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Abstract 

Software Developers often find it painful and tedious to locate or pinpoint the errors that reside in the 

source code which causes serious hindrance in the progression of developing any software. In the field of 

software engineering, it is very crucial to understand the software metrics that are directly involved with 

the progression of the software. Besides, various classification algorithms have been used to foresee the 

errors in building the software. In this paper, we focus especially on ensemble algorithms as they tend to 

provide more precise and statistically efficient outcomes than the other traditional algorithms. This paper 

contains twenty software metrics that are pivotal in identifying errors in software applications. Eight Java 

projects have been gathered to showcase the significance of the software metrics in predicting errors. In 

this study, three ensemble methods are considered, MultiBoostAB, Dagging, and Decorate. For a detailed 

inspection of the performance, accuracy, recall, precision, F-measure, and ROC Curve were appraised. 

The comparisons exhibit Decorate as the highest-performing method and Dagging as the lowest. 

 

Keywords: Ensemble, Software Metrics, Software Error Detection. 

 

1. INTRODUCTION 

The impact of software metrics adoption in machine learning models for software error detection is 

important. In recent times, there have been some results that contradict the main goal of importing software 

metrics as features [1]. Because of this, the selection of the proper set of metric suits is a crucial part of 

software error detection. The dataset must be chosen with the precise attribute set that correlates with the 

metric suits as well [2]. There are lots of matters involved in hampering the progression level and 

performance of these predictive systems and usages of the models as well. Besides, different software 

application systems require different types of approaches in terms of solutions. Nowadays, the features 

that are considered as the software metrics have changed significantly because of the changing nature of 

building the software. Two of these issues are imbalanced data and the high dimensionality of the error-

prone datasets [3] that are used to build the prediction models. So, the software metrics as features are 

very cautiously maintained for better performance of these models. Before software testing, various 

models based on defects prediction analysis methods are used to diagnose any existing errors in the 

modules [4].  

Software error defection is one of the most impactful criteria of the testing phase of the software 

development life cycle. These models point out the errors in the software that require further testing and 

processing without breaching any parameters. There are lots of matters involved in hampering the 

progression level and performance of these predictive systems and usages of the models as well. Besides, 

different software application systems require different types of approaches in terms of solutions. 
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Depending on the application types, various software metric suits have been proposed. These metrics are 

called process metrics. Some popular metric suits are Halstead complexity measures [5], Chidamber and 

Kemerer (CK) metrics [6], measures of complexity by Brian Henderson-sellers [7], Abreu's Metrics [8], 

Bansiya and Davis' Quality Metrics [9] and so on. 

Most of these errors but certainly not all of them can be identified through special arrangements. Here 

comes the predictive analysis of the defects containing systems that can provide further assistance and less 

error-prone environments. When it comes to software engineering and detecting various defects in the 

application, it usually varies which type of application it is. The ensemble method is comprised of various 

base algorithms and the main goal for it to enhance the base algorithms that already exist. In this study, 

we scrutinize some of the ensemble algorithms and their performances to detect any error in a software 

system to aid the developers beforehand. 

This study is arranged as follows: Section 2 sums up the related works. Section 3 gives an overview of the 

research approach and the defective and imbalanced datasets as well as the dataset preprocessing methods. 

Section 4 contains a brief analysis of the ensemble algorithms used in this paper. Section 5 gives a 

comprehensive analysis and discussion of the final results of the performances of the ensemble methods. 

Section 6 presents the threats to validity and the conclusion is contained in section 7. 

 

2. Literature Review 

A detailed overview of the related works is given below. At first, some of the generic classification 

methods are reviewed followed by methods with feature selection techniques are covered. Afterward, 

some ensemble methods are assessed for software error detection. 

2.1 Generic Techniques 

In their paper, Surendra Naidu, et al., (2013) proposed decision tree-based classification algorithms such 

as C4.5 and ID3 [10]. The number of errors can be found and then reduced to minimize the cost and time 

to build the project as the defect configurations are sometimes ignored. 

In another study, Logan Perreault, et al., (2017) worked on various classification methods, namely Neural 

Networks, K-NN, Logistic Regression, Naïve Bayes, and Support Vector Machine [11]. They used five 

datasets from NASA and relied on pattern learning between the features in the datasets. The final result 

displays that all of them have decent performances when using the static software attributes with a high 

degree of confidence. 

In Naïve Bayes, attributes are presumed as not dependent on each other and have equal weight but they 

are correlated in practice. Omer Faruk Arer, et al., (2017) integrated the attributes as pairs in the Naïve 

Bayes algorithm and proposed Feature dependent Naïve Bayes method [12]. The experiment was carried 

out on eight datasets from the NASA datasets repository and the result was satisfactory compared to the 

other altered Naïve Bayes method. 

During the development phase, although some errors get accepted sometimes, they can create bigger 

problems in the later stages. Pointing to this issue, Hiba Alsghaier, et al., (2020) used Support Vector 

Machine (SVM) with the help of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for 

better error detection in software [13]. A total of 24 datasets from NASA MDP and Java open-source 

projects were considered to carry out the investigation and improved results were found when SVM is 

merged with GA and PSO. 

While investigating error detection in software using Support Vector Machine, Mohammad Azzeh, et al., 

(2023) observed that the kernels have significant effects on the performance of SVM [14]. The Radial 
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Basis Function (RBF) and Sigmoid Function were better at accuracy while the Linear and Polynomial 

Kernel Functions underperformed. Also, reducing dataset dimensionality did not improve the performance 

of SVM notably, and the kernel function’s effects vary with different attribute subsets. 

In another study, Lov Kumar et al., tried to find out the faulty components of a software program. They 

utilized Least Squared Support Vector Machine (LSSVM) to construct the defect prediction model. 

Datasets from thirty different projects were collected from NASA, PROMISE and GitHub repository. As 

for the performance metrics, accuracy and F-measure were deployed for the T-test to yield statistical 

significance. 

2.2 Feature Selection Techniques 

Feature selection is a major preprocessing stage in machine learning and has been broadly utilized in a 

large section ranging from text recognition [15] to biomedical engineering [16]. Datasets with high 

dimensions often generate unwanted outcomes and thus it is suggested that less effective features be 

removed to enhance the classification performance as different metric sets could correlate with the errors 

in the system. 

Using search-based software engineering problem, Kehan Gao, et al., (2011) proposed an automatic hybrid 

search algorithm that enhanced the searching performance of feature metrics that other traditional feature 

selection techniques. In this study, seven feature ranking techniques and three feature subset selection 

methods were investigated on real-world software projects [17]. Two of the best-known algorithms, 

Random Forrest and Support Vector Machine were considered for classification purposes. Although the 

software metrics involved in the software defect detection field were not considered. 

Kun Zhu, et al., (2021) proposed a Search-based Enhanced Metaheuristic Attribute Selection method using 

Whale Optimization Algorithm (WOA) and Simulated Annealing (SA) which can impressively select 

lesser but highly correlated attributes [18]. Twenty datasets were collected from PROMISE, ReLink, and 

AEEEM data repositories and the performance was seemingly better than other traditional feature 

selection techniques. 

Abdullateef Balogun et al., (2020) considered Naïve Bayes and Decision Tree classifiers to investigate 

forty-six feature selection methods. In this study, twenty-five datasets from NASA, PROMIS, ReLink and 

AEEEM were chosen. The final result showed that the performance of the selected feature selection 

technique depends on the corresponding classification method, datasets, and performance evaluation 

metrics. 

In another study on feature reduction, Prava, et al.,(2020) proposed a mixed method where they used 

principal component analysis to lessen the dataset dimension and particle swarm optimization for subset 

extraction [19]. In their paper, Random Forest, Support Vector Machine and Naïve Bayes were utilized as 

classifiers. Five datasets from PROMISE and Kaggle dataset were considered to evaluate the performance 

of the proposed model. It is found that the proposed model performed up to 98.70% in terms of ROC-

AUC curve, much higher than the traditional classification algorithms. It is also mentioned that whenever 

there is a lack of feature subsets, accuracy gap increases. 

Tumar Lyad, et al., (2020) proposed Enhanced Binary Moth Flame Optimization (EBMFO) algorithm 

which is a derived form of Moth Flame Optimization (MFO) algorithm [20]. They converted the 

continuous form of MFO to binary form of EBMFO. In this paper, fifteen real-time projects from the 

PROMISE data repository were considered. For classification purposes, they employed Linear 

discriminant analysis (LDA), K-nearest neighbor (K-NN) and Decision Tree (DT) algorithms. Adaptive 

synthetic sampling (ADASYN) technique was utilized to overcome the imbalanced datasets for further 
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improved results. 20 of all basic object-oriented software metrics were used and this study’s final result 

shows that the Decision tree performs the worst and LDA has the best performance in terms of ROC-AUC. 

On the other hand, K-NN conducts the result in less time compared to the other two classifiers. 

2.3 Ensemble Techniques 

Ensemble learning has become a successful process in classification problems. In software engineering, 

software error detection has been the most beneficial area when it comes to using ensemble methods rather 

than the other generic algorithms. Ensemble methods certainly enhance classification problems by 

merging various base algorithms and their corresponding features and uniqueness. These methods work 

very well especially on small to medium size datasets and handle the data imbalance efficiently. 

Shuo Wang et al., (2013) proposed an ensemble approach named sampling-based online bagging [21]. In 

this paper, they tried to achieve a balanced performance through the proposed technique with negative and 

positive instances. However, when the class distributions alter over time, the method failed to give a 

straight and stable performance. Hence, Shuo Wang, et al. established Undersampling-based online 

bagging that is vigorous with the fluctuation of class distributions. 

In the field of software engineering, well-defined research schemes are insufficient, unlike the other 

research areas. Monika Mangla, et al., (2022) presented a sequential ensemble model to detect the errors 

in the software [22]. This method was also executed on the eight datasets collected from PROMISE and 

ECLIPSE data repositories. The performance of the model was then assessed using different error metrics 

e.g. average relative error, average absolute error, and prediction. The outcome was satisfactory provided 

the right environment. 

In software error detection, most of the classification method suffers due to a lack of correct decisions in 

choosing the best set of performance metrics. Yakub Kayode Saheed, et al., (2021) proposed a seven-

ensemble machine learning model for software error detection.  It this paper, the authors used Cat Boost, 

Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XgBoost), Boosted Cat Boost, 

Bagged Logistic Regression, Boosted LGBM, and Boosted XgBoost for the inspection. A separate analysis 

of base models of logistic regression was also initiated on six datasets. The performance of the model was 

measured by accuracy, AUC, precision, recall, F-measure, and Matthew Correlation Coefficient. The 

proposed model was able to give higher composure due to a reduction of the training time and overfitting. 

 

3. Research Approach 

This paper mainly contributes to the software bug detection field with the help of various ensemble 

algorithms. Traditional studies with the base algorithms have been a common proceeding towards software 

error handling. Recently ensemble methods have been growing fast for their robustness, accuracy, and fast 

implementation in the system. In this study, three ensemble methods have been scrutinized: 

MultiBoostAB, Dagging, and Decorate. The main goal of this paper is to evaluate their performance on 

the collected datasets to find whether the modules are error-prone or not. A vast analysis of these methods 

will be discussed, and inspected whether their performances are statistically significant or not. 

3.1 Functional Diagram of the Study 

Numerous studies have been done on software error detection with conventional algorithms as the main 

focus. This paper progresses in rather a discrete way where ensemble algorithms thrive. Figure 1 displays 

the functional diagram of the study as follows: 
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Figure 1: Functional Diagram of the Study 

 

3.2 Datasets 

One of many problems in software error detection is that the datasets that exist at present tend to be very 

imbalanced. In this paper, eight Java projects, mined from GitHub are considered for the investigation to 

be carried out. Table 1 shows the datasets and how uneven the class distribution can be in the software 

system. 

Table 1: Description of the Datasets 

Project Name 
No. of 

Instances 

No. of 

Attributes 
Data Type 

No. of 

Defective 

Instances 

arc 225 20 Numeric 29 

camel-1.6 340 20 Numeric 13 

ivy-2.0 362 20 Numeric 40 

poi-2.0 314 20 Numeric 37 

prop-6.0 644 20 Numeric 61 

redactor 175 20 Numeric 27 

synapse-1.0 157 20 Numeric 16 

xerces-1.3 453 20 Numeric 69 

3.3 Datasets Preprocessing 

Imbalanced class distribution does not help to produce good results. Imbalanced datasets can be handled 

by using the Synthetic Minority Over-sampling Technique (SMOTE). Experimental studies show that 

most of the datasets related to software engineering are extremely imbalanced due to a small portion of 

modules producing errors in a software system. This means the dataset has an uneven distribution of target 

classes i.e. one of the class labels has a high number of observations and the other one has the opposite. 

Datasets 

Data Preprocessing 

Datasets Imbalance 

Handling 
Using 

Synthetic Minority 

Oversampling Technique 

and Randomization 

Software Metrics Selection 
(Chi-Square) 

10-Fold Cross Validation 

Software Error Detection 

Ensemble Models 

MultiBoostAB 

Dagging 

Decorate 

Result Evaluation and 
Visualization 

Result Comparison 
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This situation makes the prediction model take the majority number class as the final prediction without 

considering any other variants. To alleviate this situation, we used SMOTE, one of the most recognized 

data sampling methods where the minority class is over-sampled by creating synthetic instances rather 

than using over-sampling with replacement. 

Let, two data points be 𝐷1 and 𝐷2 and their respective coordinates are (𝑥1, 𝑦1) and (𝑥2, 𝑦2). 𝐷1 is the data 

point under observation and 𝐷2 is one the nearest neighbor of 𝐷1. If the synthetic sample is coordinated at 

(𝑥3, 𝑦3), then the following equation is used to create (𝑥3, 𝑦3): 

 

(x3, y3) = (x1, y1) + rand(0,1) × {(x2 − x1), (y2 − y1)}  (1) 

 

After applying SMOTE, the newly generated datasets grow with instances as the lesser class instances 

increase. However, the newly generated synthetic instances are appended at the end of the dataset. This 

creates a problem with overfitting as the newly added instances with same class stay consecutively. The 

new processed datasets then are randomized with randomize function to break the sequence of the same 

type of instances and solve the risk of overfitting. Figure 2 depicts the comparisons between uneven and 

even distribution of both error-prone and error-less instances. 

3.4 Software Metrics Selection 

Feature selection Methods are the consolidation of searching criteria that discover different subsets 

through all the attainable combinations of attribute subsets from an existing dataset that produces the best 

performance for any classification method [23]. Removing noisy, redundant, and irrelevant attributes that 

are hardly useful for specific classification problems, decreases the size of the datasets, and increases the 

possibility of generating better results. It creates possibly the finest dataset that suits the classification 

model best. In this paper, the features are the software metrics, and the metrics are considered very 

carefully as the metrics are highly dependent on the classification method used. Chi-square feature 

selection technique is used for dimension reduction process as there might noisy data exist. 

Figure 2: (a) Imbalanced Datasets, (b) Balanced Datasets 

  

(a) (b) 

Based on the dependency on the inductive algorithm that eventually will operate on the subset, the feature 

selection methods can be divided into two extensive categories, filter and wrapper. The Chi-Square is a 

filter feature selection method. Any specific dependent and insightful feature with a high Chi-square value 

is selected for final classification and vice versa. The values are evaluated using the following equation: 

X2 = ∑
(Oi−Ei)

2

Ei
i      (2) 
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Here, 𝑋2 denotes the chi-square value for every selected feature. Afterward, 𝑂𝑖  and 𝐸𝑖 represent the 

observed and expected values respectively. Chi-square is an effective feature selection method in software 

defect prediction as it gives statistically significant values to the attributes that are most relevant and 

compatible with the distinct classification field. The Chi-square technique is utilized for its robustness 

towards the distribution of the data, its effective use where parametric assumptions cannot be made, and 

its simplicity of calculations. 

Table 2: Software Metrics Used in the Datasets 

Sl

. 

Softwar

e 

Metrics 

Description Sl. Software 

Metrics 

Description 

1. WMC Weighted method per 

class 

11. LOC Lines of code 

2. DIT Depth in inheritance 

tree 

12. DAM Data access metrics 

3. NOC Number of children 13. MOA Measure of aggression 

4. CBO Coupling between 

objects 

14. MFA Measure of functional abstraction 

5. RFC Response for a class 15. CAM Cohesion among methods of class 

6. LCOM Lack of cohesion in 

methods 

16. IC Inheritance coupling 

7. CA Afferent coupling 17. CBM Coupling between methods 

8. CE Efferent coupling 18. AMC Average method complexity 

9. NPM Number of public 

methods 

19. MAX_C

C 

Maximum McCabe’s cyclomatic 

complexity 

10

. 

LCOM3 Lack of cohesion 20. AVG_C

C 

Average McCabe’s cyclomatic 

complexity 

3.5 Cross Validation 

Cross validation is a process of utilizing the training data in a better way to train and evaluate any model. 

It is better than traditional train-test approach in machine learning as cross validation allows to use the 

whole dataset as training data. This technique is also known as k-fold cross validation. The dataset is 

divided into k subsets or folds. Then the model is trained k times with each subset. The results are averaged 

to calculate the model’s generalized performance. This way the datasets in this paper are properly utilized 

during the training stage to prepare the model for evaluating unknown data. In this paper, 10-fold cross 

validation process is considered where every dataset gets divided into 10 different folds, and each subset 

is used to train the three ensemble models used separately. 

 

4. Ensemble Methods for Software Error Detection 

The ensemble method is much more convenient and efficient in classification problems such as defect 

detection in software. In this study, three ensemble algorithms are utilized to find whether the modules in 

the datasets are faulty or not. A brief detail on each method is given below: 

4.1 MultiBoostAB 

This ensemble method is an extension of AdaBoost algorithm combined with wagging, where the base 

algorithm is C4.5 decision tree. Superior parallel execution and fewer errors are noticed than AdaBoost 
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and wagging. Originally, wagging and boosting together create an ensemble classifier where wagging 

assigns distinct weights to data samples and boosting assigns equal weights. Boosting is an iterative 

process whereas bagging forms the classifier independently. Thus, in MultiBoostAB algorithm, weights 

are assigned randomly using continuous poisson probability distribution, giving more accurate results than 

the other classifiers. Below is the algorithm: 

 

1. Start and assign random weight (wi) to data sample (Di) using continuous 

   poisson distribution. 

2. For each ‘k’ iteration 

     { 

      Call C4.5 algorithm to build a model for Di. 

      Compute error ‘E’ for all Di and calculate reweighting for all Di. 

         Keep Wi unchanged for false positive. 

      Create set of DLW for low weight and DHW for high weight. 

      Build classifier C(x) for reweighted DI and classify DHW correctly. 

      Combine C(x) output using weighted vote to form a prediction with- 

             WV = -log(E÷(1-E)) 

      Add max. vote classifiers weights by choosing class with greatest sum. 

      If E is close to zero 

      { 

       C(x) receive a DHW shows C(x) performing well 

      } 

      If E is close to 0.5 

      { 

       C(x) receive a DLW shows C(x) performing poorly 

      } 

      Do the final prediction of C(x) 

3. Exit 

4.2 Dagging 

Dagging is one of the ensemble methods that is being used widely in numerous research areas for its robust 

outcomes and enhanced accuracy in classification operations than most of the classification algorithms 

that exist. It was presented by Ting and Witten [42] in 1997. Dagging is related to Bagging ensemble 

method and named as it is obtained from the clause “disjoint Bagging”. In Bagging, the same data can be 

repeated in multiple subsets. In contrast, Dagging is a meta classifier that construct a number of separate 

and stratified folds from the data making the subsets more unique. The main difference between bagging 

and dagging can now be illustrated as follows: 

• Bootstrap samples: Randomly take samples from training dataset, 𝑇𝐷  with replacement into 𝐾 subsets 

of size 𝑁, where 𝐾𝑁 ≤ 𝑁′. 

• Disjoint samples: Randomly take samples from training dataset, 𝑇𝐷  without replacement (also known 

as stratified cross-validation) into 𝐾 subsets of size 𝑁, where 𝐾𝑁 ≤ 𝑁′. 

The steps of dagging algorithm are: 

1. Divide D into t strata. 

2. Set up the most complete list of each t comprising strata. 
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3. For t from 1 to T: 

4. { 

 Evaluate the percentage instances Pt to construct tth stratum 

 with respect to dataset D. 

 Choose simple random sample to select instances from tth 

 stratum to build sample Dt regarding Pt. 

 Learn weak classifier on Dt to generate Ht. 

 } 

5. Calculate Hvote = argmax∑ Hi(x, y)
T
i=1 . 

6. Exit. 

4.3 Decorate 

Diverse Ensemble Creation by Oppositional Relabeling of Artificial Training Examples, or Decorate is an 

ensemble learning algorithm proposed by Prem Melville et al., (2005) [24]. Using the artificial training 

instances, Decorate generates differing classifiers. The main difference makes Decorate from Bagging and 

Adaboost superior is that Bagging and Adaboost uses the training dataset to create various classifiers. 

Decorate gives us a new perspective by yielding base classifiers on the augmented training dataset which 

breaks the constraints of only using provided training sets. Initially, the base algorithm is launched to train 

a classifier C1 on the training set and the first ensemble is formed. Then Decorate generates classifiers 

repeatedly in the following way: A set of artificial datasets is made according to the characteristics of the 

original dataset. Each artificial instance is assigned by a class label that should be different as much as 

possible than the predictor of the initially created ensemble. Then the artificial datasets are appended to 

the original dataset thus, creating an augmented dataset which is then used on the base algorithm to train. 

The generated classifier then again put into the current ensemble. If its accuracy is lower than that of the 

original ensemble without classifier, then the classifier is pruned. These steps repeat until a desired number 

of classifiers are produced or iteration is reached to its maximum number. The Decorate algorithm is 

illustrated below: 

• Input: 

BaseLearn: a base learning algorithm; 

Dtr: the original training set, Dtr = {(x1,y1),(x2,y2),…,(xN,yN)}; 

R: the proportion of artificial training set with respect to Dtr; 

M: the desired ensemble size 

I: the maximum iteration time; 

• Training phase: 

o Initialization 

   (1) i = 1, iteration = 1; 

   (2) Ci = BaseLearn(Dtr); 

   (3) Initialize the ensemble, C = {Ci}; 

(4) Compute the training accuracy of C: accu = 
1

N
∑ I(C(xt) = yt)
N
t=1 ; 

o Iteration process 

While i < M and iteration < I 

(5) Generate [N×R] artificial training examples Darti according to the 

    data distribution characteristic of the original training set Dtr; 

(6) Label each example in Darti according to te principle that the 
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    assigned labels differ maximally fom those predicted by the 

    current ensemble C; 

(7) Add the labeled artificial training data Darti to the original 

    training set Dtr: Daugm = Dtr ∪ Darti; 

(8) Train a classifier on the augmented training set Ci = 

    BaseLearn(Daugm); 

(9) Put the generated classifier into the current ensemble, C = C ∪ 

           {Ci}; 

(10)Based on the original training set Dtr, compute the training 

    accuracy accrcy of the expanded ensemble C as in step (4); 

  (11)If accrcy ≥ accu 

  (12) i = i + 1, accu = accrcy; 

  (13)Else 

  (14) C = C\{Ci}; 

  (15)iteration = iteration + 1; 

  (16)Exit; 

 

5. Experiment Results Analysis and Discussion 

The main goal of this paper is to scrutinize the performances of the above-mentioned ensemble methods 

and how they are statistically significant to each other. A thorough evaluation has been made of the 

classification performance metrics to clarify their executions The performance metrics considered in this 

study are listed below: 

Table 3: Classification Performance Metrics 

Metrics Formula Focused Area 

Accuracy 
tp + tn

tp + tn + fp + fn
 

Ratio of accurately predicted 

instances out of all instances 

Recall 
tp

tp + fn
 

Ratio of the accurately 

identified True Positives data 

and total of positive data 

Precision 
tp

tp + fp
 

Ratio of correctly predicted 

data and total number of 

positive predictions 

F-Measure 
tp

tp + 1/2(fp + fn)
 

Harmonic mean of precision 

and recall, where β = 1 

ROC Curve  
Plot between true positive 

rate and false positive rate 

tp = true positive, tn = true negative, fp = false positive, fn = 

false negative 

5.1 Performance Analysis of MultiBoostAB 

MultiBoostAB classifier has the learning curve of 89.40% for datasets xerces-1.3, followed by camel-1.6 

dataset which has 89.30%. In most cases, this classifier performs better on dataset xerces-1.3 in every 

category of performance metrics averaging above 80 % all the time. With 82.60% of precision on camel-

1.6, MultiBoostAB learns well for every dataset but the outcome is not good as expected. The lowest 
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values achieved by the classifier on dataset arc are 71.62%, 71.70%, 71.60% and 71.60% for accuracy, 

pprecision, recall and F-measure correspondingly. Figure 3 illustrates the performance of the classifier 

through charts. 

Figure 3: Performance Analysis of MultiBoostAB 

  
(a) (b) 

  
(c) (d) 

 

5.2 Performance Analysis of Dagging 

The stratified cross fold validated Dagging performs better on dataset synapse-1.0 with the highest 

achievement 88.70% on F-measure category and overall, it has over 80% success rate on accuracy, 

precision, and recall on synapse-1.0. It has the lowest performance on the arc dataset with little over 69% 

in all performance categories. The learning curve is a little less than MultiBoostAB with only two 

exceptions of poi-2.0 and synapse-1.0 datasets, having 88.70% and 84.90%, where MultiBoostAB gains 

83.80% and 83.40% respectively. The minimum values generated by Dagging is with dataset arc, 

averaging 70.20%. 
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Figure 4: Performance Analysis of Dagging 

  
(a) (b) 

  
(c) (d) 

 

5.3 Performance Analysis on Decorate 

Among the three ensembles explained in this paper, Decorate is the most promising and accurate of them 

all according to the performance metrics in Figure 5. Decorate learns the best from the training data 

compared to the other two. With the maximum ROC curve of 97.90% on camel-1.0 dataset, Decorate 

produces the best criteria of balancing between generating false alarm and misses, averaging the value of 

more than 91%. The highest values gained by Decorate in on dataset camel-1.0 with the accuracy of 

96.25%, 96.30% on precision, 96.30% on recall and 96.30% on F-measure. But with a careful observation, 

it can be seen that the MultiBoostAB and Dagging performed well on dataset synapse-1.0, where Decorate 

performed less on synapse-1.0 dataset compared to its exhibition on other datasets provided. The classifier 

produces the least amount of performance on the classification performance metrics with 86.22% on 

accuracy and 86.20% on the other three metrics respectively. 
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Figure 5: Performance Analysis on Decorate 

  

(a) (b) 

  

(c) (d) 

 

Figure 6: ROC Curve Comparisons on Ensemble Algorithms 
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From Figure 6, it is clear, that among the three ensembles, Decorate algorithm thrives the most and 

outperforms the other two in term of ROC Curve. In all the other performance criteria, Decorate dominates 

for all the datasets considered in this study. 

 

6. Threads to Validity 

There are quite a few threads that might have issues on the outcome of this study. Both internal and external 

threads are discussed in brief below. 

Internal threads are related to the selection of the software metrics. This paper has used the metrics that 

are only available in the datasets. Other software metrics might perform better to error detection in other 

literatures. 

Though the datasets are all experimented by WEKA, there is a chance that the corresponding results can 

vary in other languages as a threat of generalized outcome. As the datasets were resampled to avoid 

overfitting and 10-fold cross validation was used instead of simply splitting them into train and test data, 

it still might depend on environmental changes to produce different results. 

The study concludes here is based on the selected system. This system may not ne aligned alongside the 

industrial perspective as datasets related to software engineering tend to be very imbalanced. So there 

always remain a possibility that the findings of the study are not good fit for production stage. 

 

7. Conclusion 

The main aim of this study is focused on detecting error-prone modules in a software. In software error 

detection field, it is a universal truth that, if a product is to be productive, developers must proof check 

further after a software product is completed making before it is handed over to the user or to the market. 

Any software, with bugs, is bound to get demoted from its demand drastically. So, this is a compelling 

matter to yield an environment and decrease the error from happening. Obviously, there are tons of 

researches on how to achieve it and ensemble methods are thriving against the traditional classification 

algorithms in this prospect. In this paper, three ensemble algorithms are studied. Eight datasets from 

GitHub have been utilized in the process. Synthetic Minority Oversampling Technique was used to all the 

datasets to solve the unevenness problem. A 10-fold cross validation technique was used rather than train-

test split process as the data instances is more randomized in cross validation that gives better insight of 

the dataset. The study is carries out in WEKA data mining tool. The detection results were verified by the 

classification accuracy, recall, precision, F-measure and ROC Curve. This study shows that, Decorate 

dominates in all criteria marking ROC Curve with 97.90%. This paper, in the future, can be extended with 

increased number of datasets, using other ensemble algorithms and deep learning as well. 
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