
 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240217601 Volume 6, Issue 2, March-April 2024 1 

 

Inverse Fair Restrained Domination in the Join 

of Two Graphs 
 

Villa S. Verdad1, Grace M. Estrada2, Edward M. Kiunisala3,  

Marie Cris A. Bulay-og4, Enrico L. Enriquez5 
 

1MS Math, Department of Computer, Information Science and Mathematics School of Arts and 

Sciences, University of San Carlos, 6000 Cebu City, Philippines 
2Associate Professor, Department of Computer, Information Science and Mathematics School of Arts 

and Sciences, University of San Carlos, 6000 Cebu City, Philippines 
3Professor, Mathematics Department, College of Computing, Artificial Intelligence and Sciences,  

Cebu Normal University, 6000 Cebu City, Philippines 
4Assistant Professor, Mathematics and Statics Programs, University of the Philippines Cebu,  

6000 Cebu City, Philippines 
5Full Professor, Department of Computer, Information Science and Mathematics School of Arts and 

Sciences, University of San Carlos, 6000 Cebu City, Philippines 

 

Abstract  

Let 𝐺 be a connected simple graph. A dominating subset 𝑆 of 𝑉(𝐺) is a fair dominating set in 𝐺 if all the 

vertices not in 𝑆 are dominated by the same number of vertices from 𝑆. A fair dominating set  𝑆 ⊆  𝑉(𝐺) 

is a fair restrained dominating set if every vertex not in 𝑆 is adjacent to a vertex in 𝑆 and to a vertex in 

𝑉(𝐺) ∖ 𝑆. Alternately, a fair dominating set 𝑆 ⊆ 𝑉(𝐺) is a fair restrained dominating set if 𝑁[𝑆] = 𝑉(𝐺) 

and  〈𝑉(𝐺) ∖ 𝑆〉 is a subgraph without isolated vertices. Let 𝐷 be a minimum fair restrained dominating 

set of 𝐺. A fair restrained dominating set 𝑆 ⊆ (𝑉(𝐺) ∖ 𝐷) is called an  inverse fair restrained dominating 

set  of 𝐺 with respect to 𝐷. The  inverse fair restrained domination number of 𝐺 denoted by 𝛾𝑓𝑟𝑑
−1 (𝐺) is 

the minimum cardinality of an inverse fair restrained dominating set of 𝐺. An inverse fair restrained 

dominating set of cardinality  𝛾𝑓𝑟𝑑
−1 (𝐺) is called 𝛾𝑓𝑟𝑑

−1 -set. In this paper, we investigate the concept and give 

some important results on inverse fair restrained dominating sets under the join of two graphs.  

 

Keywords: dominating set, fair dominating set, fair restrained dominating set, inverse fair restrained 

dominating set, join of two graphs 

 

1. Introduction  

A subset 𝑆 of 𝑉(𝐺) is a dominating set of 𝐺 if for every 𝑣 ∈  𝑉(𝐺) ∖ 𝑆, there exists 𝑥 ∈ 𝑆 such that 𝑥𝑣 ∈

𝐸(𝐺), i.e., 𝑁[𝑆]  =  𝑉(𝐺). The domination number  𝛾(𝐺) of 𝐺 is the smallest cardinality of a dominating 

set of 𝐺 [1]. Some studies on domination in graphs were found in the papers [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13]. 

In 2011, Caro, Hansberg and Henning [14] introduced fair domination and k-fair domination in graphs. A 

dominating subset 𝑆 of 𝑉(𝐺) is a fair dominating set in 𝐺 if all the vertices not in 𝑆 are dominated by the 

same number of vertices from 𝑆, that is, |𝑁(𝑢)  ∩ 𝑆| = |𝑁(𝑣) ∩  𝑆| for every two distinct vertices 𝑢 and 
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𝑣 from 𝑉(𝐺) ∖  𝑆 and a subset 𝑆 of 𝑉(𝐺) is a 𝑘-fair dominating set in 𝐺 if for every vertex 𝑣 ∈  𝑉(𝐺) ∖ 𝑆, 

|𝑁(𝑣) ∩ 𝑆| = 𝑘. The minimum cardinality of a fair dominating set of 𝐺, denoted by 𝛾𝑓𝑑(𝐺), is called the 

fair domination number of 𝐺. A fair dominating set of cardinality 𝛾𝑓𝑑(𝐺) is called 𝛾𝑓𝑑-set. Some studies 

on fair domination in graphs were found in the paper [15-18].  

The restrained domination in graphs was introduced by Telle and Proskurowski [19] indirectly as a vertex 

partitioning problem. Accordingly, a set 𝑆 ⊆ 𝑉(𝐺) is a  restrained dominating set if every vertex not in 

𝑆 is adjacent to a vertex in 𝑆 and to a vertex in 𝑉(𝐺) ∖ 𝑆. Alternately, a subset 𝑆 of 𝑉(𝐺) is a restrained 

dominating set if 𝑁[𝑆] = 𝑉(𝐺) and 〈𝑉(𝐺) ∖ 𝑆〉 is a subgraph without isolated vertices. The minimum 

cardinality of a restrained dominating set of 𝐺, denoted by  𝛾𝑟(𝐺), is called the restrained domination 

number of 𝐺. A restrained dominating set of cardinality 𝛾𝑟(𝐺) is called 𝛾𝑟-set. Restrained domination in 

graphs was also found in the papers [20-27]. 

The study of fair restrained dominating set is found in [28]. A fair dominating set 𝑆 ⊆  𝑉(𝐺) is a fair 

restrained dominating set if every vertex not in 𝑆 is adjacent to a vertex in 𝑆 and to a vertex in 𝑉(𝐺) ∖ 𝑆. 

The minimum cardinality of a fair restrained dominating set of 𝐺, denoted by 𝛾𝑓𝑟𝑑(𝐺), is called the fair 

restrained domination number of 𝐺. A fair restrained dominating set of cardinality 𝛾𝑓𝑟𝑑(𝐺)-is called 𝛾𝑓𝑟𝑑-

set. 

Let 𝐷 be a minimum dominating set in 𝐺. The dominating set 𝑆 ⊆  𝑉(𝐺) ∖ 𝐷 is called an inverse 

dominating set with respect to 𝐷. The minimum cardinality of inverse dominating set is called an inverse 

domination number of 𝐺 and is denoted by 𝛾−1(𝐺). An inverse dominating set of cardinality 𝛾−1(𝐺) is 

called 𝛾−1-set of 𝐺. Inverse domination in graphs is found in in [29-34]. 

The inverse fair restrained domination in graphs was introduced in [35]. Let 𝐷 be a minimum fair 

restrained dominating set of 𝐺. A fair restrained dominating set 𝑆 ⊆ (𝑉(𝐺) ∖ 𝐷) is called an inverse fair 

restrained dominating set of 𝐺 with respect to 𝐷. The inverse fair restrained domination number of 𝐺 

denoted by  𝛾𝑓𝑟𝑑
−1 (𝐺) is the minimum cardinality of an inverse fair restrained dominating set of 𝐺. An 

inverse fair restrained dominating set of cardinality 𝛾𝑓𝑟𝑑
−1 (𝐺) is called 𝛾𝑓𝑟𝑑

−1 -set. In this paper, we investigate 

the concept and give some important results on inverse fair restrained dominating sets under the join of 

two graphs.  

For the general terminology in graph theory, readers may refer to [36]. A graph 𝐺 is a pair (𝑉(𝐺), 𝐸(𝐺)), 

where 𝑉(𝐺) is a finite nonempty set called the vertex-set of 𝐺 and 𝐸(𝐺) is a set of unordered pairs {𝑢, 𝑣} 

(or simply 𝑢𝑣) of distinct elements from 𝑉(𝐺) called the edge-set of 𝐺. The elements of 𝑉(𝐺) are called 

vertices and the cardinality |𝑉(𝐺)| of 𝑉(𝐺) is the order of 𝐺. The elements of 𝐸(𝐺) are called edges and 

the cardinality |𝐸(𝐺)| of 𝐸(𝐺) is the size of 𝐺. If |𝑉(𝐺)| = 1, then 𝐺 is called a trivial graph. If 𝐸(𝐺) =

∅, then 𝐺 is called an empty graph. The  open neighborhood of a vertex 𝑣 ∈ 𝑉(𝐺) is the set 𝑁𝐺(𝑣) = {𝑢 ∈

 𝑉(𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)}. The elements of 𝑁𝐺(𝑣) are called neighbors of 𝑣. The closed neighborhood of 𝑣 ∈

 𝑉(𝐺) is the set 𝑁𝐺[𝑣] = 𝑁𝐺(𝑣) ∪ {𝑣}. If 𝑋 ⊆ 𝑉(𝐺), the open neighborhood of 𝑋 in 𝐺 is the set 

 

The closed neighborhood of 𝑋 in 𝐺 is the set 

 

 

When no confusion arises, 𝑁𝐺[𝑥] [resp. 𝑁𝐺(𝑥)] will be denoted by 𝑁[𝑥] [resp. 𝑁(𝑥)].  

 

 

𝑁𝐺(𝑋) = ⋃𝑁𝐺
𝑣 ∈𝑋

(𝑣). 𝑁𝐺[𝑋] = ⋃𝑁𝐺
𝑣 ∈𝑋

[𝑣] =  𝑁𝐺(𝑋) ∪ 𝑋. 
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2. Results  

The join of two graphs 𝐺 and 𝐻 is the graph 𝐺 + 𝐻 with vertex-set 𝑉(𝐺 + 𝐻) = 𝑉(𝐺) ∪ 𝑉(𝐻) and edge-

set 𝐸(𝐺 +  𝐻)  =  𝐸(𝐺)  ∪  𝐸(𝐻)  ∪ {𝑢𝑣 ∶  𝑢 ∈  𝑉(𝐺), 𝑣 ∈ 𝑉(𝐻)}. 

Remark 2.1 Let 𝐺 and 𝐻 be connected graphs. Then 𝑉(𝐺) and 𝑉(𝐻) are fair dominating sets of 𝐺 +  𝐻. 

Remark 2.2 Let 𝐺 =  𝑃𝑛 and 𝐻 =  𝑃𝑚 where 𝑛, 𝑚 ≥  2. Then 𝑆 ⊂ 𝑉(𝐺) or 𝑆 ⊂  𝑉(𝐻) is 1-fair or 2-

fair dominating set of 𝐺 + 𝐻. 

We need the following Lemma for our next Theorem. 

Lemma 2.3 Let 𝐺 and 𝐻 be nontrivial connected graphs. If 𝑆 =  𝑆𝐺 ∪ 𝑆𝐻 where 𝑆𝐺 is an 𝑟-fair dominating 

set of 𝐺, 𝑆𝐻 is an 𝑠-fair dominating set of 𝐻, and 𝑟 −  𝑠 =  |𝑆𝐺| − |𝑆𝐻| then 𝑆 is a fair restrained 

dominating set of 𝐺 + 𝐻. 

Proof:  Since 𝑆𝐺 is an 𝑟-fair dominating set of 𝐺, for every 𝑢 ∈ 𝑉(𝐺) ∖ 𝑆𝐺 , |𝑁𝐺(𝑢) ∩ 𝑆𝐺|  = 𝑟. Since 𝑆𝐻 

is an 𝑠-fair dominating set of 𝐻, for every 𝑣 ∈  𝑉(𝐻) ∖ 𝑆𝐻, |𝑁𝐻(𝑣) ∩ 𝑆𝐻|  =  𝑠. Now, 𝑆𝐺 ⊂ 𝑉(𝐺) implies 

that 𝑉(𝐺) ∖ 𝑆𝐺 ≠ ∅. Let 𝑢 ∈ 𝑉(𝐺) ∖ 𝑆𝐺. Then 𝑢 ∈ 𝑉(𝐺 + 𝐻) ∖ 𝑆, |(𝑁𝐺+𝐻(𝑢)  ∩ 𝑆𝐻)|  =  |𝑆𝐻|, and 

 

 
Similarly, since 𝑆𝐻 ⊂ 𝑉(𝐻), 𝑉(𝐻) \ 𝑆𝐻  ≠ ∅. Let 𝑣 ∈ 𝑉(𝐻) \ 𝑆𝐻. Then 𝑣 ∈ 𝑉(𝐺 +  𝐻)\ 𝑆,

|(𝑁𝐺+𝐻(𝑣) ∩ 𝑆𝐺)| = |𝑆𝐺|, and 

 

|𝑁𝐺+𝐻(𝑣) ∩  𝑆| =  |𝑁𝐺+𝐻(𝑣) ∩ (𝑆𝐺 ∪ 𝑆𝐻)| 

= |(𝑁𝐺+𝐻(𝑣) ∩ 𝑆𝐺) ∪ (𝑁𝐺+𝐻(𝑣) ∩ 𝑆𝐻)| 

= |(𝑁𝐺+𝐻(𝑣) ∩ 𝑆𝐺)| + |(𝑁𝐺+𝐻(𝑣) ∩  𝑆𝐻)| 

= |𝑆𝐺|  + |(𝑁𝐻(𝑣)  ∩  𝑆𝐻)| 

= |𝑆𝐺|  +  𝑠. 

Since 𝑟 −  𝑠 =  |𝑆𝐺|  −  |𝑆𝐻| implies that 𝑟 + |𝑆𝐻|  =  |𝑆𝐺|  +  𝑠. It follows that, for every 𝑢, 𝑣 ∈ 𝑉(𝐺 +

𝐻)\𝑆, |𝑁𝐺+𝐻(𝑢) ∩ 𝑆|  =  |𝑁𝐺+𝐻(𝑣) ∩ 𝑆|. Hence, 𝑆 is a fair dominating set of 𝐺 +  𝐻. Now, let 𝑢 ∈

𝑉(𝐺) \ 𝑆𝐺  and 𝑣 ∈  𝑉(𝐻)\ 𝑆𝐻. Then 𝑢, 𝑣 ∈ 𝑉(𝐺 + 𝐻) \ 𝑆 and 𝑢𝑣 ∈  𝐸(𝐺 + 𝐻). Since 𝑆 is a dominating 

set, there exists 𝑥 ∈ 𝑆 such that 𝑥𝑢 ∈  𝐸(𝐺 + 𝐻) or 𝑥𝑣 ∈  𝐸(𝐺 + 𝐻). Thus, every vertex in 𝑉(𝐺 + 𝐻) \ 𝑆 

is adjacent to a vertex in 𝑆 and to another vertex in 𝑉(𝐺 + 𝐻)\ 𝑆. Hence, 𝑆 is a fair restrained dominating 

set of 𝐺 + 𝐻. ∎ 

Lemma 2.4 Let 𝐺 =  𝑃𝑛 = [ 𝑥1,  𝑥2, . . . , 𝑥𝑛] and H =  𝑃𝑛 = [ 𝑦1,  𝑦2, . . . , 𝑦𝑛]  for 𝑛 ≥  4. Then 𝐷 is a 

minimum fair restrained dominating sets of 𝐺 + 𝐻 and 𝑆 is an inverse fair restrained dominating set of 

𝐺 +  𝐻 with respect to 𝐷 such as:  

𝑖) 𝐷 =   {𝑥3𝑖 − 2, 𝑦3𝑖 − 2: 𝑖 =  1, 2, 3, . . .,
𝑛 + 2

3
} and 𝑆 = {𝑥2, 𝑦2, 𝑥3𝑖 ,  𝑦3𝑖 ∶  𝑖 =  1, 2, 3, . . . ,

𝑛 − 1

3
 } if 𝑛 =

3𝑘 + 1 for all positive integer 𝑘. 

𝑖𝑖) 𝐷 =   {𝑥3𝑖 − 2, 𝑦3𝑖 − 2 ∶  𝑖 =  1, 2, 3, . . .,
𝑛 + 1

3
}  and 𝑆 = {𝑥2, 𝑦2, 𝑥3𝑖+2,  𝑦3𝑖+2 ∶  𝑖 =

 1, 2, 3, . . . ,
𝑛 − 2

3
 } if 𝑛 =  3𝑘 +  2 for all positive integer k.  

 

|(𝑁𝐺+𝐻(𝑢) ∩  𝑆| =  |𝑁𝐺+𝐻(𝑢) ∩ (𝑆𝐺 ∪ 𝑆𝐻)| 
= |𝑁𝐺+𝐻(𝑢) ∩ 𝑆𝐺) ∪ (𝑁𝐺+𝐻(𝑢) ∩  𝑆𝐻)| 

= |𝑁𝐺+𝐻(𝑢) ∩ 𝑆𝐺| +  |(𝑁𝐺+𝐻(𝑢) ∩  𝑆𝐻)| 

= |(𝑁𝐺(𝑢) ∩ 𝑆𝐺)| + |𝑆𝐻| 
=  𝑟 + |𝑆𝐻|. 
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𝑖𝑖𝑖) 𝐷 =   {𝑥3𝑖 − 1, 𝑦3𝑖 − 1 ∶  𝑖 =  1, 2, 3, . . .,
𝑛

3
} and 𝑆 =  𝑉(𝐺 +  𝐻) ∖ 𝐷 if 𝑛 =  3𝑘 +  3 for all positive 

integer 𝑘. 

Proof: Suppose that 𝐺 =  𝑃𝑛 = [𝑥1, 𝑥2, … , 𝑥𝑛] and 𝐻 = 𝑃𝑛 = [𝑦1, 𝑦2, … , 𝑦𝑛] for  𝑛 ≥ 4. If 𝑛 =  3𝑘 +

 1 for all positive integer 𝑘, then the set 𝐷𝐺 = {𝑥3𝑖−2 ∶ 𝑖 =  1, 2, 3, … ,
 𝑛 + 2

3
} of order  

𝑛+2

3
 is a minimum 

fair dominating set of 𝐺 and 𝐷𝐻 = {𝑦3𝑖−2: 𝑖 =  1, 2, 3, … ,
𝑛+2

3
} of order   

 𝑛+ 2

3
 𝑖s a minimum fair 

dominating set of 𝐻. This implies that 𝐷 =  𝐷𝐺 ∪ 𝐷𝐻 of order   
𝑛 + 2

3
  + 

𝑛 + 2

3
  = 

2𝑛+4

3
 is a minimum fair 

dominating set of 𝐺 +  𝐻. Observe that for every 𝑢 ∈ 𝑉(𝐺 +  𝐻) ∖ 𝐷, there exists 𝑣 ∈  𝐷 and 𝑢′ ∈

 𝑉(𝐺 + 𝐻) ∖ 𝐷 such that 𝑢𝑣, 𝑢𝑢′ ∈ 𝐸(𝐺 + 𝐻). Thus, 𝐷 is a minimum fair restrained dominating set of 

𝐺 + 𝐻. Using the same arguments for 𝑛 = 3𝑘 +  1, 𝑆 = {𝑥2, 𝑦2, 𝑥{3𝑖}, 𝑦{3𝑖}: 𝑖 =  1, 2, 3, … ,
𝑛 – 1

3
} is also 

a minimum fair restrained dominating set of 𝐺 + 𝐻 of order  2 + 
 𝑛 – 1

3
 +  

 𝑛 – 1

3
 =  2 +  

(𝑛 – 1) +(𝑛−1)

3
=

2 +  
2𝑛 – 2

3
 =  

6 + (2𝑛 – 2)

3
 =  

2𝑛 + 4

3
. Next, if 𝑛 =  3𝑘 + 2 for all positive integer 𝑘, then 𝐷𝐺 =

 {𝑥3𝑖 – 2 ∶  𝑖 =  1, 2, 3, … ,
𝑛 + 1

3
} of order   

𝑛 + 1

3
 is a minimum fair dominating set of 𝐺 and 𝐷𝐻 =

{𝑦3𝑖 – 2 :  𝑖 =  1, 2, 3, … ,
𝑛 + 1

3
} of order 

𝑛 + 1

3
 is a minimum fair dominating set of 𝐻. This implies that 𝐷 =

𝐷𝐺 ∪ 𝐷𝐻 of order   
𝑛 + 1

3
 + 

𝑛 + 1

3
 =   

2𝑛 + 2

3
 is a minimum fair dominating set of 𝐺 + 𝐻. Observe that for 

every 𝑢 ∈  𝑉(𝐺 + 𝐻) ∖ 𝐷, there exists 𝑣 ∈ 𝐷 and 𝑢′ ∈ 𝑉(𝐺 + 𝐻) ∖ 𝐷 such that 𝑢𝑣, 𝑢𝑢′ ∈  𝐸(𝐺 +  𝐻). 

Thus, 𝐷 is a minimum fair restrained dominating set of 𝐺 + 𝐻. Using the same arguments for 𝑛 =  3𝑘 +

2, 𝑆 = {𝑥2, 𝑦2, 𝑥3𝑖+2, 𝑦3𝑖+2: 𝑖 =  1, 2, 3, … ,
𝑛 – 2

3
} is also a minimum fair restrained dominating set of 

𝐺 + 𝐻 of order  2 +
𝑛 −2

3
 +

𝑛 – 2

3
 =  2 +  

(𝑛 – 2)+ (𝑛 – 2)

3
 =  2 + 

2𝑛 – 4

3
 =  

6 + (2𝑛 – 4)

3
 =   

2𝑛 + 2

3
 . Now, if 

𝑛 =  3𝑘 + 3 for all positive integer 𝑘, then 𝐷𝐺 = {𝑥3𝑖 – 1 ∶  𝑖 =  1, 2, 3, … ,
𝑛

3
} of order 

𝑛

3
  is a minimum 

fair dominating set of 𝐺 and 𝐷𝐻 =  {𝑦3𝑖 – 1 :  𝑖 =  1, 2, 3, … ,
𝑛

3
} of order   

𝑛

3
  is a minimum fair dominating 

set of 𝐻. This implies that 𝐷 = 𝐷𝐺 ∪ 𝐷𝐻  of order   
𝑛

3
 + 

𝑛

3
=

2𝑛

3
 is a minimum fair dominating set of 𝐺 +

 𝐻. Observe that for every 𝑢 ∈  𝑉(𝐺 +  𝐻) ∖ 𝐷, there exists 𝑣 ∈  𝐷 and 𝑢′ ∈  𝑉(𝐺 +  𝐻) \𝐷 such that 

𝑢𝑣, 𝑢𝑢′ ∈  𝐸(𝐺 +  𝐻). Thus, 𝐷 is a minimum fair restrained dominating set of 𝐺 +  𝐻. Using the same 

arguments for 𝑛 =  3𝑘 +  3, 𝑆 =  𝑉 (𝐺 +  𝐻) ∖ 𝐷 is also a fair restrained dominating set of 𝐺 +  𝐻 of 

order |𝑆| =  |𝑉(𝐺 + 𝐻)\ 𝐷| =   |𝑉(𝐺 + 𝐻)| − |𝐷| =  2𝑛 − 
2𝑛

3
= 

6𝑛 − 2𝑛

3
=

4𝑛

3
. This complete the 

proofs.∎ 

Lemma 2.5 Let 𝐺 =  𝑃𝑛 = [ 𝑥1, 𝑥2, . . . , 𝑥𝑛] and 𝐻 = 𝑃𝑚 = [ 𝑦1, 𝑦2, . . . , 𝑦𝑚] for 𝑛 ≥  4 and 𝑚 ≥  5 with 

𝑚 =  𝑛 +  1. The minimum fair restrained dominating sets 𝐷 and 𝑆 of 𝐺 +  𝐻 are the following:  

 

𝑖) 𝐷 = {𝑥3𝑖−2 ∶  𝑖 =  1, 2, 3, . . . ,
𝑛 + 2

3
 } ∪ {𝑦3𝑖−2 ∶  𝑖 =  1, 2, 3, . . .,

𝑚 + 1

3
} and  

𝑆 =  {𝑥2, 𝑥3𝑖 ∶  𝑖 =  1, 2, 3, . . .,
𝑛−1

3
} ∪ {𝑦3𝑖: 𝑖 =  1, 2, 3, . . . ,

𝑚+1

3
} if  𝑛 =  3𝑘 +  1  for all positive 

integer 𝑘.  

𝑖𝑖) 𝐷 =   {𝑥3𝑖−1, 𝑥𝑛−1 ∶  𝑖 =  1, 2, 3, . . .,
𝑛

3
} ∪ { 𝑦3𝑖 − 2: 𝑖 =  1, 2, 3, … ,

𝑚+2

3
} and 
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𝑆 = { 𝑥2, 𝑥3𝑖 ∶  𝑖 =  1, 2, 3, . . .,
𝑛

3
} ∪ { 𝑦2,  𝑦3𝑖 ∶  𝑖 =  1, 2, 3, . . .,

𝑚−1

3
} if 𝑛 = 3𝑘 + 3 for all positive 

integer 𝑘. 

Proof: Suppose that 𝐺 =  𝑃𝑛 = [ 𝑥1, 𝑥2, . . . , 𝑥𝑛] and 𝐻 =  𝑃𝑚 = [ 𝑦1, 𝑦2, . . . , 𝑦𝑚] for 𝑛 ≥ 4 and 𝑚 ≥ 5 

with 𝑚 =  𝑛 +  1. If 𝑛 =  3𝑘 +  1 for all positive integer 𝑘, then the set 𝐷𝐺 = {𝑥3𝑖−2: 𝑖 =

 1, 2, 3, … ,
𝑛+2

3
} of order 

𝑛 + 2

3
 is a minimum fair dominating set of 𝐺 and 𝐷𝐻 = {𝑦3𝑖−2 ∶  𝑖 =  1, 2, 3, . . .,

𝑚 + 1

3
} of order  

𝑚+1

3
 is a minimum fair dominating set of 𝐻. Since   

𝑚+1

3
= 

(𝑛 + 1) + 1

3
=  

𝑛 + 2

3
 , it follows 

that 𝐷 =  𝐷𝐺  ∪  𝐷𝐻  of order   
𝑛 + 2

3
+ 

𝑛 + 2

3
=

2𝑛 + 4

3
 is a minimum fair dominating set of 𝐺 +  𝐻. Observe 

that for every 𝑢 ∈  𝑉(𝐺 +  𝐻)  ∖  𝐷, there exists 𝑣 ∈ 𝐷 and 𝑢′ ∈  𝑉(𝐺 + 𝐻) ∖ 𝐷 such that 𝑢𝑣, 𝑢𝑢′ ∈

𝐸(𝐺 +  𝐻). Thus, 𝐷 is a minimum fair restrained dominating set of 𝐺 +  𝐻. Using the same arguments 

for 𝑛 =  3𝑘 +  1, 𝑆 =   {𝑥2,  𝑥3𝑖 ∶  𝑖 =  1, 2, 3, . . . ,   
𝑛 − 1

3
} ∪ {𝑦3𝑖 ∶  𝑖 =  1, 2, 3, . . . ,   

𝑚 + 1

3
} is also a 

minimum fair restrained dominating set of 𝐺 +  𝐻 of order [ 1 +   
𝑛 − 1

3
 ] +

𝑚 + 1

3
 =

  
3 + (𝑛 − 1) + ((𝑛+ 1) + 1)

3
 =   

2𝑛 + 4

3
. Now, if 𝑛 =  3𝑘 +  3 for all positive integer 𝑘, then 𝐷𝐺  =

 {𝑥3𝑖 − 1, 𝑥𝑛−1 ∶  𝑖 =  1, 2, 3, . . .,
𝑛

3
} of order   

𝑛

3
  +  1 is a minimum fair dominating set of 𝐺 and 𝐷𝐻 =

 {𝑦3𝑖 − 2 ∶  𝑖 =  1, 2, 3, . . .,
𝑚 + 2

3
} of order   

𝑚 + 2

3
 is a minimum fair dominating set of 𝐻. Since  

𝑚 + 2

3
=

  
(𝑛 + 1) + 2

3
= 

𝑛 + 3

3
=

𝑛

3
+ 1, it follows that 𝐷 =  𝐷𝐺 ∪ 𝐷𝐻 of order [  

𝑛

3
 +  1] + [ 

𝑛

3
 +  1] =   

2𝑛

3
+  2 is a 

minimum fair dominating set of 𝐺 +  𝐻. Observe that for every 𝑥 ∈ 𝑉(𝐺 +  𝐻) ∖ 𝐷, there exists 𝑦 ∈ 𝐷 

and 𝑥′ ∈ 𝑉 (𝐺 +  𝐻) ∖ 𝐷 such that 𝑥𝑦, 𝑥𝑥′ ∈  𝐸(𝐺 +  𝐻). Thus, 𝐷 is a minimum fair restrained 

dominating set of 𝐺 + 𝐻. Using the same arguments for 𝑛 =  3𝑘 + 3, 𝑆 =   {𝑥2, 𝑥3𝑖 ∶  𝑖 =

 1, 2, 3, . . . ,
𝑛

3
} ∪ {𝑦2, 𝑦3𝑖 ∶  𝑖 =  1, 2, 3, . . .,

𝑚 − 1

3
} is also a minimum fair restrained dominating set of 𝐺 +

 𝐻 of order [1 +  
𝑛

3
] + [1 + 

𝑚 − 1

3
]  =  [1 +  

𝑛

3
]  +  [1 +  

(𝑛 + 1)− 1

3
]  =  2 + 

2𝑛

3
. This complete the 

proofs. ∎ 

The following result is the characterization of the inverse fair restrained domination in the join of two 

paths. 

Theorem 2.6 Let 𝐺 = 𝑃𝑛 and 𝐻 =  𝑃𝑚 where 𝑛,𝑚 ≥  2. Then a nonempty proper subset 𝑆 of 𝑉(𝐺 + 𝐻) 

is an inverse fair restrained dominating set of 𝐺 + 𝐻 if and only if one of the following statement is 

satisfied. 

   (𝑖)   𝑆 =  𝑉(𝐺) and 𝛾(𝐻)  =  1. 

  (𝑖𝑖)  𝑆 =  𝑉(𝐻) and 𝛾(𝐺)  =  1. 

(𝑖𝑖𝑖)  𝑆 is a 1-fair dominating set of 𝐺 and 𝑛 =  2  

or 𝑆 is a 2-fair dominating set of 𝐺 and 𝑛 =  3. 

(𝑖𝑣)  𝑆 is a 1-fair dominating set of 𝐻 and 𝑚 =  2  

or 𝑆 is a 2-fair dominating set of 𝐻 and 𝑚 =  3. 

(𝑣)  𝑆 =  𝑆𝐺 ∪ 𝑆𝐻 where 𝑆𝐺 ⊂ 𝑉(𝐺) is an 𝑟-fair dominating set of 𝐺,  𝑆𝐻 ⊂ 𝑉(𝐻) is an 𝑠-fair dominating 

set of 𝐻, |𝑆𝐺| +  𝑠 =  𝑟 + |𝑆𝐻|, and 𝐷 is a minimum fair dominating set of 𝐺 + 𝐻.  

Proof: Suppose a nonempty proper subset 𝑆 of 𝑉(𝐺 + 𝐻) is an inverse fair restrained dominating set of 

𝐺 + 𝐻. Consider the following cases: 
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Case 1. Consider that 𝑆 ∩   𝑉(𝐻)  =  ∅ . Then 𝑆 ⊆ 𝑉 (𝐺). Suppose that 𝑆 =  𝑉(𝐺), then 𝑆 is a fair 

dominating set of 𝐺 +  𝐻 by  Remark 2.1. If  𝛾(𝐻)  ≠  1, say 𝛾(𝐻)  =  2, then let 𝐷 be the minimum fair 

dominating set of 𝐻. Clearly, 𝑚 =  4 or 𝑚 =  5 or 𝑚 =  6 since 𝛾(𝐻)  =  2 and 𝐻 = 𝑃𝑚. For every 𝑢 ∈

 𝑉(𝐺)  ⊂  𝑉(𝐺 +  𝐻) and 𝑣 ∈  𝑉(𝐻) \ 𝐷 ⊂  𝑉(𝐺 +  𝐻), 𝑁𝐺+𝐻(𝑢)  ∩  𝐷 =  2 ≠  1 =  𝑁𝐺+𝐻(𝑣)  ∩  𝐷, 

that is 𝐷 is not a fair dominating set of 𝐺 +  𝐻. Hence, 𝑆 ⊂  𝑉(𝐺 + 𝐻) \ 𝐷 is not an inverse fair 

dominating set of 𝐺 +  𝐻 with respect to 𝐷, a contradiction. Hence, 𝛾(𝐻)  =  1, and the proof of statement 

(𝑖) is satisfied. Suppose that 𝑆 ≠  𝑉(𝐺). Let 𝑢 ∈  𝑉(𝐺) \ 𝑆 and 𝑣 ≠  𝑢 such that 𝑢, 𝑣 ∈  𝑉(𝐺 +  𝐻) \ 𝑆. 

Then, |𝑁𝐺+𝐻(𝑢)  ∩  𝑆|  =  |𝑁𝐺+𝐻(𝑣)  ∩  𝑆| since 𝑆 is a fair dominating set of 𝐺 +  𝐻. If 𝑣 ∈  𝑉 (𝐺) \ 𝑆, 

then  

 |𝑁𝐺(𝑢)  ∩  𝑆|  =  |𝑁𝐺(𝑣)  ∩  𝑆|  =  𝑘 for some positive integer 𝑘. 

This implies that 𝑆 is a 𝑘-fair dominating set of 𝐺. By Remark 2.2, 𝑛,𝑚 ≥  2 and 𝑘 =  1 or 𝑘 =  2 since 

𝐺 =  𝑃𝑛, a path. If 𝑛 =  2 or 𝑛 =  3, then statement (𝑖𝑖𝑖) is satisfied. Clearly if 𝑛 ≥  4, then 𝑆 is not an 

inverse fair restrained dominating set of 𝐺 +  𝐻 since 𝐻 =  𝑃𝑚 and 𝑚 ≥  2. 

 Case 2. Consider that 𝑆 ∩  𝑉(𝐺)  =  ∅. Then 𝑆 ⊆  𝑉(𝐻). If 𝑆 =  𝑉(𝐻), then 𝑆 is a fair dominating 

set of 𝐺 +  𝐻 by Remark 2.1. If 𝛾(𝐺)  ≠ 1, say 𝛾(𝐺)  =  2, then let 𝐷 be the minimum fair dominating 

set of 𝐺. Clearly, 𝑛 =  4 or 𝑛 =  5 or 𝑛 =  6 since 𝐺 =  𝑃𝑛. For every 𝑢 ∈  𝑉(𝐻)  ⊂  𝑉(𝐺 +  𝐻) and 

𝑣 ∈  𝑉(𝐺) \ 𝐷 ⊂  𝑉(𝐺 +  𝐻), 𝑁𝐺+𝐻(𝑢)  ∩  𝐷 =  2 ≠  1 =  𝑁𝐺+𝐻(𝑣)  ∩  𝐷, that is 𝐷 is not a fair 

dominating set of 𝐺 +  𝐻. Hence, 𝑆 ⊂  𝑉(𝐺 +  𝐻) \ 𝐷 is not an inverse fair dominating set of 𝐺 +  𝐻 

with respect to 𝐷, a contradiction. Hence, 𝛾(𝐺)  =  1, and the proof of statement (𝑖𝑖) is satisfied. Suppose 

that 𝑆 ≠  𝑉(𝐻). Let 𝑢 ∈  𝑉(𝐻) \ 𝑆 and 𝑣 ≠  𝑢 such that 𝑢, 𝑣 ∈  𝑉(𝐺 + 𝐻) \ 𝑆. Then, |𝑁𝐺+𝐻(𝑢)  ∩

 𝑆|  =  |𝑁𝐺+𝐻(𝑣)  ∩  𝑆| since 𝑆 is a fair dominating set of 𝐺 + 𝐻. If 𝑣 ∈  𝑉(𝐻) \ 𝑆, then |𝑁𝐻(𝑢)  ∩  𝑆|  =

 |𝑁𝐻(𝑣)  ∩  𝑆|  =  𝑘 for some positive integer 𝑘. 

This implies that 𝑆 is a 𝑘-fair dominating set of 𝐻. By Remark 2.2, 𝑛,𝑚 ≥  2 and 𝑘 =  1 or 𝑘 =  2 since 

𝐻 = 𝑃𝑚, a path. If 𝑚 =  2 or 𝑚 =  3, then statement (𝑖𝑣) is satisfied. Clearly if 𝑚 ≥  4, then 𝑆 is not an 

inverse fair restrained dominating set of 𝐺 +  𝐻 since 𝐺 =  𝑃𝑛 and 𝑛 ≥  2.  

Case 3. Consider that 𝑆 ∩  𝑉(𝐺)  ≠  ∅ and 𝑆 ∩ 𝑉(𝐻)  ≠  ∅. Let 𝑆𝐺 =  𝑆 ∩  𝑉(𝐺) and 𝑆𝐻 =  𝑆 ∩  𝑉 (𝐻). 

Then 𝑆 =  𝑆𝐺 ∪ 𝑆𝐻 where 𝑆𝐺 ⊂  𝑉(𝐺) and 𝑆𝐻 ⊂ 𝑉(𝐻). Suppose that to the contrary, 𝑆𝐺 is not a fair 

dominating set of 𝐺. Then there exists distinct vertices 𝑢 and 𝑣 in 𝑉(𝐺) ∖ 𝑆𝐺 such that 

|𝑁𝐺(𝑢)  ∩  𝑆𝐺|  ≠  |𝑁𝐺(𝑣)  ∩  𝑆𝐺|. 

Thus, 

 
This contradict to our assumption that 𝑆 is a fair dominating set of 𝐺 + 𝐻. Therefore, 𝑆𝐺 must be a fair 

dominating set of 𝐺. Similarly, 𝑆𝐻  is a fair dominating set of 𝐻. Thus, for every vertex 𝑢 ∈ 𝑉(𝐺) ∖ 𝑆𝐺, 

  

 |𝑁𝐺(𝑢)  ∩  𝑆𝐺|  =  𝑟, where 𝑟 =  1 or 𝑟 =  2 since 𝐺 =  𝑃𝑛 is a path,  

|𝑁𝐺+𝐻(𝑢) ∩  𝑆| =  |𝑁𝐺+𝐻(𝑢) ∩ (𝑆𝐺 ∪ 𝑆𝐻)| 
= |(𝑁𝐺+𝐻(𝑢) ∩ 𝑆𝐺) ∪ (𝑁𝐺+𝐻(𝑢) ∩  𝑆𝐻)| 
= |(𝑁𝐺(𝑢) ∩  𝑆𝐺) ∪ 𝑆𝐻|, since 𝑢 ∈ 𝑉(𝐺) ∖ 𝑆 

= |𝑁𝐺(𝑢) ∩ 𝑆𝐺| +  |𝑆𝐻| 
≠ |𝑁𝐺(𝑣) ∩ 𝑆𝐺| + |𝑆𝐻| 
= |(𝑁𝐺(𝑣) ∩ 𝑆𝐺) ∪ 𝑆𝐻| 
= |(𝑁𝐺+𝐻(𝑣) ∩  𝑆𝐺) ∪ (𝑁𝐺+𝐻(𝑣) ∩ 𝑆𝐻)|,   since 𝑣 ∈ 𝑉 (𝐺) ∖  𝑆 

= |𝑁𝐺+𝐻(𝑣) ∩ (𝑆𝐺  ∪  𝑆𝐻)| 
= |𝑁𝐺+𝐻(𝑣)  ∩  𝑆| 
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and for every vertex 𝑣 ∈ 𝑉(𝐻) ∖ 𝑆𝐻, 

  

 |𝑁𝐻(𝑣)  ∩  𝑆𝐻|  =  𝑠, where 𝑠 =  1 or 𝑠 =  2 since 𝐻 =  𝑃𝑚 is a path. 

  

 This implies that 𝑆𝐺 is an 𝑟-fair dominating set of 𝐺 and 𝑆𝐻 is an 𝑠-fair dominating set of 𝐻.  

  

 Now, let 𝑢 ∈ 𝑉(𝐺) ∖ 𝑆𝐺 and 𝑣 ∈ (𝐻) ∖ 𝑆𝐻. Then,  

 

 
 

|𝑁𝐺+𝐻(𝑣)  ∩  𝑆|  =  |𝑁𝐺+𝐻(𝑣)  ∩ (𝑆𝐺  ∪  𝑆𝐻)| 

= |(𝑁𝐺+𝐻(𝑣)  ∩  𝑆𝐺)  ∪  (𝑁𝐺+𝐻(𝑣)  ∩ 𝑆𝐻)| 

= |𝑆𝐺  ∪  (𝑁𝐻(𝑣)  ∩ 𝑆𝐻)| 

= |𝑆𝐺|  +  |𝑁𝐻(𝑣)  ∩ 𝑆𝐻| 

= |𝑆𝐺| +  𝑠. 

This proves statement (𝑖𝑣). 

For the converse, suppose that statement (𝑖) is satisfied. Since 𝑆 =  𝑉(𝐺), 𝑆 is a fair dominating set of 

𝐺 +  𝐻 by Remark 2.1. Since 𝛾(𝐻)  =  1 and 𝐻 =  𝑃𝑚, it follows that 𝑚 =  2 or 𝑚 =  3. Let 𝑣 ∈  𝑆. 

Then for every 𝑢 ∈  𝑉(𝐺 + 𝐻) ∖ 𝑆 =  𝑉(𝐻), there exists 𝑧 ∈  𝑉(𝐻) where (𝑧 ≠  𝑢) such that 𝑢𝑧, 𝑢𝑣 ∈

 𝐸(𝐺 + 𝐻). That is, 𝑆 is a restrained dominating set of 𝐺 + 𝐻. Now, let 𝑆′ =  {𝑦} be the dominating set 

of 𝐻 since 𝛾(𝐻)  =  1. Then 𝑆′ is a minimum fair dominating set of 𝐺 +  𝐻. Since 𝑛 ≥  2, for every 𝑢 ∈

 𝑉 (𝐺 +  𝐻) ∖ 𝑆′, there exists 𝑧 ∈  𝑉 (𝐺 +  𝐻) ∖ 𝑆′ where (𝑧 ≠  𝑢) such that 𝑢𝑧, 𝑢𝑦 ∈  𝐸(𝐺 +  𝐻). 

Hence, 𝑆′ is a restrained dominating set of 𝐺 +  𝐻, that is, 𝑆′ is a minimum fair restrained dominating set 

of 𝐺 +  𝐻. This implies that 𝑆 ⊂ 𝑉 (𝐺 +  𝐻) ∖  𝑆′ is an inverse fair restrained dominating set of 𝐺 +  𝐻 

with respect to 𝑆′. 

Suppose that statement (𝑖𝑖) is satisfied. If 𝑆 = 𝑉(𝐻), then 𝑆 is a fair dominating set of 𝐺 + 𝐻 by Remark 

2.1. Since 𝛾(𝐺)  =  1 and 𝐺 =  𝑃𝑛, it follows that 𝑛 =  2 or 𝑛 =  3. Let 𝑣 ∈  𝑆. Then for every 𝑢 ∈

 𝑉 (𝐺 +  𝐻) ∖  𝑆 =  𝑉(𝐺), there exists 𝑧 ∈  𝑉(𝐺) where (𝑧 ≠  𝑢) such that 𝑢𝑧, 𝑢𝑣 ∈  𝐸(𝐺 +  𝐻). That 

is, 𝑆 is a restrained dominating set of 𝐺 +  𝐻. Now, let 𝑆′′ = {𝑥} be the dominating set of 𝐺 since 𝛾(𝐺)  =

 1. Then 𝑆′′ is a minimum fair dominating set of 𝐺 +  𝐻. Since 𝑚 ≥  2, for every 𝑢 ∈  𝑉(𝐺 +  𝐻)  ∖  𝑆′′, 

there exists 𝑧 ∈  𝑉 (𝐺 +  𝐻)  ∖  𝑆′′ where (𝑧 ≠  𝑢) such that 𝑢𝑧, 𝑢𝑥 ∈  𝐸(𝐺 + 𝐻). Hence, 𝑆′′ is a 

restrained dominating set of 𝐺 +  𝐻, that is, 𝑆′′ is a minimum fair restrained dominating set of 𝐺 + 𝐻. 

This implies that 𝑆 ⊂  𝑉(𝐺 + 𝐻) ∖ 𝑆′′ is an inverse fair restrained dominating set of 𝐺 + 𝐻 with respect 

to 𝑆′′. 

Suppose that statement (𝑖𝑖𝑖) is satisfied. Consider that 𝑛 =  2 that is, 𝐺 =  𝑃2 and let 𝑉(𝐺) = { 𝑥, 𝑦}. The 

S = {x} is a 1-fair dominating set of 𝐺, that is, 𝑆 is a 1-fair dominating set of 𝐺 +  𝐻. Since for every 

𝑢 ∈  𝑉(𝐺 +  𝐻) ∖ 𝑆 there exists 𝑣 ∈  𝑉(𝐺 +  𝐻)  ∖  𝑆 such that 𝑢𝑣, 𝑢𝑥 ∈  𝐸(𝐺 +  𝐻). Thus, 𝑆 is a 

restrained dominating set of 𝐺 +  𝐻, that is, 𝑆 is a fair restrained dominating set of 𝐺 +  𝐻. Similarly, 

𝑆′ =  {𝑦} is a fair restrained dominating set of 𝐺 +  𝐻. This implies that 𝑆 ⊂  𝑉(𝐺 +  𝐻) ∖ 𝑆′ is an 

|𝑁𝐺+𝐻(𝑢) ∩  𝑆| =  |𝑁𝐺+𝐻(𝑢) ∩  (𝑆𝐺 ∪  𝑆𝐻)| 
= |(𝑁𝐺+𝐻(𝑢) ∩ 𝑆𝐺) ∪ (𝑁𝐺+𝐻(𝑢) ∩  𝑆𝐻)| 
= |(𝑁𝐺(𝑢) ∩  𝑆𝐺) ∪ 𝑆𝐻| 
= |(𝑁𝐺(𝑢) ∩  𝑆𝐺| + |𝑆𝐻| 
= 𝑟 + |𝑆𝐻|  and 
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inverse fair restrained dominating set of 𝐺 +  𝐻 with respect to 𝑆′. Consider that 𝑛 =  3 and let 𝐺 =

 𝑃3 = [ 𝑥1,  𝑥2, 𝑥3]. Then 𝑆 =  {𝑥1,  𝑥3} is a 2-fair dominating set of 𝐺, that is, 𝑆 is a 2-fair dominating set 

of 𝐺 + 𝐻. Since for every 𝑢 ∈  𝑉(𝐺 +  𝐻) ∖  𝑆 there exists 𝑣 ∈  𝑉(𝐺 +  𝐻)  ∖  𝑆 such that 𝑢𝑣, 𝑢𝑥1  ∈

 𝐸(𝐺 +  𝐻) or 𝑢𝑣, 𝑢𝑥3  ∈  𝐸(𝐺 +  𝐻), S is a restrained dominating set of 𝐺 +  𝐻, that is, 𝑆 is a fair 

restrained dominating set of 𝐺 +  𝐻. Similarly, 𝑆′ =  {𝑥2} is a minimum fair restrained dominating set of 

𝐺 +  𝐻. This implies that 𝑆 ⊂ 𝑉(𝐺 + 𝐻) ∖ 𝑆′ is an inverse fair restrained dominating set of 𝐺 + 𝐻 with 

respect to 𝑆′. 

Suppose that statement (𝑖𝑣) is satisfied. Consider that 𝑚 = 2, that is, 𝐻 =  𝑃2 and let 𝑉(𝐻)  =  {𝑥, 𝑦}. 

Then 𝑆 = {𝑥} is a 1-fair dominating set of 𝐻, that is, 𝑆 is a 1-fair dominating set of 𝐺 + 𝐻. Since for every 

𝑢 ∈ 𝑉(𝐺 + 𝐻) ∖ 𝑆 there exists 𝑣 ∈ 𝑉(𝐺 + 𝐻) ∖ 𝑆 such that 𝑢𝑣, 𝑢𝑥 ∈  𝐸(𝐺 + 𝐻). Thus, 𝑆 is a restrained 

dominating set of 𝐺 + 𝐻, that is, 𝑆 is a fair restrained dominating set of 𝐺 +  𝐻. Similarly, 𝑆′ = {𝑦} is a 

fair restrained dominating set of 𝐺 + 𝐻. This implies that 𝑆 ⊂  𝑉(𝐺 +  𝐻)  ∖  𝑆′ is an inverse fair 

restrained dominating set of 𝐺 +  𝐻. Consider that 𝑚 =  3 and let 𝐻 = 𝑃3 = [ 𝑥1, 𝑥2, 𝑥3]. Then 𝑆 =

 { 𝑥1, 𝑥3} is a 2-fair dominating set of 𝐻, that is, 𝑆 is a 2-fair dominating set of 𝐺 +  𝐻. Since for every 

𝑢 ∈  𝑉(𝐺 +  𝐻)  ∖  𝑆 there exists 𝑣 ∈  𝑉(𝐺 +  𝐻)  ∖  𝑆 such that 𝑢𝑣, 𝑢𝑥1  ∈  𝐸(𝐺 +  𝐻) or 𝑢𝑣, 𝑢𝑥3  ∈

 𝐸(𝐺 +  𝐻). Thus, 𝑆 is a restrained dominating set of 𝐺 +  𝐻, that is, 𝑆 is a fair restrained dominating set 

of 𝐺 +  𝐻. Similarly, 𝑆′ =  {𝑥2} is a minimum fair restrained dominating set of 𝐺 + 𝐻. This implies that 

𝑆 ⊂  𝑉(𝐺 +  𝐻) ∖ 𝑆′ is an inverse fair restrained dominating set of 𝐺 +  𝐻. 

Finally, suppose that statement (𝑣) is satisfied. Then 𝑆 =  𝑆𝐺  ∪  𝑆𝐻 where 𝑆𝐺  ⊂  𝑉(𝐺) is a 𝑟-dominating 

set of 𝐺, and 𝑆𝐻 ⊂  𝑉(𝐻) is a 𝑠-fair dominating set of 𝐻, and |𝑆𝐺|  +  𝑠 =  𝑟 + |𝑆𝐻|. By Lemma 2.3, 𝑆 is 

a fair restrained dominating set of 𝐺 +  𝐻. Consider that  𝛾(𝐺 +  𝐻)  =  1. Then  𝛾(𝐺)  =  1 or  𝛾(𝐻)  =

 1. Supposed that  𝛾(𝐺)  =  1. Then 𝐺 =  𝑃2  =  [ 𝑥, 𝑦] (𝑜𝑟 𝐺 =  𝑃3 = [ 𝑥, 𝑦, 𝑧]). Set 𝐷 =  𝑉 (𝐺) ∖

𝑆𝐺  =  {𝑦}. Then 𝐷 is a minimum fair restrained dominating set of 𝐺 +  𝐻, where 𝑆𝐺 = {𝑥 } (or 𝑆𝐺  =

{ 𝑥, 𝑧}) and 𝑆𝐻 = {𝑢}  ⊂  𝑉(𝐻). Since 𝑆𝐻 is a dominating set of 𝐻 =  𝑃𝑚, 𝑚 =  2 or 𝑚 =  3, that is, 𝑃2 =

{ 𝑢, 𝑣} (or 𝑃3 = { 𝑡, 𝑢, 𝑣}). Hence, 𝑆 =  𝑆𝐺 ∪ 𝑆𝐻 = { 𝑥, 𝑢} (or 𝑆 =  { 𝑥, 𝑧, 𝑢}) is an inverse fair dominating 

set of 𝐺 + 𝐻 with respect to 𝐷. Suppose that  𝛾(𝐻)  =  1. Then 𝑆 is an inverse fair restrained dominating 

set of 𝐺 + 𝐻 by similar arguments above. Now, consider that  𝛾(𝐺 +  𝐻)  ≠  1. Then 𝑛 ≥  4 and 𝑚 ≥

 4 for 𝐺 =  𝑃𝑛 = [ 𝑥1, 𝑥2,  𝑥3, . . . , 𝑥𝑛] and 𝐻 =  𝑃𝑚 = [ 𝑦1, 𝑦2,  𝑦3, . . . , 𝑥𝑚]. If 𝑛 =  𝑚, then by Lemma 

2.4, 𝐷 is a minimum fair restrained dominating set of 𝐺 +  𝐻 and 𝑆 is an inverse fair restrained dominating 

set of 𝐺 +  𝐻. If 𝑛 ≠  𝑚, say 𝑚 =  𝑛 + 1, then by Lemma 2.5, 𝐷 is a minimum fair restrained dominating 

set of 𝐺 + 𝐻 and 𝑆 is an inverse fair restrained dominating set of 𝐺 +  𝐻. This completes the proof. ∎ 

The following result is an immediate consequence of Theorem 2.6. 

Corollary 2.7 Let 𝐺 = 𝑃𝑛 and 𝐻 = 𝑃𝑚 where 𝑛,𝑚 ≥  2, and 𝑆 is an inverse fair restrained dominating 

set of 𝐺 + 𝐻. Then   

𝛾𝑓𝑟𝑑
−1 (𝐺 + 𝐻) =

{
 
 

 
 
1, 𝑖𝑓 𝑆 𝑖𝑠 𝑎 1 − 𝑓𝑎𝑖𝑟   𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 𝑜𝑓 𝐺 𝑎𝑛𝑑 𝑛 =  2 

 𝑜𝑟 𝑆 𝑖𝑠 𝑎 1 − 𝑓𝑎𝑖𝑟 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 𝑜𝑓 𝐻 𝑎𝑛𝑑 𝑚 =  2.

2, 𝑖𝑓 𝑆 𝑖𝑠 𝑎 2 − 𝑓𝑎𝑖𝑟 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 𝑜𝑓 𝐺 𝑎𝑛𝑑 𝑛 =  3, (𝑚 ≥  4)

               𝑜𝑟 𝑆 𝑖𝑠 𝑎 2 − 𝑓𝑎𝑖𝑟 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 𝑜𝑓 𝐻 𝑎𝑛𝑑 𝑚 =  3, (𝑛 ≥  4
|𝑆|, 𝑖𝑓 𝑆 =  𝑆𝐺 ∪ 𝑆𝐻,  𝑆𝐺 𝑖𝑠 𝑎 𝑚𝑖𝑛 𝑓𝑎𝑖𝑟 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 𝑜𝑓 𝐺,

    𝑆𝐻 𝑖𝑠 𝑎 𝑚𝑖𝑛 𝑓𝑎𝑖𝑟 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 𝑜𝑓 𝐻, 𝑎𝑛𝑑 𝑚, 𝑛 ≥  4 

 

 

Proof: Suppose that 𝑆 is a 1-fair dominating set of 𝐺 and 𝑛 =  2, say 𝑉(𝐺)  = { 𝑥1, 𝑥2}. Let 𝑆 = {𝑥1} and 

𝐷 = {𝑥2}. Since for every 𝑢 ∈  𝑉(𝐺 +  𝐻) ∖ 𝐷 there exists 𝑢′ ∈  𝑉(𝐺 +  𝐻) ∖ 𝐷 (𝑢 ≠  𝑢′) such that 
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𝑢𝑢′ ∈ 𝐸(𝐺 +  𝐻) and 𝑢𝑥1 ∈  𝐸(𝐺 + 𝐻), 𝐷 is a restrained dominating set of 𝐺. Since 𝐷 is a 1-fair 

dominating set of 𝐺, 𝐷 is a minimum fair restrained dominating set of 𝐺 +  𝐻. Similarly, 𝑆 is a fair 

restrained dominating set of 𝐺 +  𝐻, that is, 𝑆 is a minimum inverse fair restrained dominating set of 𝐺 +

 𝐻 with respect to 𝐷. Hence, 𝛾𝑓𝑟𝑑
−1 (𝐺 +  𝐻)  =  |𝑆|  =  1. If 𝑆 is a 1-fair dominating set of 𝐻 and 𝑚 =  2, 

then 𝛾𝑓𝑟𝑑
−1 (𝐺 +  𝐻)  =  |𝑆|  =  1 by using the same arguments above. Next, if 𝑆 is a 2-fair dominating set 

of 𝐺 (or 𝐻) and 𝑛 = 3 (or 𝑚 = 3). 𝐿𝑒𝑡 𝐺 = [ 𝑥1, 𝑥2, 𝑥3] (or 𝐻 = [ 𝑥1, 𝑥2, 𝑥3]). Then 𝐷 =  {𝑥2} is a 

minimum fair restrained dominating set of 𝐺 +  𝐻. The 𝑆 = { 𝑥1, 𝑥3}  ⊂  𝑉(𝐺) (𝑜𝑟 𝑆 ⊂  𝑉(𝐻)) is a 

minimum inverse fair restrained dominating set of 𝐺 + 𝐻 since 𝑚 ≥  4 (or 𝑛 ≥  4) with respect to 𝐷. 

Thus, 𝛾𝑓𝑟𝑑
−1 (𝐺 +  𝐻)  =  |𝑆| = 2 Finally, suppose that 𝑆 =  𝑆𝐺 ∪ 𝑆𝐻, 𝑆𝐺 is a minimum fair dominating set 

of 𝐺, 𝑆𝐻 is a minimum fair dominating set of 𝐻 and 𝑚, 𝑛 ≥  4. Let 𝐺 = 𝑃𝑛 = [ 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛] and 

𝐻 =  𝑃𝑚  =  [ 𝑦1, 𝑦2, 𝑦3, . . . ,  𝑥𝑚]. Consider that 𝑛 =  𝑚. By Lemma 2.4, 𝐷 = {𝑥3𝑖 − 2, 𝑦3𝑖 − 2 ∶  𝑖 =

 1, 2, 3, . . .,
𝑛 + 2

3
} is a minimum fair dominating set of 𝐺 +  𝐻 and 

 

 
is an inverse fair dominating set of 𝐺 + 𝐻 with respect to 𝐷 if 𝑛 = 𝑚 = 3𝑘 +  1 for all positive integer 

𝑘. Since 

|𝑆| = |{𝑥2, 𝑦2, 𝑥3𝑖 , 𝑦3𝑖 ∶  𝑖 =  1, 2, 3, … ,
𝑛 −  1

3
}| 

=   1 +  1 + 
𝑛 − 1

3
+ 
𝑛 − 1

3
 

= 
3 +  3 + (𝑛 −  1) + (𝑛 −  1)

3
 

= 
6 +  2𝑛 –  2

3
  

=
2𝑛 +  4

3
   

=
𝑛 +  2

3
+ 
𝑛 +  2

3
 

= |{𝑥3𝑖−2, 𝑦3𝑖−2 ∶  𝑖 =  1, 2, 3, … ,
𝑛 +  2

3
}| 

= |𝐷| 

where 𝐷 is a minimum fair restrained dominating set of 𝐺 +  𝐻, it follows that 𝑆 is also a minimum 

inverse fair restrained dominating set of 𝐺 +  𝐻 with respect to 𝐷. Therefore, 𝛾𝑓𝑟𝑑
−1 (𝐺 + 𝐻) =  

2𝑛 + 4

3
=

 |𝑆|. This complete the proofs. ∎ 

3. Conclusion and Recommendations 

In this work, the fair restrained domination in the join of two paths of order 𝑛 ≥ 2 were characterized and 

the exact fair restrained domination number resulting from this binary operation of two paths were 

computed. This study will result to new research such as bounds and other binary operations of two graphs.  

𝑆 =  𝑆𝐺 ∪ 𝑆𝐻 

= {𝑥2, 𝑥3𝑖: 𝑖 =  1, 2, 3, … ,
𝑛 −  1

3
} ⋃{𝑦2, 𝑦3𝑖: 𝑖 =  1, 2, 3, … ,

𝑛 −  1

3
} 

= {𝑥2, 𝑦2, 𝑥3𝑖 , 𝑦3𝑖 ∶  𝑖 =  1, 2, 3, . . . ,
𝑛 −  1

3
} 
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Other parameters involving the inverse fair restrained domination in graphs may also be explored. Finally, 

the characterization of a fair restrained domination in graphs and its bounds is a promising extension of 

this study.  
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