

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240215752 Volume 6, Issue 2, March-April 2024 1

Smart Cities Smarter Parking: Developing and

Implementing Vechicle Parking Management

System

Samiksha Shrivastava

Student, Kalinga University, Raipur (C.G.)

ABSTRACT

This research paper explores the design, implementation, and impact of a state-of-the-art Vehicle

Parking Management System (VPMS) as a pivotal solution to the escalating challenges associated with

urban mobility. The rapid growth of urbanization has led to an increased demand for efficient parking

solutions to alleviate congestion, reduce environmental impact, and enhance overall urban living.

KEYWORDS: Introduction, VPMS Architecture, Development of VPMS using Python and PHP

XAMPP, Program Evaluation and Output, Future Directions, Conclusion, Refernces

I. INTRODUCTION

The proposed VPMS integrates cutting-edge technologies such as Internet of Things (IoT), data

analytics, and artificial intelligence to revolutionize traditional parking management strategies. By

employing real-time data collection, the system optimizes the allocation of parking spaces, reduces

search time for drivers, and contributes to a more sustainable and resilient urban infrastructure.

The research delves into the technical aspects of the VPMS, emphasizing its ability to provide dynamic

parking availability information through a user-friendly interface. The system's adaptability to diverse

urban landscapes and scalability for future growth are also explored, making it a robust solution for a

wide range of urban environments.

Furthermore, the paper investigates the economic and environmental impacts of the proposed VPMS.

Through case studies and simulations, the research demonstrates the potential reduction in traffic

congestion, fuel consumption, and carbon emissions. Additionally, the economic benefits, including

increased revenue from optimized parking utilization, are highlighted.

In conclusion, this research contributes to the evolving field of smart urban systems by presenting a

comprehensive and innovative approach to vehicle parking management. The proposed VPMS not only

addresses the immediate challenges of urban mobility but also sets the stage for sustainable and

intelligent urban development in the face of growing urbanization.

II. Vehicle Parking Management System Architecture

The Vehicle Parking Management System (VPMS) is designed as a comprehensive solution to

efficiently manage parking spaces in urban environments. The architecture is divided into four key

sections: Slots Management, Add Vehicle, Manage Vehicle, and History.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240215752 Volume 6, Issue 2, March-April 2024 2

1. Slots Management:

• Sensor Network: Utilizes IoT-enabled sensors installed in each parking slot to detect the presence

or absence of vehicles.

• Data Processing Module: Gathers real-time data from sensors, processes it, and updates the

availability status of each parking slot.

• Parking Slot Database: Stores information about each parking slot, including its location, status,

and any relevant attributes.

2. Add Vehicle:

• User Interface: Provides a user-friendly interface accessible via mobile app or web portal.

• User Authentication: Ensures secure access through user authentication mechanisms.

• Vehicle Registration: Allows users to register their vehicles by entering details such as license plate

number, vehicle type, and user information.

3. Manage Vehicle:

• User Profile Management: Allows users to view and update their profile information.

• Parking Reservation: Enables users to reserve parking spaces in advance, specifying the desired

time and location.

• Notifications: Sends notifications to users regarding parking reservations, expiration alerts, and

other relevant information.

4. History:

• Parking Activity Log: Stores a historical record of all parking activities, including entry and exit

times, duration of stay, and associated fees.

• Search and Filter Options: Allows users to search and filter their parking history based on various

parameters such as date, location, or vehicle.

• Reporting Module: Generates reports and analytics for parking trends, peak hours, and revenue

generation.

Integration Points:

• APIs: Facilitates communication between different modules and external systems.

• Mobile/Web Application Interface: Connects the system with user interfaces for a smooth user

experience.

• External Database Integration: Integrates with external databases for backup, data analysis, and

reporting purposes.

This architecture ensures a scalable, flexible, and efficient Vehicle Parking Management System that

optimizes parking space utilization, enhances user experience, and provides valuable insights into

parking dynamics.

III. DEVELOPMENT OF VEHICLE PARKING MANAGEMENT SYSTEM USING PYTHON

AND PHP XAMPP

MODULE 1: HomeWindow.py

Imports: The script begins by importing necessary modules from PyQt5 and a custom module

DataBaseOperation (assuming it handles database operations).

Class Definition (HomeScreen): The class inherits from QMainWindow and serves as the main

window for the application.The class initializes the window with a title, sets up a database operation

instance (self.dbOperation), and creates a main widget.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240215752 Volume 6, Issue 2, March-April 2024 3

Menu Buttons and Styling: Four buttons ("Home," "Add Vehicle," "Manage Vehicle," "History") are

created and styled with specific colors, sizes, and borders. Button signals are connected to corresponding

methods (self.showHome, self.showAdd, self.showManage, self.showHistory).

Menu Frame: The buttons are added to a vertical layout, and the layout is applied to a frame

(menu_frame).

Content Layout (parent_vertical): Four vertical layouts (self.vertical_1, self.vertical_2,

self.vertical_3, self.vertical_4) are created for different sections of the application (Home, Add Vehicle,

Manage Vehicle, History).

Frames (self.frame_1 to self.frame_4): Four frames are created to hold the content of each section, and

the corresponding vertical layout is set for each frame.

Widgets and Layouts: The frames are added to the main layout (parent_vertical), which is a part of

the horizontal layout (layout_horizontal). The horizontal layout includes both the menu frame and the

parent vertical layout.

Styling and Display: Styling, margins, and stretch factors are applied to achieve the desired layout

appearance. Initial visibility settings (self.frame_1.show(), others hidden) are set.

Methods (showHome, showAdd, showManage, showHistory): These methods handle the button

clicks, adjust button styles, and show/hide the corresponding frames.

Database Interaction Methods (refreshHome, addHomePageData, addVehicles, addManagePage,

refreshManage, refreshHistory, addHistoryPage, exitCall): These methods interact with the database

(self.dbOperation) to fetch, add, or update data. They create and update widgets (e.g., buttons, labels,

tables) based on the retrieved data.

Event Handling (exitCall): The exitCall method is connected to the "Exit" button in the Manage

Vehicle section, allowing users to mark a vehicle as exited and update the table accordingly

MODULE 2: InstallWindow.py

Import Statements: The code starts by importing necessary PyQt5 widgets (QWidget, QPushButton,

QVBoxLayout, QLabel, QLineEdit) and other dependencies (json for JSON operations and custom

classes LoginScreen and DBOperation).

Class Initialization: The InstallWindow class is defined, inheriting from QWidget. The constructor

(__init__) sets up the initial window properties such as title and size.

UI Layout Setup: A vertical layout (QVBoxLayout) is created to organize the widgets vertically.

Labels and input fields for various configuration parameters (database name, username, password, etc.)

are created and styled using CSS. Default values are set for some input fields. A "Save Config" button

(buttonsave) and an error label (error_label) are created and styled.

Signal Connection: The buttonsave.clicked signal is connected to the showStepInfo method. This

means that when the "Save Config" button is clicked, the showStepInfo method will be executed.

showStepInfo Method: This method is responsible for validating user inputs. If any input field is

empty, it sets an error message in the error_label and returns, preventing further execution. If all inputs

are provided, it creates a dictionary (data) with the entered database information and writes it to a JSON

file (config.json). An instance of the DBOperation class is created (dbOperation), and methods are

called to create tables, insert admin information, and insert one-time data into the database. The window

is closed, and a new instance of the LoginScreen class is created and displayed.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240215752 Volume 6, Issue 2, March-April 2024 4

Execution: If the user successfully enters all the required information and clicks "Save Config," the

information is saved to a configuration file, database tables are created, and admin and parking space

information is inserted into the database. Finally, the current window is closed, and the login screen is

displayed.

Print Statement: A print statement at the end ("Save") is likely for debugging purposes and indicates

successful execution of the showStepInfo method

MODULE 3: LoginWindow.py

Import necessary modules and classes from PyQt5, sys, DataBaseOperation, and HomeWindow.

Create a class LoginScreen that inherits from QWidget (a basic PyQt5 widget). This class represents

the GUI for the admin login screen.

In the __init__ method: Set the window title to "Admin Login" and resize the window. Create layout

using QVBoxLayout to arrange the widgets vertically. Create QLabel instances for "Username" and

"Password" labels. Create QLineEdit instances for inputting the username and password. Create a

QLabel for displaying error messages. Create a QPushButton for the "Login" action. Set styles for

labels, input fields, button, and error message. Add widgets to the layout. Connect the "Login" button

click event to the showHome method.

Define the showLoginScreen method, which shows the login screen.

Define the showHome method: Check if the username or password fields are empty. If so, display an

error message and return. Create an instance of the DBOperation class. Call the doAdminLogin

method from the DBOperation class with the entered username and password. If login is successful,

close the current login screen, create an instance of the HomeScreen class, and show it. If login fails,

display an "Invalid Login Details" error message.

MODULE 4: MainProgram.py

Importing Modules: import sys: Imports the sys module, which provides access to some variables used

or maintained by the Python interpreter. import os: Imports the os module, allowing interaction with the

operating system. from InstallWindow import InstallWindow: Imports the InstallWindow class from

the InstallWindow module. from LoginWindow import LoginScreen: Imports the LoginScreen class

from the LoginWindow module. from PyQt5.QtWidgets import QApplication, QSplashScreen,

QLabel: Imports necessary classes for creating a PyQt5 GUI application. from PyQt5.QtGui import

QPixmap: Imports the QPixmap class for handling images. from PyQt5.QtCore import Qt, QTimer:

Imports classes related to Qt and QTimer for timing operations.

MainScreen Class: Defines a class named MainScreen. Contains a method showSplashScreen() that

initializes a splash screen with an image and displays it.

Functions: showSetupWindow(): Closes the splash screen and shows the installation window.

showLoginWindow(): Closes the splash screen and shows the login window.

Application Setup: Creates a QApplication instance named app with command-line arguments

sys.argv. Initializes instances of the LoginScreen, MainScreen, and InstallWindow classes. Calls the

showSplashScreen() method of the MainScreen class, displaying a splash screen with an image.

Conditional Check: Checks if a file named "config.json" exists in the current directory. If the file

exists, a QTimer is set to call showLoginWindow() after a delay of 3000 milliseconds (3 seconds). If

the file doesn't exist, a QTimer is set to call showSetupWindow() after the same delay.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240215752 Volume 6, Issue 2, March-April 2024 5

Execution: sys.exit(app.exec_()): Starts the application's event loop, allowing it to respond to user

interactions and system events. The application exits when the event loop is terminated

MODULE 5: DataBaseOperation.py

Initialization: The class constructor (__init__) reads the database configuration from a JSON file

(config.json). It establishes a connection to the MySQL database (vpms_py).

Table Creation: The CreateTables method drops existing tables (admin, slots, vehicles) and creates

new ones with specified columns.

Insert One-Time Data: The InsertOneTimeData method populates the slots table with data based on

the provided number of parking spaces for two-wheelers (space_for_two) and four-wheelers

(space_for_four).

Insert Admin: The InsertAdmin method inserts a new admin user into the admin table with the

provided username and password.

Admin Login: The doAdminLogin method checks the entered username and password against the

admin table for authentication.

Get Slot Space: The getSlotSpace method retrieves information about all parking slots from the slots

table.

Get Current Vehicle: The getCurrentVehicle method retrieves information about vehicles currently

parked (not yet exited) from the vehicles table.

Get All Vehicles: The getAllVehicle method retrieves information about vehicles that have exited from

the parking area (marked with is_exit='1').

Add Vehicles: The AddVehicles method adds a new vehicle entry to the vehicles table and updates the

corresponding parking slot information. It checks for available parking space based on the vehicle type.

Space Available: The spaceAvailable method checks for an available parking slot based on the vehicle

type.

Exit Vehicle: The exitVehicle method updates the parking slot as available and marks the vehicle as

exited in the slots and vehicles tables, respectively.

IV. PROGRAM EVALUATION AND OUTPUT

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240215752 Volume 6, Issue 2, March-April 2024 6

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240215752 Volume 6, Issue 2, March-April 2024 7

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240215752 Volume 6, Issue 2, March-April 2024 8

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240215752 Volume 6, Issue 2, March-April 2024 9

V. FUURE DIRECTIONS

1. Integration with Smart City Initiatives: Explore deeper integration with broader smart city

frameworks. This involves collaborating with other urban management systems such as traffic

control, public transportation, and environmental monitoring for a holistic urban experience.

2. AI and Predictive Analytics: Implement advanced artificial intelligence (AI) algorithms and

predictive analytics to anticipate parking demand, optimize space allocation dynamically, and

provide real-time recommendations for drivers.

3. Automated Valet Parking: Investigate the feasibility of automated valet parking systems where

vehicles can autonomously find and park in designated spaces without human intervention.

4. IoT Sensors and Edge Computing: Utilize a more extensive network of Internet of Things (IoT)

sensors for precise monitoring and leverage edge computing to process data locally, reducing latency

and enhancing real-time decision-making.

5. Mobile App Enhancements: Enhance mobile applications for VPMS, providing users with features

such as augmented reality navigation to available parking spaces, real-time traffic updates, and

seamless payment options.

6. Green Parking Solutions: Integrate eco-friendly practices by promoting electric vehicle charging

stations, incentivizing green vehicle parking, and incorporating sustainability metrics into the

parking management system.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240215752 Volume 6, Issue 2, March-April 2024 10

7. Blockchain for Security and Transparency: Investigate the use of blockchain technology to

enhance security and transparency in transactions, ensuring secure and tamper-proof records of

parking activities, payments, and reservations.

8. Dynamic Pricing Models: Implement dynamic pricing models that adjust parking fees based on

demand, peak hours, or environmental considerations. This can help optimize revenue and encourage

off-peak usage.

9. Gesture Recognition and Biometrics: Explore innovative user authentication methods such as

gesture recognition or biometrics for a seamless and secure entry and exit process.

10. Collaboration with Autonomous Vehicles: Consider partnerships with autonomous vehicle

manufacturers to develop parking solutions that cater specifically to self-driving cars, including

designated parking areas and integration with autonomous vehicle navigation systems.

11. Community Engagement and Feedback: Establish mechanisms for community engagement,

allowing users to provide feedback on the system, report issues, and suggest improvements to

enhance user satisfaction.

VI. CONCLUSION

In conclusion, the research signifies the transformative impact of the Vehicle Parking Management

System on urban mobility. By leveraging technology to streamline parking processes, enhance user

experiences, and contribute to sustainable practices, the VPMS emerges as a key player in shaping the

future of urban transportation. As cities continue to evolve, embracing innovative solutions like the

VPMS becomes imperative for creating efficient, livable, and environmentally conscious urban spaces.

VII. REFERNCES

1. "The Death and Life of Great American Cities" by Jane Jacobs (1961) and "Traffic: Why We Drive

the Way We Do (and What It Says About Us)" by Tom Vanderbilt (2008).

2. "A Survey on Internet of Things: Architecture, Enabling Technologies, Security, and Privacy" by

Jayavardhana Gubbi et al. (2013).

3. "Big Data Analytics in the Smart City: Best Practices and Recommendations" by Jonathan

Reichental (2017).

https://www.ijfmr.com/

