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Abstract 

Let 𝐺 be a nontrivial connected graph. A dominating set 𝐷 ⊆ 𝑉(𝐺) is called a doubly connected 

dominating set of 𝐺 if both 〈𝐷〉 and 〈𝑉(𝐺)\𝐷〉 are connected. Let D be a minimum connected dominating 

set of G. If S ⊆ V(G)\D is a connected dominating set of G, then S is called an inverse doubly connected 

dominating set of G with respect to D. Furthermore, the inverse doubly connected domination number, 

denoted by γcc
−1(G) is the minimum cardinality of an inverse doubly connected dominating set of G. An 

inverse doubly connected dominating set of cardinalities γcc
−1(G) is called γcc

−1-set. In this paper, we 

characterized the inverse doubly connected domination in the lexicographic product of two graphs and 

give some important results. 
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1. Introduction 

The graphs G considered here are simple, finite, nontrivial, undirected and without isolated vertices. 

Domination in graph was introduced by Claude Berge in 1958 and Oystein Ore in 1962 [1]. Following an 

article [2] by Ernie Cockayne and Stephen Hedetniemi in 1977, the domination in graphs became an area 

of study by many researchers. A subset 𝑆 of 𝑉(G) is a dominating set of G if for every 𝑣 ∈ 𝑉(G)\S, there 

exists 𝑥 ∈ S such that 𝑥𝑣 ∈ 𝐸(G), that is, 𝑁[S] = V(G). The domination number 𝛾(G) of G is the smallest 

cardinality of a dominating set of G. Some studies on domination in graphs were found in the paper [3- 

24]. 

One variant of domination is the doubly connected domination in graphs. A dominating set 𝑆 ⊆ 𝑉(𝐺) is 

called a doubly connected dominating set of G if both ⟨𝑆⟩ and ⟨𝑉(𝐺)\𝑆⟩ are connected. The minimum 

cardinality of a doubly connected dominating set of G, denoted by 𝛾𝑐𝑐(G), is called doubly connected 
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domination number of G. A doubly connected dominating set of cardinalities 𝛾𝑐𝑐(G) is called a 𝛾𝑐𝑐-set of 

G. Doubly connected domination in graphs is found in the papers [25-30]. 

The inverse domination in a graph was first found in the paper of Kulli [31] and studied in [32-38]. If 𝐷 

is a minimum dominating set in 𝐺, then a dominating set 𝑆 ⊆ 𝑉(𝐺)\𝐷 is called an inverse dominating set 

with respect to 𝐷. The inverse domination number, denoted by, 𝛾−1(𝐺) of 𝐺 is the order of an inverse 

dominating set with minimum cardinality. 

A dominating set 𝐷 ⊆ 𝑉(𝐺) is called a doubly connected dominating set of 𝐺 if both ⟨𝐷⟩ and ⟨𝑉(𝐺)\𝐷⟩ 

are connected. Let D be a minimum connected dominating set of G. If S ⊆ V(G)\D is a connected 

dominating set of G, then S is called an inverse doubly connected dominating set of G with respect to D. 

Furthermore, the inverse doubly connected domination number, denoted by γcc
−1(G) is the minimum 

cardinality of an inverse doubly connected dominating set of G. An inverse doubly connected dominating 

set of cardinalities γcc
−1(G) is called γcc

−1-set. This paper is an extension of [39], hence, the researchers’ 

characterized the inverse doubly connected domination in the lexicographic product of two graphs and 

give some important results. 

For the general terminology in graph theory, readers may refer to [40]. A graph G is a pair (𝑉(𝐺),  𝐸(𝐺)), 

where 𝑉(𝐺) is a finite nonempty set called the vertex-set of G and 𝐸(𝐺) is a set of unordered pairs {𝑢, 𝑣} 

(or simply 𝑢𝑣) of distinct elements from 𝑉(𝐺) called the edge-set of 𝐺. The elements of 𝑉(𝐺) are called 

vertices and the cardinality |𝑉(𝐺)| of 𝑉(𝐺) is the order of 𝐺. The elements of 𝐸(𝐺) are called edges and 

the cardinality |𝐸(𝐺)| of 𝐸(𝐺) is the size of G. If |𝑉(𝐺)| = 1, then 𝐺 is called a trivial graph. If 𝐸(𝐺) =

∅, then 𝐺 is called an empty graph. The open neighborhood of a vertex 𝑣 ∈ 𝑉(𝐺) is the set 𝑁𝐺(𝑣) =

{𝑢 ∈ 𝑉(𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)}.  The elements of 𝑁𝐺(𝑣) are called neighbors of 𝑣. The closed neighborhood of 

𝑣 ∈ 𝑉(𝐺) is the set 𝑁𝐺[𝑣] = 𝑁𝐺(𝑣) ∪ {𝑣}. If 𝑋 ⊆ 𝑉(𝐺), the open neighborhood of 𝑋 in 𝐺 is the set 

𝑁𝐺(𝑋) = ⋃ 𝑁𝐺(𝑣).𝑣∈𝑋  The closed neighborhood of 𝑋 in 𝐺 is the set 𝑁𝐺[𝑋] = ⋃ 𝑁𝐺[𝑣]𝑣∈𝑋 = 𝑁𝐺(𝑋) ∪ 𝑋. 

When no confusion arises, 𝑁𝐺[𝑥] [resp. 𝑁𝐺(𝑥)] will be denote by 𝑁[𝑥] [resp. 𝑁(𝑥)]. 

 

2. Results 

Definition 2.1 A dominating set 𝐷 ⊆ 𝑉(𝐺) is called a doubly connected dominating set of 𝐺 if both ⟨𝐷⟩ 

and ⟨𝑉(𝐺)\𝐷⟩ are connected. Let 𝐷 be a minimum doubly connected dominating set of 𝐺. If 𝑆 ⊆ 𝑉(𝐺)\𝐷 

is a doubly connected dominating set of 𝐺, then 𝑆 is called an inverse doubly connected dominating set of 

𝐺 with respect to 𝐷. Furthermore, the inverse doubly connected domination number, denoted by 𝛾𝑐𝑐
−1(𝐺) 

is the minimum cardinality of an inverse doubly connected dominating set of 𝐺. An inverse doubly 

connected dominating set of cardinalities 𝛾𝑐𝑐
−1(𝐺) is called 𝛾𝑐𝑐

−1-set. 

Definition 2.2 The lexicographic products of two graphs 𝐺 and 𝐻 is the graph 𝐺[𝐻] with vertex set 

𝑉(𝐺[𝐻]) = 𝑉(𝐺) × 𝑉(𝐻) and edge set 𝐸(𝐺[𝐻]) satisfying the following condition: (𝑥, 𝑢)(𝑦, 𝑣) ∈

𝐸(𝐺[𝐻]) if and only if either 𝑥𝑦 ∈ 𝐸(𝐺) or 𝑥 = 𝑦 and 𝑢𝑣 ∈ 𝐸(𝐻). 

Proposition 2.3 Let G = Pm = [ v_1,\dots, v_m] , m ≥ 2 and H = Pn = [u1, … , vm]n ≥ 2. If S′ is a 

connected dominating set of 𝐺 and ∅ ≠  𝑆′′ ⊂  V(H), then 𝑆 = 𝑆′ × 𝑆′′ is a connected dominating set of 

𝐺[𝐻].  

Proof. Suppose that 𝑆′ is a connected dominating set of 𝐺 and ∅ ≠ 𝑆′′ ⊂ 𝑉(𝐻). If S′′ = { u′′}, then S =

S′ ×  S′′ =\lbrace  v2, v3, … , v_{m − 1}} ×  { u′′} = { (v2  , u′′), … , ( vm−1, u′′)} implies ⟨ S⟩ is 

connected. Let (v, u) ∈ V(G[H]) ∖ S. Then 

   𝑉 ∈ (𝐺[𝐻]) ∖ 𝑆 = 𝑉(𝐺[𝐻]) ∖ {(𝑣2, 𝑢′′), … , (𝑣𝑚−1, 𝑢′′)} 
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          = {(𝑣1, 𝑢′′), (𝑣𝑚, 𝑢′′)} ∪ {𝑉(𝐺) × 𝑉(𝐻) ∖ {𝑢′′}} 

          = {(𝑣1, 𝑢′′), (𝑣𝑚, 𝑢′′)} ∪ {(𝑣𝑖, 𝑢𝑗) ∶ 𝑖 = 1, … , 𝑚;  𝑗 = 1, … , 𝑛 − 1,  

      and 𝑢𝑗 ≠ 𝑢′′}. 

There exists (v′, u′′) ∈ S such that, 

Case 1. If (v, u) ∈ {(v1, u′′), (vm, u′′)}, then (v, u)(v′, u′′) =  (v1, u′′)(v2, u′′) ∈ E(G[H]),  or 

(v, u)(v′, u′′) = (vm, u′′)(v𝑚−1, u′′) ∈ E(G[H]). 

 Case 2. If (v, u) ∈ {V(G) × (V(H) ∖ {u′′}), then (v, u)(v′, u′′) =  (vi, uj)(vk, u′′) ∈ E(G[H]) where 

vk ∈ S′, i ∈ {k − 1, k + 1}, and uj ≠ u′′. 

 In either case, S′ ×  S′′ is a connected dominating set of G[H]. By using similar arguments, if {u′′} ⊂

S′′ ⊂ V(H), then S = S′ × S′′ is a connected dominating set of 𝐺[𝐻]. ∎ 

 

The following result is the characterization of an inverse doubly connected dominating set in lexicographic 

product of two graphs. 

 

Theorem 2.4 Let G =  Pm = [v1, … , vm], m ≥ 2, and H =  Pn =  [u1, … , un], n ≥ 2. Then S ⊆

 V(G[H]) ∖ D is an inverse doubly connected dominating set of 𝐺[𝐻] with respect to a minimum doubly 

connected dominating set 𝐷 of 𝐺[𝐻], if 𝑆′ is a connected dominatig set of 𝐺,  ∅ ≠ 𝑆′′ ⊂ 𝑉(𝐻), and 𝑆 =

𝑆′ × 𝑆′′. 

 

Proof.  Let 𝐺 = 𝑃𝑚 = [𝑣1, … , 𝑣𝑚], 𝑚 ≥ 2 and 𝐻 = 𝑃𝑛 = [𝑢1, … , 𝑢𝑛], 𝑛 ≥ 2. Suppose that 𝐷 =

{(𝑣𝑖, 𝑢1): 𝑖 = 2, 3, … , 𝑚 − 1}. Then 𝐷 = 𝐷′ × 𝐷′′ where 𝐷′ = { 𝑣2, 𝑣3, … , 𝑣𝑚−1} ⊂ 𝑉(𝐺) and 𝐷′′ =

{ 𝑢1} ⊂ 𝑉(𝐻). This implies that 𝐷′ is a connected dominating set of 𝐺 and 𝐷′′ ⊂ 𝑉(𝐻). By Proposition 

2.3, 𝐷 is a connected dominating set of 𝐺[𝐻]. Let 𝐷 ∖ { (𝑣, 𝑢1)} for any 𝑣 ∈ 𝐷′. If 𝑣 ∈ {𝑣2, 𝑣𝑚−1}, then 𝐷 

is not a dominating set of 𝐺[𝐻]. If 𝑣 ∉ {𝑣2, 𝑣𝑚−1}, then ⟨𝐷⟩ is not connected. This implies that 𝐷 is a 

minimum connected dominating set of 𝐺[𝐻].  

Further,  

𝑉(𝐺[𝐻]) ∖ 𝐷 = 𝑉(𝐺[𝐻]) ∖ {(𝑣2, 𝑢1), … , (𝑣𝑚−1, 𝑢1)}     

                = [𝑉(𝐺 ∖ 𝐷′) × {𝑢1}] ∪ [𝑉(𝐺) × (𝑉(𝐻) ∖ {𝑢1})] 

     = [{𝑣1, 𝑣𝑚} × {𝑢1}] ∪ [𝑉(𝐺) × {𝑢2, … , 𝑢𝑛}] 

 = {(𝑣1, 𝑢1), (𝑣𝑚, 𝑢1)} ∪ {(𝑣1, 𝑢2), … , (𝑣1, 𝑢𝑛), … , (𝑣𝑚, 𝑢2), … , (𝑣𝑚, 𝑢𝑛)}. 

 

Clearly, ⟨𝑉(𝐺) × {𝑢2, … , 𝑢𝑛}⟩ is connected. Since (𝑣1, 𝑢1)(𝑣1, 𝑢2) ∈ 𝐸(𝐺[𝐻]) and 

(𝑣𝑚, 𝑢1)(𝑣𝑚, 𝑢2) ∈ 𝐸(𝐺[𝐻]), it follows that 𝑉(𝐺[𝐻]) ∖ 𝐷 is connected. Hence, 𝐷 is a minimum doubly 

connected dominating set of 𝐺[𝐻]. 

If 𝑆 = 𝑆′ × 𝑆′′, where 𝑆′ is a connected dominating set of 𝐺, and ∅ ≠ 𝑆′′ ⊂ 𝑉(𝐻), 𝑆 is a connected 

dominating set of 𝐺[𝐻] by Proposition 2.3. consider the following cases.  

Case 1. If 𝑆′′ = {𝑢′′}, then 𝑆 = 𝑆′ × 𝑆′′ = {𝑣2, 𝑣3, … , 𝑣𝑚−1} × {𝑢′′} =  {(𝑣2, 𝑢′′), … , (𝑣𝑚−1, 𝑢′′)}. 

Further, 

  𝑉(𝐺[𝐻]) ∖  𝑆 =  𝑉(𝐺[𝐻]) ∖ { (𝑣2, 𝑢′′), … , (𝑣𝑚−1, 𝑢′′)} 

=  [(𝑉(𝐺) ∖  𝑆′) × { 𝑢′′}] ∪  [𝑉(𝐺) × (𝑉(𝐻) ∖ { 𝑢′′})] 

      =  [{𝑣1, 𝑣𝑚} × {𝑢′′}] ∪ [𝑉(𝐺) × {𝑢𝑖 ∶  𝑖 = 1, … , 𝑛} ∖ {𝑢′′}] 

                                             = {(𝑣1, 𝑢′′), (𝑣𝑚, 𝑢′′)} ∪ {(𝑣𝑖, 𝑢𝑗): 𝑖 = 1, … , 𝑚;  𝑗 = 1, … , 𝑛} ∖ {(𝑣𝑖 𝑢′′)}. 
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 Clearly, ⟨𝑉(𝐺) × {𝑢𝑖 , … , 𝑢𝑛} ∖ {𝑢′′}⟩ is connected in 𝐺[𝐻]. Let 𝑢′′ = 𝑢𝑘 for some positive integer 

𝑘. Since (𝑣1, 𝑢𝑘−1)(𝑣𝑚, 𝑢′′), (𝑣𝑚, 𝑢′′)(𝑣𝑚, 𝑢𝑘+1) ∈ 𝐸(𝐺[𝐻]), it follows that ⟨𝑉(𝐺[𝐻]) ∖ 𝑆⟩ is connected. 

Hence, 𝑆 is a doubly connected dominating set of 𝐺[𝐻]. If 𝑢1 ≠ 𝑢′′, then  

𝐷 ∩  𝑆 = (𝐷′ × { 𝑢1}) ∩  (𝑆′ × { 𝑢′′}) = ∅. 

Thus, 𝑆 ⊆ 𝑉(𝐺[𝐻]) ∖ 𝐷 is an inverse dominating set of 𝐺. Accordingly, 𝑆 ⊆ 𝑉(𝐺[𝐻]) ∖ 𝐷 is an 

inverse doubly connected dominating set of 𝐺[𝐻] with respect to a minimu doubly connected dominating 

set 𝐷 of 𝐺[𝐻]. 

Case 2. If {𝑢′′} ⊂ 𝑆′′ ⊂ 𝑉(𝐻), then using the similar arguments in Case 1, 𝑆 ⊆ 𝑉(𝐺[𝐻]) ∖ 𝐷 is an 

inverse doubly connected dominating set of 𝐺[𝐻] with respect to a minimum doubly connected 

dominating set 𝐷 of 𝐺[𝐻].∎ 

 

The following result is an immediate consequence of Theorem 2.4. 

 

Corollary 2.5 Let 𝐺 =  𝑃𝑚 =  [𝑣1, … , 𝑣𝑚] ,  𝑚 ≥ 2 and $𝐻 = 𝑃_𝑛 = [𝑢1, … , 𝑢2], 𝑛 ≥ 2. Then 

𝛾𝑐𝑐
−1(𝐺[𝐻]) = 𝑚 − 2. 

 

Proof. Suppose that 𝑆′ is a connected dominating set of 𝐺, ∅ ≠ 𝑆′′ ⊂ 𝑉(𝐻), and 𝑆 = 𝑆′ × 𝑆′′. By Theorem 

2.4, 𝑆 is an inverse doubly connected dominating set of 𝐺[𝐻] with respect to a minimum doubly connected 

dominating set 𝐷. Thus, 𝛾𝑐𝑐
−1(𝐺[𝐻]) ≤ |𝑆| = |𝑆′ × 𝑆′′|. If 𝑆′′ = {𝑖′′}, then  

𝑆 = 𝑆′ × 𝑆′′ = {𝑣2, 𝑣3, … , 𝑣𝑚−1} × {𝑢′′} = {(𝑣2, 𝑢′′), … , (𝑣𝑚−1, 𝑢′′)}, that is,  

|𝑆| = |𝑆′ × 𝑆′′| = |{𝑣2, 𝑣3, … , 𝑣𝑚−1}| ⋅ |{ 𝑢′′}| = ((𝑚 − 1) − 1) ⋅ 1 = 𝑚 − 2. 

Thus, 𝛾𝑐𝑐
−1(𝐺[𝐻]) ≤ 𝑚 − 2. In the proof of Theorem 2.4, 𝐷 = {(𝑣𝑖, 𝑢1): 𝑖 = 1, 2, 3, … , 𝑚 − 1} is a 

minimum doubly connected dominating set of 𝐺[𝐻]. Thus,  

𝑚 − 2 = |𝐷| = 𝛾𝑐𝑐(𝐺[𝐻]) ≤ 𝛾𝑐𝑐
−1(𝐺[𝐻]) ≤ 𝑚 − 2, 

implies that 𝛾𝑐𝑐
−1(𝐺[𝐻]) = 𝑚 − 2.∎ 

 

3. Conclusion  

In this paper, we introduced a new parameter of domination in graphs - the inverse doubly connected 

domination in graphs. The inverse doubly connected domination in the lexicographic products of two 

graphs was characterized. The exact inverse doubly connected domination number resulting from the 

lexicographic product of two graphs was computed. This study will pave the way to new researches such 

as bounds and other binary operations of two connected graphs. Other parameters involving inverse doubly 

connected domination in graphs and its bounds may also be explored. 
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