , 𝑢𝑞+1)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

)}

∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

= 𝑁𝐺[𝐻][(𝑣𝑖, 𝑢𝑞)] ∩ ( ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

) 

                                 = 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 with (𝑣, 𝑢′) = (𝑣𝑖 , 𝑢𝑞) 

This implies that 𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 ≠ 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩ 𝐶 for (𝑣, 𝑢) ≠ (𝑣, 𝑢′). 

 Similarly, if 𝑁𝐺[𝐻][(𝑣𝑖, 𝑢𝑗)] = {(𝑣𝑖, 𝑢𝑗−1), (𝑣𝑖, 𝑢𝑗), (𝑣𝑖 , 𝑢𝑗+1)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} ×

𝑇𝑣𝑖+1
) for 𝑗 =  3, 7, 11, . . . , 𝑛 − 2, or 𝑁𝐺[𝐻][(𝑣𝑖, 𝑢𝑗)] = {(𝑣𝑖, 𝑢𝑗−1), (𝑣𝑖 , 𝑢𝑗)} ∪ ({𝑣𝑖−1} × 𝑇𝑣𝑖−1

) ∪

({𝑣𝑖+1} × 𝑇𝑣𝑖+1
) for 𝑗 =  4, 8, 12, . . . , 𝑛 –  1, or 𝑁𝐺[𝐻][(𝑣𝑖, 𝑢𝑗)] = {(𝑣𝑖, 𝑢𝑗−1), (𝑣𝑖, 𝑢𝑗+1)} ∪ ({𝑣𝑖−1} ×

𝑇𝑣𝑖−1
) ∪ ({𝑣𝑖+1} × 𝑇𝑣𝑖+1

) for 𝑗 =  5, 9, 13, . . . , 𝑛 − 4, (𝑛 ≠ 5), then 𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 ≠ 𝑁𝐺[𝐻][(𝑣, 𝑢′)] ∩

𝐶 for (𝑣, 𝑢) ≠ (𝑣, 𝑢′). 

 Thus, 𝑁𝐺[𝐻][(𝑣, 𝑢)] ∩ 𝐶 is distinct. Hence, 𝐶 is an identifying code of 𝐺[𝐻]. Since 𝐶 is also a 

secure dominating set of 𝐺[𝐻], it follows that 𝐶 is an identifying secure domination set of 𝐺[𝐻]. ∎ 

  

 The following result is an immediate consequence of Theorem 2.5. 

Corollary 2.6 Let 𝐺 = 𝑃𝑚 and 𝐻 = 𝑃𝑛 with 𝑚 ≥ 3 and 𝑛 = 2𝑘 + 3 for some positive integer 𝑘. Then 
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𝛾𝑠
𝐼𝐷(𝐺[𝐻]) ≤ 𝑚 ⋅ 𝛾𝑠

𝐼𝐷(𝐻). 

Proof: Given that 𝐺 = 𝑃𝑚 and 𝐻 = 𝑃𝑛 with 𝑚 ≥ 3 and 𝑛 = 2𝑘 + 3 for some positive integer 𝑘. Suppose 

that 𝐶 = ⋃ ({𝑥} × 𝑇𝑥)𝑥∈𝑉(𝐺)  where 𝑇𝑥 is an identifying secure dominating set of 𝐻 and 𝑁𝐻[𝑢] ∩ 𝑇𝑥 ≠ 𝑇𝑥 

for each 𝑥 ∈ 𝑉(𝐺) and for some 𝑢 ∈ 𝑉(𝐻). Then 𝐶 is an identifying secure dominating set of 𝐺[𝐻] by 

Theorem 2.5. Thus,  

𝛾𝑠
𝐼𝐷(𝐺[𝐻]) ≤ |𝐶| 

= | ⋃ ({𝑥} × 𝑇𝑥)

𝑥∈𝑉(𝐺)

| , 𝑇𝑥 ∈ 𝑉(𝐻) for all 𝑥 ∈ 𝑉(𝐺) 

= |𝑉(𝐺) × 𝑇𝑥|, 𝑇𝑥 ∈ 𝑉(𝐻) for all 𝑥 ∈ 𝑉(𝐺) 

= |𝑉(𝐺)| ⋅ |𝑇𝑥|, 𝑇𝑥 ∈ 𝑉(𝐻) for all 𝑥 ∈ 𝑉(𝐺) 

= 𝑚 ⋅ 𝛾𝑠
𝐼𝐷(𝐻). 

Hence, 𝛾𝑠
𝐼𝐷(𝐺[𝐻]) ≤ 𝑚 ⋅ 𝛾𝑠

𝐼𝐷(𝐻). ∎ 

 

3 Conclusion 

This study showed that the identifying secure domination number of a graph exists, and the 

characterization of this domination parameter resulting from the lexicographic product of two graphs was 

presented. This study will result in new research such as bounds and other binary operations of two graphs. 

Other parameters involving the identifying secure domination in graphs may also be explored. Finally, the 

characterization of an identifying secure domination in graphs and its bounds is a promising extension of 

this study. 
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