

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240217132 Volume 6, Issue 2, March-April 2024 1

Benchmarking Large Language Models for

Code Generation

Sumedh Arun Patil1, Vedant Hemant Pangudwale2,

Devansh Rakesh Rathi3, Prof. Rupali Kadu4

1,2,3,4Department of Electronics and Telecommunication Engineering, K.J. Somaiya Institute of

Technology Mumbai, India

Abstract

As the landscape of software development continues to evolve, the need for efficient and innovative

coding practices becomes increasingly apparent. This research endeavors to explore the effectiveness of

Large Language Models (LLMs) in code generation, focusing on benchmarking their performance across

various coding tasks. Leveraging advanced Natural Language Processing (NLP) techniques and deep

learning architectures, our study investigates how LLMs, such as the codellama-13b-

instruct.Q5_K_S.gguf engine, interpret and generate code from natural language instructions. With an

emphasis on accuracy, efficiency, and user accessibility, our research seeks to shed light on the

capabilities of LLMs in bridging the gap between human language and executable code. By evaluating

factors such as model architecture, training data quality, and task complexity, we aim to provide insights

into the potential of LLMs for revolutionizing the coding experience. Through meticulous benchmarking

and analysis, this study aims to contribute to the advancement of LLM development and its applications

in code generation, paving the way for more efficient and inclusive coding practices in the future.

Keywords: Benchmarking, LLM, Performance Evaluation, Code Generation, Training Data Quality.

1. INTRODUCTION

Large Language Models (LLMs) have emerged as transformative tools in natural language processing,

demonstrating exceptional proficiency in tasks ranging from text generation to comprehension.

Leveraging pre-trained transformer architectures, such as OpenAI's GPT series, LLMs have become

increasingly instrumental in various domains, including software development, particularly in the realm

of code generation.

The utilization of LLMs in code generation tasks signifies a paradigm shift in software engineering,

promising automation and efficiency gains across diverse development processes. Notably, LLMs exhibit

remarkable aptitude in understanding and synthesizing code snippets, enabling applications in unit testing,

data cleaning, API calls, and beyond. This expanding role of LLMs in code generation underscores their

potential to streamline software development workflows, reduce human effort, and enhance productivity.

However, while the potential benefits of employing LLMs for code generation are evident, their efficacy

across specific tasks remains contingent upon rigorous evaluation and benchmarking. Each code

generation task presents unique challenges and requirements, necessitating a nuanced understanding of

how different LLMs perform in various scenarios. Benchmarking LLMs for tasks such as unit testing, data

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240217132 Volume 6, Issue 2, March-April 2024 2

cleaning, and API calls is imperative to elucidate their strengths, weaknesses, and applicability in real-

world software development contexts.

Therefore, this research endeavors to address fundamental questions regarding the performance of LLMs

in code generation tasks and the factors influencing their effectiveness. By systematically evaluating

different LLMs across diverse code generation tasks and investigating factors such as model architecture,

pre-training data, and fine-tuning strategies, we aim to provide insights that inform decision-making

processes for selecting and optimizing LLMs in software development pipelines.

2. LITERATURE SURVEY

The research conducted by Prajapati (2024) [1] explores the critical task of detecting AI-generated text,

particularly focusing on distinguishing between human-authored content and text generated by Large

Language Models (LLMs). With the rapid advancement of LLMs, discerning between human and AI-

generated text has become increasingly challenging, raising concerns about potential misuse, such as

plagiarism and the dissemination of false information. The study leverages machine learning (ML)

techniques to develop reliable detection models, aiming to address these concerns and promote

transparency in AI detection approaches. Through the use of diverse texts and unknown generative

models, the researchers replicate typical scenarios to encourage feature learning across models. By

incorporating annotation schemes like generative textual likelihood ratio (GLTR), the study demonstrates

significant improvements in human detection rates of fake text, showcasing the effectiveness of the

proposed detection approach. The research contributes valuable insights into the development of robust

detection mechanisms, essential for ensuring the ethical and trustworthy use of AI-generated text in

various domains. These findings are pertinent to the field of benchmarking LLM code generation,

providing insights into the challenges and advancements in detecting AI-generated content, thus enriching

the literature survey of benchmarking LLMs for code generation.

In Kang, Yoon, and Yoo's 2023[2] study "Large Language Models are Few-shot Testers: Exploring LLM-

based General Bug Reproduction," they introduce LIBRO, a framework designed to automate the

generation of bug-reproducing tests from bug reports. By leveraging Large Language Models (LLMs)

such as Codex, LIBRO constructs prompts from bug reports, generates test methods, and ranks them based

on their likelihood of reproducing the reported bug. Through extensive empirical evaluations, the authors

demonstrate LIBRO's ability to generate bug-reproducing test cases for a significant portion of studied

bugs, offering promising results for enhancing software testing practices and developer productivity.

Chang (2022) [3] present a novel approach in their research paper titled "A Self-Iteration Code Generation

Method Based on Large Language Models" to address the challenges faced by large language models

(LLMs) in complex code generation tasks. Their proposed self-iteration framework draws inspiration from

the iterative process inherent in software development methodologies, where tasks are divided into cycles

allowing for continuous refinement and improvement. The framework involves four key roles—analyst,

designer, developer, and tester—each responsible for specific tasks within each iteration cycle. Through

empirical evaluations on multiple benchmarks, including Human Eval and MBPP, the authors demonstrate

the effectiveness of their approach. Specifically, their self-iteration method achieves up to a 21.3% relative

improvement in Pass@1 compared to direct code generation methods. Additionally, the framework

exhibits strong generalization performance across different LLMs, highlighting its potential to enhance

code generation quality and developer productivity. This research contributes to the field by providing a

systematic approach to iteratively refine code generation tasks, leveraging the capabilities of LLMs to

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240217132 Volume 6, Issue 2, March-April 2024 3

address complex programming challenges effectively.

The study conducted by Thakur (2023) [4]. yields significant insights into the capabilities of Large

Language Models (LLMs) in generating Verilog code, a fundamental aspect of automating hardware

design. Through meticulous experimentation and evaluation, the researchers demonstrate the effectiveness

of fine-tuning pre-trained LLMs on Verilog datasets, sourced from both GitHub repositories and Verilog

textbooks. Their evaluation framework, comprising syntactic correctness checks and functional analysis

using test benches across various problem scenarios, provides a comprehensive assessment of LLM

performance. Notably, the findings reveal that fine-tuning LLMs on Verilog datasets markedly enhances

their ability to produce syntactically correct code, with open-source LLMs even surpassing state-of-the-

art commercial counterparts in functional correctness analysis. Furthermore, the study highlights the

impact of LLM size on performance, with larger models exhibiting superior code generation capabilities.

Moreover, the researchers emphasize the crucial role of prompt engineering, as the specificity and detail

of input prompts significantly influence the quality of generated code. Overall, this research advances our

understanding of LLMs' potential in automating hardware design processes, offering valuable insights and

resources for further exploration in this domain.

Recent investigations have initiated the exploration of the potential of large language models (LLMs) in

code generation tasks. Notably, LLMs like Codex have exhibited promising zero-shot capabilities in

synthesizing short code snippets based on natural language descriptions (Fan et al., 2022). However, the

direct integration of LLMs into software development pipelines raises concerns regarding reliability,

transparency, and bias, necessitating thorough evaluation efforts. In response, initial endeavors have

focused on benchmarking LLMs to systematically gauge their understanding and generation abilities in

code-related tasks. For instance, Chen et al. (2021)[5] proposed Codexglue, an evaluation framework

encompassing 10 code-related tasks spanning comprehension and generation. Their findings revealed

variations in performance across tasks, with models encountering challenges in handling complex

programming concepts. Similarly, Pham et al. (2022) introduced a benchmark consisting of 148 code

generation samples and evaluated Codex's performance, highlighting substantial room for improvement,

particularly in longer outputs necessitating multi-step reasoning. As LLM capabilities continue to evolve,

the establishment of standardized benchmarks will be imperative for transparently assessing progress and

guiding research efforts towards developing robust and trustworthy code generation assistants.

Existing research on evaluating neural code generation has predominantly focused on monolingual Python

benchmarks. Initial studies utilized textual similarity metrics such as BLEU to gauge model performance

(Feng et al., 2020; Ren et al., 2020)[6]. However, subsequent investigations revealed that metrics like

BLEU exhibit weak correlations with code correctness, underscoring the necessity for benchmark suites

incorporating unit tests (Chen et al., 2021; Austin et al., 2021; Zhou et al., 2022). The prevalent code

generation benchmarks, including HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021), are

tailored specifically for Python. Despite code generation models being trained on multi-language corpora,

their evaluation is typically limited to a single language due to the absence of parallel benchmarks

spanning multiple languages. Consequently, there exists limited quantitative evidence regarding the

proficiency of models in generating code for other prevalent programming languages crucial to many

software engineers. This paper aims to bridge this gap by introducing the first massively parallel, multi-

language benchmark designed to evaluate neural code generation across diverse programming paradigms

and languages.

The study conducted by Rodriguez-Cardenas (2023)[7]. addresses a critical gap in the evaluation of Large

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240217132 Volume 6, Issue 2, March-April 2024 4

Language Models (LLMs) for code generation tasks by introducing a benchmarking strategy named

Galeras. While previous research has primarily focused on assessing LLMs' performance using accuracy

metrics, this study emphasizes the importance of causal inference in interpreting LLMs' outputs. Galeras

comprises curated testbeds for three software engineering tasks: code completion, code summarization,

and commit generation. By controlling for confounding variables such as prompt size and token counts,

the authors demonstrate how different prompt engineering methods impact the performance of ChatGPT,

a prominent LLM, for code completion tasks. Through a rigorous causal analysis, they reveal nuanced

insights into the causal effects of prompt semantics on model performance, providing a more interpretable

solution for accuracy metrics in LLM evaluation. This research significantly contributes to the

advancement of benchmarking strategies for LLM-based code generation systems, paving the way for

more transparent and reliable assessments of these models' capabilities.

3. METHODOLOGY

The operational framework devised for benchmarking LLM code generation delves into a meticulously

structured workflow designed to comprehensively evaluate and interpret model performance.

Commencing with data acquisition, the process meticulously gathers diverse and extensive datasets from

reputable sources, with a particular emphasis on repositories like CodeSearchNet for their broad coverage

of code snippets spanning various programming languages. This initial step ensures the availability of rich

and varied data crucial for training and evaluating LLMs.

Following data acquisition, the collected datasets undergo a series of preprocessing stages to standardize

input formats and enhance model comprehension. These preprocessing steps include tokenization and

advanced natural language processing (NLP) techniques, which transform raw code snippets into

structured data that can be effectively processed by the LLMs. This preprocessing phase is critical for

preparing the data for subsequent model training and evaluation..

Fig. 1. illustrating the sequential flow of processes.

When it comes to model selection, transformer-based architectures are favored for their proven efficacy

in handling natural language processing tasks, including code generation. These models are trained on the

preprocessed data to generate code snippets based on provided prompts. Throughout the model generation

phase, robust error handling mechanisms are implemented to detect and rectify any inconsistencies or

inaccuracies in the generated code. This ensures that the generated code meets the required standards of

correctness and relevance.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240217132 Volume 6, Issue 2, March-April 2024 5

After code generation, a rigorous validation process is employed to verify the quality and accuracy of the

generated code snippets. This validation encompasses various factors, including code completeness,

syntactic accuracy, and adherence to the provided prompts. Any identified discrepancies or errors are

meticulously addressed through iterative refinement of the model and validation process, ensuring

continuous improvement in model performance.

To enhance accessibility and user-friendliness, a dedicated web portal is developed to provide researchers

and practitioners with an intuitive interface for interacting with the benchmarked LLMs. This portal

enables users to input prompts, visualize generated code snippets, and evaluate model performance across

various metrics. Additionally, it serves as a collaborative platform for sharing insights, findings, and

benchmark results with the broader community, fostering knowledge exchange and collaboration in the

field of LLM code generation research.

In essence, the operational framework outlined encompasses a comprehensive and systematic approach to

benchmarking LLM code generation systems. By integrating data acquisition, preprocessing, model

selection, generation, validation, error handling, and web portal development, this framework facilitates

robust evaluation and interpretation of model performance, ultimately contributing to advancements in the

field of LLM-based code generation..

4. RESULT & DISCUSSIONS

In addition to the overarching achievements highlighted, the project yielded several noteworthy insights

and outcomes. One significant result was the marked improvement in code efficiency and performance.

By leveraging state-of-the-art NLP models and refining error-handling mechanisms, the project

successfully minimized code errors and inefficiencies, leading to more streamlined and optimized code

outputs. This enhancement not only facilitated smoother integration of generated code into existing

projects but also contributed to overall project efficiency and productivity. Moreover, the project's

emphasis on comprehensive quality assurance and testing protocols resulted in a notable increase in code

reliability and robustness. Through rigorous testing and validation procedures, potential bugs and

vulnerabilities were identified and addressed proactively, ensuring the delivery of error-free and

dependable code solutions. Furthermore, the project's focus on user accessibility and engagement led to a

more intuitive and user-friendly coding environment. By simplifying complex coding processes and

providing user-friendly interfaces, the project empowered users of varying technical proficiencies to

participate more actively in the coding process, fostering a collaborative and inclusive coding culture.

Overall, these additional insights underscore the multifaceted benefits and impact of the project, ranging

from improved code efficiency and reliability to enhanced user accessibility and engagement.

5. CONCLUSION

In this study, we provide a holistic approach outlined for benchmarking LLM code generation represents

a significant step forward in advancing the field of software engineering and natural language processing.

By meticulously orchestrating each stage of the process, from data acquisition to model generation and

validation, we have established a robust framework for evaluating and interpreting the performance of

LLMs in generating code snippets.

Through the integration of diverse and extensive datasets, advanced preprocessing techniques, and

transformer-based model architectures, our methodology ensures the availability of high-quality data and

the utilization of state-of-the-art models capable of accurately generating code. Moreover, the

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240217132 Volume 6, Issue 2, March-April 2024 6

implementation of rigorous error handling mechanisms and validation procedures guarantees the

reliability and correctness of the generated code snippets, further enhancing the credibility of our

benchmarking approach.

The development of a user-friendly web portal adds an extra layer of accessibility and usability, providing

researchers and practitioners with a convenient platform for interacting with the benchmarked LLMs and

accessing valuable insights and findings. By fostering collaboration and knowledge exchange within the

community, the portal facilitates collective learning and innovation in LLM-based code generation

research.

Overall, our comprehensive operational framework for benchmarking LLM code generation embodies a

commitment to excellence and rigor in evaluating and interpreting model performance. As the field

continues to evolve, this methodology serves as a cornerstone for future research endeavors, driving

advancements in software engineering, natural language processing, and the broader domain of artificial

intelligence.

REFERENCES

1. M. Prajapati, S. K. Baliarsingh, C. Dora, A. Bhoi, J. Hota and J. P. Mohanty, "Detection of AI-

Generated Text Using Large Language Model," 2024 International Conference on Emerging Systems

and Intelligent Computing (ESIC), Bhubaneswar,

India,2024,pp.735740,doi:10.1109/ESIC60604.2024.10481602

2. S. Kang, J. Yoon and S. Yoo, "Large Language Models are Few-shot Testers: Exploring LLM-based

General Bug Reproduction," 2023 IEEE/ACM 45th International Conference on Software Engineering

(ICSE), Melbourne, Australia, 2023, pp. 2312-2323, doi: 10.1109/ICSE48619.2023.00194.

3. T. Chang, S. Chen, G. Fan and Z. Feng, "A Self-Iteration Code Generation Method Based on Large

Language Models," 2023 IEEE 29th International Conference on Parallel and Distributed Systems

(ICPADS), Ocean Flower Island, China, 2023, pp. 275-281, doi: 10.1109/ICPADS60453.2023.00049.

4. S. Thakur et al., "Benchmarking Large Language Models for Automated Verilog RTL Code

Generation," 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), Antwerp,

Belgium, 2023, pp. 1-6, doi: 10.23919/DATE56975.2023.10137086.

5. K. Huang et al., "An Empirical Study on Fine-Tuning Large Language Models of Code for Automated

Program Repair," 2023 38th IEEE/ACM International Conference on Automated Software

Engineering (ASE), Luxembourg, Luxembourg, 2023, pp. 1162-1174, doi:

10.1109/ASE56229.2023.00181.

6. F. Cassano et al., "MultiPL-E: A Scalable and Polyglot Approach to Benchmarking Neural Code

Generation," in IEEE Transactions on Software Engineering, vol. 49, no. 7, pp. 3675-3691, July 2023,

doi: 10.1109/TSE.2023.3267446..

7. D. Rodriguez-Cardenas, D. N. Palacio, D. Khati, H. Burke and D. Poshyvanyk, "Benchmarking Causal

Study to Interpret Large Language Models for Source Code," 2023 IEEE International Conference on

Software Maintenance and Evolution (ICSME), Bogotá, Colombia, 2023, pp. 329-334, doi:

10.1109/ICSME58846.2023.00040.

https://www.ijfmr.com/

