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Abstract 

Let 𝐺 be a connected simple graph and 𝐷 be a minimum dominating set of 𝐺. A dominating set 𝑆 ⊆ 

𝑉(𝐺) ∖ 𝐷 is called an inverse dominating set of 𝐺 with respect to 𝐷. An inverse dominating set 𝑆 is 

called a restrained inverse dominating set of 𝐺 if every vertex not in 𝑆 is adjacent to a vertex in 𝑆 and to 

a vertex in 𝑉(𝐺) ∖ 𝑆. The restrained inverse domination number of 𝐺, denoted by, 𝛾(−1)(𝐺), is the 

minimum cardinality of a restrained inverse dominating set of 𝐺. A restrained inverse dominating set of 
cardinality 𝛾(−1)(𝐺) is called 𝛾(−1)(𝐺) is called 𝛾(−1)-set. This study is an extension of an existing 

𝑟 𝑟 𝑟 

research on restrained inverse domination in graphs. In this paper, we characterized the restrained 

inverse domination in graphs under the lexicographic and Cartesian products of two graphs. 
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1 Introduction 

Let 𝐺 be a connected simple graph. A set 𝑆 of vertices of 𝐺 is a dominating set of 𝐺 if every vertex in 

𝑉(𝐺) ∖ 𝑆 is adjacent to some vertex in 𝑆. A minimum Let 𝐺 be a connected simple graph. A set 𝑆 of 

vertices of 𝐺 is a dominating set of 𝐺 if every vertex in 𝑉(𝐺) ∖ 𝑆 is adjacent to some vertex in 𝑆. A 

minimum dominating set in a graph 𝐺 is a dominating set of minimum cardinalities. The cardinality of a 

minimum dominating set in 𝐺 is called the domination number of 𝐺 and is denoted by 𝛾(𝐺). The 

concept of domination in graphs introduced by Claude Berge in 1958 and Oystein Ore in 1962 [1] is 
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𝑟 

currently receiving much attention in literature. Following the article of Ernie Cockayne and Stephen 

Hedetniemi [2], the domination in graphs became an area of study by many researchers [3-19]. 

 

If 𝐷 is a minimum dominating set in 𝐺, then a dominating set 𝑆 ⊆ 𝑉(𝐺) ∖ 𝐷 is called an inverse 

dominating set with respect to 𝐷. The inverse domination number, denoted by 𝛾−1(𝐺), of 𝐺 is the order 

of an inverse dominating set with minimum cardinality. The inverse domination in a graph was first 

found in the paper of Kulli [20] and studied in papers [21-29]. 

 

Another type of domination parameter is the restrained domination number in a graph. A restrained 

dominating set is defined to be a set 𝑆 ⊆ 𝑉(𝐺) where every vertex in 𝑉(𝐺) ∖ 𝑆 is adjacent to a vertex in 

𝑆 and to another vertex in 𝑉(𝐺) ∖ 𝑆. The restrained domination number of 𝐺, denoted by 𝛾𝑟(𝐺), is the 

smallest cardinality of a restrained dominating set of 𝐺. This was introduced by Telle and Proskurowski 

[30] indirectly as a vertex partitioning problem. One practical application of restrained domination is 

that of prisoners and guards. Here, each vertex not in the restrained dominating set corresponds to a 

position of a prisoner, and every vertex in the restrained dominating set corresponds to a position of a 

guard. To effect security, each prisoner’s position is observed by a guard’s position. To protect the rights 

of prisoners, each prisoner’s position is seen by at least one other prisoner’s position. To be cost 

effective, it is desirable to place as few guards as possible. Some studies on restrained domination in 

graphs can be found in papers [31-38]. 

 

A graph 𝐺 is a pair (𝑉(𝐺), 𝐸(𝐺)), where 𝑉(𝐺) is a nonempty finite set whose elements are called 

vertices and 𝐸(𝐺) is a set of unordered pairs of distinct elements of 𝑉(𝐺). The elements of 𝐸(𝐺) are 

called edges of the graph 𝐺. The number of vertices in 𝐺 is called the order of 𝐺 and the number of 

edges is called the size of 𝐺. For more graph-theoretical concepts, the readers may refer to paper [39]. 

 

An inverse dominating set 𝑆 is called a restrained inverse dominating set of 𝐺 if every vertex not in 𝑆 is 

adjacent to a vertex in 𝑆 and to a vertex in 𝑉(𝐺) ∖ 𝑆. The restrained inverse domination number of 𝐺, 

denoted by 𝛾(−1)(𝐺), is the minimum cardinality of a restrained inverse dominating set of 𝐺. A 
restrained inverse dominating set of cardinality 𝛾(−1)(𝐺) is called 𝛾(−1)-set. Following the results 

𝑟 𝑟 

presented in [40], the researchers extended the study by investigating other binary graph operations. In 

this paper, the researchers characterized the restrained inverse dominating set of the lexicographic and 

Cartesian products of two graphs. 

 

2 Results 

Definition 2.1 The lexicographic products of two graphs 𝐺 and 𝐻, denoted by 𝐺[𝐻], is the graph with 

vertex-set 𝑉(𝐺[𝐻] = 𝑉(𝐺) × 𝑉(𝐻) and edge-set 𝐸(𝐺[𝐻])  satisfying the following conditions: 

(𝑢1, 𝑣1)(𝑢2, 𝑣2) ∈ 𝐸(𝐺[𝐻]) if either 𝑢1𝑢2 ∈ 𝐸(𝐺) or 𝑢1 = 𝑢2 and 𝑣1𝑣2 ∈ 𝐸(𝐻). 

 

Remark 2.2 Let 𝐺 = 𝑃𝑚, 𝑚 ≥ 2 and 𝐻 = 𝐾2. The nonempty set 𝑋 × {𝑢} is a minimum dominating set of 

𝐺[𝐻] if 𝑋 is a minimum dominating set of 𝐺 and 𝑢 ∈ 𝑉(𝐻). 
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The following result shows a property of restrained inverse dominating set of the lexicographic product 

of two graphs. 

 

Theorem 2.3 Let 𝐺 = 𝑃𝑚, 𝑚 ≥ 2 and 𝐻 = 𝐾2. Then 𝑆 ⊆ 𝑉(𝐺[𝐻]) ∖ 𝐷 is a restrained inverse 

dominating set of 𝐺[𝐻] with respect to a minimum dominating set 𝐷 of 𝐺[𝐻], if 𝐷 = 𝐴 × {𝑢} where 𝐴 is 

a minimum dominating set of 𝐺, 𝑢 ∈ 𝑉(𝐻) and one of the following is satisfied. 

(i) 𝑆 = 𝑆′ × {𝑢} where 𝑆′ ⊆ 𝑉(𝐺) ∖ 𝐴, and 𝑆′is a dominating set of 𝐺. 

(ii) 𝑆 = 𝑆′ × {𝑢′} where 𝑢′ ∈ 𝑉(𝐻) ∖ {𝑢}, 𝑆′ ⊆ 𝑉(𝐺), and 𝑆′ is a dominating set of 𝐺. 

(iii)𝑆 = (𝑆′ × {𝑢}) 𝖴 (𝑆′′ × {𝑢′}) where 𝑢′ ∈ 𝑉(𝐻) ∖ {𝑢}, 𝑆′ ⊆ 𝑉(𝐺) ∖ 𝐴 is a dominating set of 𝐺, 

and ∅ ⊆ 𝑆′′ ⊆ 𝑆′. 

 

Proof: Let 𝐺 = [𝑣1, 𝑣2, … , 𝑣𝑚] and 𝐻 = [𝑢1, 𝑢2]. If 𝐷 = 𝐴 × {𝑢} where 𝐴 is a minimum dominating set 

of 𝐺, 𝑢 ∈ 𝑉(𝐻), then 𝐷 is a minimum dominating set of 𝐺[𝐻] by Remark 2.2. 

Suppose that statement (i) is satisfied. Then 𝑆 = 𝑆′ × {𝑢} where 𝑢 ∈ 𝑉(𝐻), 𝑆′ ⊆ 𝑉(𝐺) ∖ 𝐴, and 

𝑆′ is a dominating set of 𝐺. Since 𝑆′ is a dominating set of 𝐺, 𝑆 = 𝑆′ × {𝑢}, is a dominating set of 𝐺[𝐻] 

by Remark 2.2. Since 

𝑉(𝐺[𝐻]) ∖ 𝐷 = 𝑉(𝐺[𝐻]) ∖ (𝐴 × {𝑢}), 𝑢 ∈ 𝑉(𝐻) 

= [(𝑉(𝐺) ∖ 𝐴) × {𝑢1}] 𝖴 [𝑉(𝐺) × {𝑢2}], 𝑤ℎ𝑒𝑟𝑒 𝐻 = [𝑢1, 𝑢2], 

it follows  that  (𝑉(𝐺) ∖ 𝐴) × {𝑢1} ⊂ 𝑉(𝐺[𝐻]) ∖ 𝐷,  that  is,  𝑆 = 𝑆′ × {𝑢1} ⊆ (𝑉(𝐺) ∖ 𝐴) × {𝑢1} ⊂ 

𝑉(𝐺[𝐻]) ∖ 𝐷. Thus, 𝑆 ⊂ 𝑉(𝐺[𝐻]) ∖ 𝐷 is an inverse dominating set of 𝐺[𝐻] with respect to 𝐷. 

Note that 𝑢 ∈ 𝑉(𝐻) = {𝑢1, 𝑢2} and 𝑆′ is a dominating set of 𝐺 implies that for every 𝑣 ∈ 𝑉(𝐺) ∖ 

𝑆′, there exists 𝑣′ ∈ 𝑆′ such that 𝑣𝑣′ ∈ 𝐸(𝐺). Further, 𝑉(𝐺[𝐻]) ∖ 𝑆 = 𝑉(𝐺[𝐻]) ∖ (𝑆′ × {𝑢}) = 

[(𝑉(𝐺) ∖ 𝑆′) × {𝑢1}] 𝖴 [𝑉(𝐺) × {𝑢2}] where 𝑆 = 𝑆′ × {𝑢1} ⊆ (𝑉(𝐺) ∖ 𝐴) × {𝑢1}. Now, let (𝑣, 𝑢) ∈ 

𝑉(𝐺[𝐻]) ∖ 𝑆. 

Case1.  If 𝑢 = 𝑢1,  then  (𝑣, 𝑢1) ∈ (𝑉(𝐺) ∖ 𝑆′) × {𝑢1}.  There  exists  (𝑣′, 𝑢1) ∈ 𝑆  such  that 

(𝑣, 𝑢1)(𝑣′, 𝑢1) ∈ 𝐸(𝐺[𝐻]) and another (𝑣, 𝑢2) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that (𝑣, 𝑢1)(𝑣, 𝑢2) ∈ 𝐸(𝐺[𝐻]). 

Case2. If 𝑢 = 𝑢2, then (𝑣, 𝑢2) ∈ 𝑉(𝐺) × {𝑢2}. There exists (𝑣′, 𝑢1) ∈ 𝑆 such that 

(𝑣, 𝑢2)(𝑣′, 𝑢1) ∈ 𝐸(𝐺[𝐻]) and another (𝑣′, 𝑢2) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that (𝑣, 𝑢2)(𝑣′, 𝑢2) ∈ 𝐸(𝐺[𝐻]). 

In any case, 𝑆 is a restrained dominating set of 𝐺[𝐻]. Accordingly, 𝑆 is a restrained inverse 

dominating set of 𝐺[𝐻]. 

Suppose that statement (ii) is satisfied. Then 𝑆 = 𝑆′ × {𝑢′} where 𝑢′ ∈ 𝑉(𝐻) ∖ {𝑢}, 𝑆′ ⊆ 𝑉(𝐺), 

and 𝑆′ is a dominating set of 𝐺. Since 𝑆′ is a dominating set of 𝐺, 𝑆 = 𝑆′ × {𝑢′} is a dominating set of 

𝐺[𝐻] by Remark 2.2. Since 

𝑉(𝐺[𝐻]) ∖ 𝐷 = 𝑉(𝐺[𝐻]) ∖ (𝐴 × {𝑢}), 𝑢 ∈ 𝑉(𝐻) 

= [(𝑉(𝐺) ∖ 𝐴) × {𝑢1}] 𝖴 [𝑉(𝐺) × {𝑢2}] 𝑤ℎ𝑒𝑟𝑒 𝐻 = [𝑢1, 𝑢2], 

it follows  that 𝑉(𝐺) × {𝑢2} ⊂ 𝑉(𝐺[𝐻]) ∖ 𝐷,  that  is,  𝑆 = 𝑆′ × {𝑢2} ⊆ 𝑉(𝐺) × {𝑢2} ⊂ 𝑉(𝐺[𝐻]) ∖ 𝐷. 

Thus 𝑆 ⊂ 𝑉(𝐺[𝐻]) ∖ 𝐷 is an inverse dominating set of 𝐺[𝐻] with respect to 𝐷. 

Note that 𝑢 ∈ 𝑉(𝐻) = {𝑢1, 𝑢2} and 𝑆′ is a dominating set of 𝐺 implies that for every 𝑣 ∈ 𝑉(𝐺) ∖ 

𝑆′, there exists 𝑣′ ∈ 𝑆′ such that 𝑣𝑣′ ∈ 𝐸(𝐺). Further, 𝑉(𝐺[𝐻]) ∖ 𝑆 = 𝑉(𝐺[𝐻]) ∖ (𝑆′ × {𝑢′}) = 

[𝑉(𝐺) × {𝑢1}] 𝖴 [(𝑉(𝐺) ∖ 𝑆′) × {𝑢2}] where 𝑆 = 𝑆′ × {𝑢2} ⊆ 𝑉(𝐺) × {𝑢2}. Now, let (𝑣, 𝑢) ∈ 

𝑉(𝐺[𝐻]) ∖ 𝑆. 
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Case1. If 𝑢 = 𝑢1, then (𝑣, 𝑢1) ∈ 𝑉(𝐺) × {𝑢1}. There exists (𝑣′, 𝑢2) ∈ 𝑆 such that 

(𝑣, 𝑢1)(𝑣′, 𝑢2) ∈ 𝐸(𝐺[𝐻]) and another (𝑣′, 𝑢1) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that (𝑣, 𝑢1)(𝑣′, 𝑢1) ∈ 𝐸(𝐺[𝐻]). 

Case2. If  𝑢 = 𝑢2,  then  (𝑣, 𝑢2) ∈ (𝑉(𝐺) ∖ 𝑆′) × {𝑢2}.  There  exists  (𝑣′, 𝑢2) ∈ 𝑆  such  that 

(𝑣, 𝑢2)(𝑣′, 𝑢2) ∈ 𝐸(𝐺[𝐻]) and another (𝑣, 𝑢1) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that (𝑣, 𝑢2)(𝑣, 𝑢1) ∈ 𝐸(𝐺[𝐻]). 

In any case 𝑆 is a restrained dominating set of 𝐺[𝐻]. Accordingly, 𝑆 is a restrained inverse dominating 

set of 𝐺[𝐻]. 

Suppose that statement (iii) is satisfied. Then 𝑆 = (𝑆′ × {𝑢}) 𝖴 (𝑆′′ × {𝑢′}) where 𝑢′ ∈ 𝑉(𝐻) ∖ 

{𝑢}, 𝑆′ ⊆ 𝑉(𝐺) ∖ 𝐴 is a dominating set of 𝐺, and ∅ ⊆ 𝑆′′ ⊆ 𝑆′. Since 𝑆′ is a dominating set of 𝐺, 

𝑆′ × {𝑢} is a dominating set of 𝐺[𝐻] by Remark 2.2. Thus, 𝑆 = (𝑆′ × {𝑢}) 𝖴 (𝑆′′ × {𝑢′}) is a 

dominating set of 𝐺[𝐻]. Since 

𝑉(𝐺[𝐻]) ∖ 𝐷 = 𝑉(𝐺[𝐻]) ∖ (𝐴 × {𝑢}), 𝑢 ∈ 𝑉(𝐻) 

= [(𝑉(𝐺) ∖ 𝐴) × {𝑢1}] 𝖴 [𝑉(𝐺) × {𝑢2}] 𝑤ℎ𝑒𝑟𝑒 𝐻 = [𝑢1, 𝑢2] 

⊇ [𝑆′ × {𝑢1}] 𝖴 [𝑆′′ × {𝑢2}] = 𝑆. 

Thus, 𝑆 ⊆ 𝑉(𝐺[𝐻]) ∖ 𝐷 is an inverse dominating set of 𝐺[𝐻] with respect to a minimum dominating set 

𝐷 of 𝐺[𝐻]. 

Note that 𝑢 ∈ 𝑉(𝐻) = {𝑢1, 𝑢2} and 𝑆′ is a dominating set of 𝐺 implies that for every 𝑣 ∈ 𝑉(𝐺) ∖ 

𝑆′, there exists 𝑣′ ∈ 𝑆′ such that 𝑣𝑣′ ∈ 𝐸(𝐺). Further, 

𝑉(𝐺[𝐻]) ∖ 𝑆 = 𝑉(𝐺[𝐻]) ∖ ((𝑆′ × {𝑢}) 𝖴 (𝑆′′ × {𝑢′})), 

where 𝑢′ ∈ 𝑉(𝐻) ∖ {𝑢}, 𝑆′ ⊆ 𝑉(𝐺) ∖ 𝐴 is a dominating set of 𝐺, and ∅ ⊆ 𝑆′′ ⊆ 𝑆′. 

Case1. If 𝑆′′ = ∅, then 𝑆 = (𝑆′ × {𝑢}) 𝖴 (𝑆′′ × {𝑢′}) = 𝑆′ × {𝑢}. By the proof of (i), 𝑆 is a 

restrained inverse dominating set of 𝐺[𝐻]. 

Case2. If 𝑆′′ = 𝑆′, then 

𝑆 = (𝑆′ × {𝑢}) 𝖴 (𝑆′′ × {𝑢′}) 

= (𝑆′ × {𝑢}) 𝖴 (𝑆′ × {𝑢′}) 

= 𝑆′ × {𝑢, 𝑢′} 

= 𝑆′ × 𝑉(𝐻). 

Let (𝑣, 𝑢) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 = 𝑉(𝐺[𝐻]) ∖ (𝑆′ × 𝑉(𝐻)) = (𝑉(𝐺) ∖ 𝑆′) × 𝑉(𝐻). Then there exists 

(𝑣′, 𝑢) ∈ 𝑆 such thst (𝑣, 𝑢)(𝑣′, 𝑢) ∈ 𝐸(𝐺[𝐻]) and there exists another (𝑣, 𝑢′) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that 

(𝑣, 𝑢)(𝑣, 𝑢′) ∈ 𝐸(𝐺[𝐻]). Hence, 𝑆 is a restrained dominating set of 𝐺[𝐻], that is, 𝑆 is a restrained 

inverse dominating set of 𝐺[𝐻]. 

Case3. If ∅ ⊂ 𝑆′′ ⊂ 𝑆′, then 𝑆 = (𝑆′ × {𝑢}) 𝖴 (𝑆′′ × {𝑢′}). Let (𝑣, 𝑢) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆. Then 

(𝑣, 𝑢) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 = 𝑉(𝐺[𝐻]) ∖ [(𝑆′ × {𝑢1}) 𝖴 (𝑆′′ × {𝑢2})] 

= [(𝑉(𝐺) ∖ 𝑆′) × {𝑢1}] 𝖴 [(𝑉(𝐺) ∖ 𝑆′′) × {𝑢2}]. 

If 𝑢 = 𝑢1, then (𝑣, 𝑢1) ∈ (𝑉(𝐺) ∖ 𝑆′) × {𝑢1} ⊂ 𝑉(𝐺[𝐻]) ∖ 𝑆. There exists (𝑣′, 𝑢1) ∈ 𝑆 such that 

(𝑣, 𝑢1)(𝑣′, 𝑢1) ∈ 𝐸(𝐺[𝐻]) and there exists another (𝑣, 𝑢2) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that (𝑣, 𝑢1)(𝑣, 𝑢2) ∈ 

𝐸(𝐺[𝐻]). 

If 𝑢 = 𝑢2, then (𝑣, 𝑢2) ∈ (𝑉(𝐺) ∖ 𝑆′′) × {𝑢2} ⊂ 𝑉(𝐺[𝐻]) ∖ 𝑆. There exists (𝑣′′, 𝑢2) ∈ 𝑆 such that 

(𝑣, 𝑢2)(𝑣′′, 𝑢2) ∈ 𝐸(𝐺[𝐻]) and there exists another (𝑣, 𝑢1) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that (𝑣, 𝑢2)(𝑣, 𝑢1) ∈ 

𝐸(𝐺[𝐻]). 

Hence, 𝑆 is a restrained dominating set of 𝐺[𝐻], that is, 𝑆 is a restrained inverse dominating set of 

𝐺[𝐻]. ∎ 

The following result is an immediate consequence of Theorem 2.3. 
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𝑟 

𝑟 

𝑟 

𝑟 

, 𝑣 : 𝑖 = 1, 2, … , 

Corollary 2.4 Let 𝐺 = 𝑃𝑚, 𝑚 ≥ 2 and 𝐻 = 𝐾2 = [𝑢, 𝑢′]. Then 

𝛾(−1)(𝐺[𝐻]) = 𝛾(𝐺). 

 
Proof: Let 𝐴 be a minimum dominating set of 𝐺. Then 𝐴 × {𝑢} is a minimum dominating set of 

𝐺[𝐻], 𝑢 ∈ 𝑉(𝐻) by Remark 2.2. Suppose that 𝑆 = 𝑆′ × {𝑢′} where 𝑢′ ∈ 𝑉(𝐻) ∖ {𝑢}, 𝑆′ ⊆ 𝑉(𝐺), and 𝑆′ 

is a dominating set of 𝐺. Then by Theorem 2.3(ii), 𝑆 is a restrained inverse dominating set of 𝐺[𝐻]. 

Thus, 

𝛾(−1)(𝐺[𝐻]) ≤ |𝑆| = |𝑆′ × {𝑢′}| = |𝑆′| ∙ 1 = |𝑆′|, 
that is, 𝛾(−1)(𝐺[𝐻]) ≤ |𝑆′| for all 𝑆′ ⊂ 𝑉(𝐺). Thus, 𝛾(−1)(𝐺[𝐻]) ≤ 𝛾(𝐺). Since, 

𝑟 𝑟 

𝛾(𝐺) = |𝐴| = |𝐴| ∙ 1 = |𝐴 × {𝑢}| = 𝛾(𝐺[𝐻]) ≤ 𝛾(−1)(𝐺[𝐻]) ≤ 𝛾(𝐺), 

it follows that 𝛾(−1)(𝐺[𝐻]) = 𝛾(𝐺). ∎ 

 
Definition 2.5 The Cartesian product 𝐺□𝐻 is the graph with vertex set 𝑉(𝐺□𝐻) = 𝑉(𝐺) × 𝑉(𝐻) and 

edge set 𝐸(𝐺□𝐻) satisfying the following conditions: (𝑢1, 𝑢2)(𝑣1, 𝑣2) ∈ 𝐸(𝐺 × 𝐻) if and only if either 

𝑣1 = 𝑣2 and 𝑢1, 𝑢2 ∈ 𝐸(𝐺) or 𝑢1 = 𝑢2 and 𝑣1𝑣2 ∈ 𝐸(𝐻). 

 
Remark 2.6 Let 𝐺 = 𝑃𝑚 = [𝑢1, 𝑢2, … , 𝑢𝑚] where 𝑚 ≡ 1(𝑚𝑜𝑑4), 𝑚 ≠ 1 and 𝐻 = 𝑃4 = [𝑣1, 𝑣2, 𝑣3, 𝑣4]. 
Then 𝐷 = ({(𝑢 , 𝑣 ), (𝑢 ) 

 𝑚+3
}) ⋃ ({(𝑢 , 𝑣 ), (𝑢 , 𝑣 ): 𝑖 = 1, 2, … , 

𝑚−1
}) is 

4𝑖−3 1 4𝑖−3 4 4 4𝑖−1 2 4𝑖−1 3 4 

a minimum dominating set of 𝐺□𝐻. 

 
The following result shows a property of restrained inverse dominating set of the Cartesian 

products of two graphs. 

Theorem  2.7  Let  𝐺 = 𝑃𝑚 = [𝑢1, 𝑢2, … , 𝑢𝑚]  where  𝑚 ≡ 1(𝑚𝑜𝑑4), 𝑚 ≠ 1   and  𝐻 = 𝑃4 = 

[𝑣1, 𝑣2, 𝑣3, 𝑣4]. Then 𝑆 ⊆ 𝑉(𝐺□𝐻) ∖ 𝐷 is restrained inverse dominating set of 𝐺□𝐻 with respect to a 

minimum dominating set of 𝐷 of 𝐺□𝐻, if 𝐷 = (𝑋1 × 𝑌1) 𝖴 (𝑋2 × {𝑉(𝐻) ∖ 𝑌1}), and 𝑌1 = {𝑣1, 𝑣4}, 

𝑋1 = {𝑢4𝑖−3: 𝑖 = 1, 2, … , 

and 𝑆 = (𝑋2 × 𝑌1) 𝖴 (𝑋1 × (𝑉(𝐻) × 𝑌1)). 

𝑚 + 3 

4 
} , 𝑋2 = {𝑢4𝑖−1: 𝑖 = 1, 2, … , 

𝑚 − 1 
}, 

4 

 
Proof: Suppose that 𝐷 = (𝑋1 × 𝑌1) 𝖴 (𝑋2 × {𝑉(𝐻) ∖ 𝑌1}), and 𝑌1 = {𝑣1, 𝑣4}, 𝑋1 = {𝑢4𝑖−3: 𝑖 = 

1, 2, … , 
𝑚+3

} , 𝑋 = {𝑢 : 𝑖 = 1, 2, … , 
 𝑚−1

}, and 𝑋 = {𝑢 : 𝑖 = 1, 2, … , 
𝑚+3

}. Then 
4 2 4𝑖−1 4 3 2𝑖 4 

𝐷 = (𝑋1 × 𝑌1) 𝖴 (𝑋2 × {𝑉(𝐻) ∖ 𝑌1}) 
𝑚 + 3 

= ({𝑢4𝑖−3: 𝑖 = 1, 2, … , 
4 

} × {𝑣1, 𝑣4}) 

𝑚 − 1 
⋃ ({𝑢4𝑖−1: 𝑖 = 1, 2, … , 

4 
} × {𝑉(𝐻) ∖ {𝑣1, 𝑣4}}) 

𝑚 + 3 
= ({(𝑢4𝑖−3, 𝑣1), (𝑢4𝑖−3, 𝑣4): 𝑖 = 1, 2, … , 

4 
}) 

𝑚 − 1 
⋃ ({𝑢4𝑖−1: 𝑖 = 1, 2, … , 

4 
} × {𝑣2, 𝑣3}) 
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= ({(𝑢4𝑖−3, 𝑣1), (𝑢4𝑖−3, 𝑣4): 𝑖 = 1, 2, … , 
𝑚 + 3 

}) 
4 

𝑚 − 1 
⋃ ({(𝑢4𝑖−1, 𝑣2), (𝑢4𝑖−1, 𝑣3): 𝑖 = 1, 2, … , 

4 
}) 

Thus, 𝐷 = ({(𝑢 , 𝑣 ), (𝑢  , 𝑣 ): 𝑖 = 1, 2, … , 
𝑚+3

}) 
4𝑖−3 1 4𝑖−3 4 4 

𝑚 − 1 
⋃ ({(𝑢4𝑖−1, 𝑣2), (𝑢4𝑖−1, 𝑣3): 𝑖 = 1, 2, … , 

4 
}) 

Hence, 𝐷 is a minimum dominating set of 𝐺□𝐻 by Remark 2.6. Suppose that statement (i) is satisfied. 

Then 𝑆 = (𝑋2 × 𝑌1) 𝖴 (𝑋1 × (𝑉(𝐻) ∖ 𝑌1)). 

𝑆 = (𝑋2 × 𝑌1) 𝖴 (𝑋1 × (𝑉(𝐻) ∖ 𝑌1)) 
𝑚 − 1 

= ({𝑢4𝑖−1 ∶ 𝑖 = 1, 2, … , 
4 

} × {𝑣1, 𝑣4}) 

𝑚 + 3 
⋃ ({𝑢4𝑖−3 ∶ 𝑖 = 1, 2, … , 

4 
} × {𝑣2, 𝑣3}) 

= {(𝑢3, 𝑣1), (𝑢3, 𝑣4), … , (𝑢𝑚−1, 𝑣1), (𝑢𝑚−1, 𝑣4)} 

⋃ {(𝑢1, 𝑣2), (𝑢1, 𝑣3), … , (𝑢𝑚+3, 𝑣2), (𝑢𝑚+3, 𝑣3)} 

Let (𝑢, 𝑣) ∈ 𝑉(𝐺□𝐻) ∖ 𝑆. 

Case1. If 𝑢 = 𝑢4𝑖−1, then (𝑢4𝑖−1, 𝑣𝑘) ∈ 𝑉(𝐺□𝐻) ∖ 𝑆, where 𝑘 = 2 or 𝑘 = 3. Then there exists 

(𝑢4𝑖−1, 𝑣𝑗) ∈ 𝑆 (𝑗 = 1 𝑜𝑟 𝑗 = 4) such that (𝑢4𝑖−1, 𝑣𝑘)(𝑢4𝑖−1, 𝑣𝑗) ∈ 𝐸(𝐺□𝐻). 

Case2. If 𝑢 = 𝑢4𝑖−3, then (𝑢4𝑖−3, 𝑣𝑘) ∈ 𝑉(𝐺□𝐻) ∖ 𝑆, where 𝑘 = 1 or 𝑘 = 4. Then there exists 

(𝑢4𝑖−3, 𝑣𝑗) ∈ 𝑆 (𝑗 = 2 𝑜𝑟 𝑗 = 3) such that (𝑢4𝑖−3, 𝑣𝑘)(𝑢4𝑖−3, 𝑣𝑗) ∈ 𝐸(𝐺□𝐻). 

In any case, 𝑆 is a dominating set of 𝐺□𝐻. Let 𝐴 = (𝑋1 × 𝑌1), 𝐵 = (𝑋2 × (𝑉(𝐻) ∖ 𝑌1)), 𝐶 = 

(𝑋2 × 𝑌1), 𝐷 = (𝑋1 × (𝑉(𝐻) ∖ 𝑌1)). Then 

𝐷 ∩ 𝑆 = [(𝑋1 × 𝑌1) 𝖴 (𝑋2 × (𝑉(𝐻) ∖ 𝑌1))] 𝖴 [(𝑋2 × 𝑌1) 𝖴 (𝑋1 × (𝑉(𝐻) ∖ 𝑌1))] 

= [𝐴 𝖴 𝐵] ∩ [𝐶 𝖴 𝐷] 

= [(𝐴 𝖴 𝐵) ∩ 𝐶] 𝖴 [(𝐴 𝖴 𝐵) ∩ 𝐷] 

= [(𝐴 ∩ 𝐶) 𝖴 (𝐵 ∩ 𝐶)] 𝖴 [(𝐴 ∩ 𝐷) 𝖴 (𝐵 ∩ 𝐷)]. 

Now, 

𝐴 ∩ 𝐶 = (𝑋1 × 𝑌1) ∩ (𝑋2 × 𝑌1) 
𝑚 + 3 𝑚 − 1 

= ({𝑢4𝑖−3 ∶ 𝑖 = 1, 2, … , 
4 

} × {𝑣1, 𝑣4}) ⋂ ({𝑢4𝑖−1 ∶ 𝑖 = 1, 2, … , 
4 

} × {𝑣1, 𝑣4}) 

= {(𝑢1, 𝑣1), (𝑢5, 𝑣1), … , (𝑢𝑚, 𝑣1), (𝑢1, 𝑣4), (𝑢5, 𝑣4), … , (𝑢𝑚, 𝑣4)} 

∩ {(𝑢3, 𝑣1), (𝑢7, 𝑣1), … , (𝑢𝑚−2, 𝑣1), (𝑢3, 𝑣4), (𝑢7, 𝑣4), … , (𝑢𝑚−2, 𝑣4)} 

= ∅. 

 
𝐵 ∩ 𝐶 = (𝑋2 × (𝑉(𝐻) ∖ 𝑌1)) ∩ (𝑋2 × 𝑌1) 

𝑚 − 1 𝑚 − 1 
= ({𝑢4𝑖−1 ∶ 𝑖 = 1, 2, … , 

4 
} × {𝑣2, 𝑣3}) ⋂ ({𝑢4𝑖−1 ∶ 𝑖 = 1, 2, … , 

4 
} × {𝑣1, 𝑣4}) 

= {(𝑢3, 𝑣2), (𝑢7, 𝑣2), … , (𝑢𝑚−2, 𝑣2), (𝑢3, 𝑣3), (𝑢7, 𝑣3), … , (𝑢𝑚−2, 𝑣3)} 

∩ {(𝑢3, 𝑣1), (𝑢7, 𝑣1), … , (𝑢𝑚−2, 𝑣1), (𝑢3, 𝑣4), (𝑢7, 𝑣4), … , (𝑢𝑚−2, 𝑣4)} 
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𝑟 

= ∅. 

 
𝐴 ∩ 𝐷 = (𝑋1 × 𝑌1) ∩ (𝑋1 × (𝑉(𝐻) ∖ 𝑌1)) 

𝑚 + 3 𝑚 + 3 
= ({𝑢4𝑖−3 ∶ 𝑖 = 1, 2, … , 

4 
} × {𝑣1, 𝑣4}) ⋂ ({𝑢4𝑖−3 ∶ 𝑖 = 1, 2, … , 

4 
} × {𝑣2, 𝑣3}) 

= {(𝑢1, 𝑣1), (𝑢5, 𝑣1), … , (𝑢𝑚, 𝑣1), (𝑢1, 𝑣4), (𝑢5, 𝑣4), … , (𝑢𝑚, 𝑣4)} 

∩ {(𝑢1, 𝑣2), (𝑢5, 𝑣2), … , (𝑢𝑚, 𝑣2), (𝑢1, 𝑣3), (𝑢5, 𝑣3), … , (𝑢𝑚, 𝑣3)} 

= ∅. 

 
𝐵 ∩ 𝐷 = (𝑋2 × (𝑉(𝐻) ∖ 𝑌1)) ∩ (𝑋1 × (𝑉(𝐻) ∖ 𝑌1)) 

𝑚 − 1 𝑚 + 3 
= ({𝑢4𝑖−1 ∶ 𝑖 = 1, 2, … , 

4 
} × {𝑣2, 𝑣3}) ⋂ ({𝑢4𝑖−3 ∶ 𝑖 = 1, 2, … , 

4 
} × {𝑣2, 𝑣3}) 

= {(𝑢3, 𝑣2), (𝑢7, 𝑣2), … , (𝑢𝑚−2, 𝑣2), (𝑢3, 𝑣3), (𝑢7, 𝑣3), … , (𝑢𝑚−2, 𝑣3)} 

∩ {(𝑢1, 𝑣2), (𝑢5, 𝑣2), … , (𝑢𝑚, 𝑣2), (𝑢1, 𝑣3), (𝑢5, 𝑣3), … , (𝑢𝑚, 𝑣3)} 

= ∅. 

Thus,  

𝐷 ∩ 𝑆 = [(𝐴 ∩ 𝐶) 𝖴 (𝐵 ∩ 𝐶)] 𝖴 [(𝐴 ∩ 𝐷) 𝖴 (𝐵 ∩ 𝐷)] 

= [(∅) 𝖴 (∅)] 𝖴 [(∅) 𝖴 (∅)] 

= ∅, 

implies that 𝑆 ⊆ 𝑉(𝐺□𝐻) ∖ 𝐷 is an inverse dominating set of 𝐺□𝐻 with respect to 𝐷. 

Let (𝑢, 𝑣) ∈ 𝑉(𝐺□𝐻) ∖ 𝑆. 

Case1. If 𝑢 = 𝑢4𝑖−1, then there exists (𝑢4𝑖−1, 𝑣𝑘) ∈ 𝑆, (where 𝑘 = 1 or 𝑘 = 4) such that 

(𝑢4𝑖−1, 𝑣𝑘)(𝑢4𝑖−1, 𝑣𝑗) ∈ 𝐸(𝐺□𝐻)  (where  𝑗 = 2 or  𝑗 = 3)  and  there  exists  another  (𝑢4𝑖−𝑝, 𝑣𝑗) ∈ 

𝑉(𝐺□𝐻) ∖ 𝑆 (𝑝 = 0 or 𝑝 = 2) such that (𝑢4𝑖−1, 𝑣𝑘)(𝑢4𝑖−𝑝, 𝑣𝑗) ∈ 𝐸(𝐺□𝐻). 

Case2. If 𝑢 = 𝑢4𝑖−3, then there exists (𝑢4𝑖−3, 𝑣𝑘) ∈ 𝑆, (where 𝑘 = 2 or 𝑘 = 3) such that 

(𝑢4𝑖−3, 𝑣𝑘)(𝑢4𝑖−3, 𝑣𝑗) ∈ 𝐸(𝐺□𝐻)  (where  𝑗 = 1  or  𝑗 = 2)  and  there  exists  another  (𝑢4𝑖−𝑝, 𝑣𝑗) ∈ 

𝑉(𝐺□𝐻) ∖ 𝑆 (𝑝 = 2 or 𝑝 = 0) such that (𝑢4𝑖−3, 𝑣𝑘)(𝑢4𝑖−𝑝, 𝑣𝑗) ∈ 𝐸(𝐺□𝐻). 

In any case, 𝑆 is a restrained dominating set of 𝐺□𝐻. Accordingly, 𝑆 is a restrained inverse 

dominating set of 𝐺□𝐻. ■ 

The following result is an immediate consequence of Theorem 2.7 

 
Corollary 2.8 Let 𝐺 = 𝑃𝑚 = [𝑢1, 𝑢2, … , 𝑢𝑚] where 𝑚 ≡ 1(𝑚𝑜𝑑4), 𝑚 ≠ 1 and 𝐻 = 𝑃4 = 
[𝑣 , 𝑣 , 𝑣 , 𝑣 ]. Then 𝛾(−1)(𝐺□𝐻) = 𝑚 + 1. 

1 2 3 4 𝑟 

Proof: Suppose that 𝐷 = (𝑋1 × 𝑌1) 𝖴 (𝑋2 × (𝑉(𝐻) ∖ 𝑌1)), and 𝑌1 = {𝑣1, 𝑣4}, 𝑋1 = {𝑢4𝑖−3 ∶ 𝑖 = 

1, 2, … , 
𝑚+3

} , 𝑋  = {𝑢  ∶ 𝑖 = 1, 2, … , 
 𝑚−1

}, and 𝑆 = (𝑋  × 𝑌 ) 𝖴 (𝑋 × (𝑉(𝐻) ∖ 𝑌 )). Then, by 
4 2 4𝑖−1 4 2 1 1 1 

Theorem 2.7, 𝑆 ⊆ 𝑉(𝐺□𝐻) ∖ 𝐷 is a restrained inverse dominating set of 𝐺□𝐻 with respect to a 

minimum dominating set 𝐷 of 𝐺□𝐻. Thus, 

𝛾(−1)(𝐺□𝐻) ≤ |𝑆| 

= |(𝑋2 × 𝑌1) 𝖴 (𝑋1 × (𝑉(𝐻) ∖ 𝑌1))| 

= |(𝑋2 × 𝑌1)| + |(𝑋1 × (𝑉(𝐻) ∖ 𝑌1))| 

https://www.ijfmr.com/
mailto:editor@ijfmr.com


International Journal for Multidisciplinary Research (IJFMR) 

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com 

IJFMR240215681 Volume 6, Issue 2, March-April 2024 8 

 

 

𝑟 

𝑟 

= |({𝑢4𝑖−1 ∶ 𝑖 = 1, 2, … , 
 

+ |({𝑢4𝑖−3 ∶ 𝑖 = 1, 2, … , 

𝑚 − 1 

4 
} × {𝑣1, 𝑣4})| 

𝑚 + 3 

4 
} × {𝑣2, 𝑣3})| 

= |{𝑢4𝑖−1 ∶ 𝑖 = 1, 2, … , 
𝑚 − 1 

4 }| ⋅ |{𝑣1, 𝑣4}| 

+ |{𝑢4𝑖−3 ∶ 𝑖 = 1, 2, … , 
𝑚 + 3 

}| ⋅ |{𝑣2, 𝑣3}| 
𝑚 − 1 𝑚 + 3 

4
 

= ( ) ⋅ 2 + ( 
4 4 

2𝑚 + 2 

) ⋅ 2 

= 
2 

Since 𝐷 = ({(𝑢 𝑣 ), (𝑢 

= 𝑚 + 1. 
 𝑚+3 𝑚−1 

𝑣 ) ∶ 𝑖 = 1, 2, … , }) ⋃ ({(𝑢 , 𝑣 )(𝑢 , 𝑣 ) ∶ 𝑖 = 1, 2, … , }) 
4𝑖−3, 1 4𝑖−3, 4 4 4𝑖−1 2 4𝑖−1 3 4 

is a minimum dominating set of 𝐺□𝐻, by Remark 2.6. It follows that 

|𝐷| = |({(𝑢4𝑖−3,𝑣1), (𝑢4𝑖−3,𝑣4) ∶ 𝑖 = 1, 2, … , 
𝑚 + 3 

}) 
4 
𝑚 − 1 

⋃ ({(𝑢4𝑖−1, 𝑣2)(𝑢4𝑖−1, 𝑣3) ∶ 𝑖 = 1, 2, … , 

𝑚 + 3 
= |({(𝑢4𝑖−3,𝑣1), (𝑢4𝑖−3,𝑣4) ∶ 𝑖 = 1, 2, … , 

4
 

𝑚 − 1 

4 

})| 

})| 

+ |({(𝑢4𝑖−1,𝑣2), (𝑢4𝑖−1,𝑣3) ∶ 𝑖 = 1, 2, … , 

𝑚 + 3 𝑚 − 1 

})| 
4 

= [2 ⋅ ( 
4 

2𝑚 + 2 

)] + [2 ⋅ (  )] 
4 

= 
3 

= 𝑚 + 1 

Hence, 𝑚 + 1 = |𝐷| = 𝛾(𝐺□𝐻) ≤ 𝛾(−1)(𝐺□𝐻) ≤ 𝑚 + 1, that is, 

𝛾(−1)(𝐺□𝐻) = 𝑚 + 1. ∎ 

 
3 Conclusion 

In this paper, we extended the study on restrained inverse domination in graphs by investigating two 

binary graph operations – the lexicographic product and Cartesian product of two graphs. Some 

properties of the restrained inverse domination in the lexicographic product and Cartesian product of two 

graphs were proven and the exact values of the restrained inverse domination number of graphs resulting 

from these two binary graph operations were computed. This study will pave a way to new and relevant 

research concepts such as bounds and other binary operations of two connected graphs. Other 

parameters involving the restrained inverse domination in graphs may also be explored. Finally, the 

characterization of a restrained inverse domination in graphs in the tensor product, and its bounds are 

promising extension of this study. 
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