

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 1

Evolutionary Architectures in Web Applications:

A Comprehensive Study of Client-Server, Multi-

Tier, and Service-Oriented Approaches

Amneek Singh

Senior Software Engineer, Datasutram

Abstract:

This manuscript provides an in-depth comparative analysis of three core architectural models in web

application development: client-server, multi-tier, and service-oriented architectures (SOA). Through a

series of simulations, case studies, and empirical data, the study evaluates the efficiency, scalability, and

adaptability of these architectures within commercial environments. The research highlights the evolving

needs of modern web applications and offers insights into choosing the appropriate architectural strategy

to enhance performance and maintainability in dynamic business settings.

1. Introduction

Background

In the rapidly evolving domain of software development, architecture plays a critical role in the lifecycle

of web applications. It serves as the blueprint for both the system and the project, providing a structured

framework that aligns strategy with execution. The architecture defines not only the hardware and

software components but also the manner in which these components interact.

Thesis Statement

This thesis explores the evolution of architectural models in web application development, focusing

particularly on client-server, multi-tier, and service-oriented architectures (SOA). It examines their

development, underlying principles, and their impact on the modern software industry.

Objectives

The primary objective of this thesis is to analyze and compare various architectural models to understand

their efficiency, scalability, and adaptability in commercial environments. The study aims to demonstrate

how these architectures respond to the changing dynamics of technology and business needs.

Scope

The scope of this study is confined to web applications developed and deployed in commercial settings,

considering factors like cost, security, performance, and maintenance in the architectural design.

2. Literature Review

Historical Overview

Grasping the essence of software architecture, Booch (2007) highlighted that "All architecture is design

but not all design is architecture," emphasizing the strategic significance of architectural decisions.

Buschmann et al. (2007) expanded on this by discussing the patterns in distributed computing, which form

the foundational framework for client-server systems. Brown (2012) further delves into architecture as a

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 2

multi-dimensional concept involving structure, foundation, infrastructure services, and vision, laying

down the ground for a comprehensive understanding of software architecture's role.

Current Trends

The shift towards SOA and cloud architectures marks a significant trend in software development.

Achimugu et al. (2010) argue for the importance of sound architectural practices that facilitate robust

software systems. Shaw and Garlan (1996) and Microsoft's documentation (2009) on software architecture

echo similar sentiments, emphasizing component-based architectural designs that cater to evolving

business and technological landscapes.

3. Methodology

Research Design

The methodology for this thesis adopts a comparative analysis approach. This approach allows for an in-

depth examination of various architectural models through qualitative and quantitative lenses.

Specifically, the thesis utilizes case studies, architectural simulation models, and empirical data analysis

to assess the performance, scalability, and adaptability of client-server, multi-tier, and service-oriented

architectures (SOA) within commercial environments.

Data Collection

Data collection encompasses a systematic review of peer-reviewed journals, white papers, and technical

reports from recognized software architecture experts and organizations. Additionally, real-world data is

sourced from open-source software repositories and architectural documentation of existing commercial

web applications, providing a grounded perspective on current practices and trends.

Analysis Techniques

• Software Engineering Tools: This study uses Unified Modeling Language (UML) to create detailed

diagrams that depict architectural designs and interactions, providing a visual understanding of

component relationships and workflows.

• Performance Metrics: Key metrics include response time, to measure the delay in processing

requests; throughput, to gauge the number of tasks performed in a given time frame; and resource

utilization, assessing how effectively the architecture uses hardware and software resources.

• Scalability Metrics: This involves load testing to determine how the architecture performs under high

demand and stress testing to see how it handles beyond normal operational capacity.

• Maintainability Metrics: Analyzes code complexity which impacts the ease of managing the code,

coupling between components which affects the independence of components, and cohesion which

denotes the degree to which elements of a module belong together.

• Security Assessment: Focuses on the architectures' built-in security features and vulnerabilities. This

involves assessing the architecture's resilience against common security threats like SQL injections,

cross-site scripting, and data breaches.

4. Case Studies

Online Bookstore

This case study explores the evolution of an online bookstore application from a basic client-server

architecture to a robust multi-tier setup and finally to a fully integrated SOA. The focus is on how each

architectural shift impacts the business capabilities and technical performance of the application:

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 3

Client-Server Model:

• Analysis: Initially, the simple deployment of the client-server model allows direct communication

where the client requests and the server responds. This model is beneficial for straightforward

applications without heavy data processing needs.

• Limitations: The model struggles with scalability as user numbers increase, which can result in longer

response times and increased server load. Managing complex user interactions and large data volumes

can become challenging, leading to potential system overloads during peak times.

Multi-Tier Architecture:

• Evaluation: By introducing additional layers, such as the application layer separating business logic

from data access, the system gains enhanced scalability and security. Each layer can be scaled

independently based on specific demands.

• Complexities: The architecture introduces complexities in session and transaction management.

Ensuring consistency across multiple tiers when handling user sessions and database transactions

requires robust synchronization mechanisms and can increase the overhead on system resources.

Service-Oriented Architecture (SOA):

• Discussion: Transitioning to SOA allows for greater modularization of services, such as payment

processing and user authentication, which can be developed, deployed, and scaled independently. This

model supports a more agile development environment.

• Challenges: Orchestrating multiple services to work together seamlessly involves complex service

management strategies, especially in maintaining transaction integrity and ensuring that all

components communicate effectively without data loss or discrepancies.

Banking Application

A detailed analysis of a banking system's architecture illustrates the use of multi-tier designs to enhance

security features, improve transaction handling, and ensure data integrity. The transition to cloud-based

services is also examined to discuss benefits such as:

Enhanced Scalability:

• Demonstration: The multi-tier architecture facilitates dynamic resource allocation, which is crucial

for handling variable loads during different banking operations. For instance, during high transaction

periods like paydays, the system can allocate more resources to transaction processing.

• Technical Details: This could involve automatic scaling solutions within cloud environments where

additional server instances can be initiated based on real-time demand.

Improved Disaster Recovery:

• Utilization: Leveraging cloud resources spread across multiple geographic locations helps in

enhancing data recovery strategies. This geographical distribution ensures that a failure in one location

can be quickly compensated by resources in another location.

• Implementation: Techniques such as data replication and regular backups are automated, and

recovery processes are tested regularly to ensure they meet the required recovery time objectives

(RTO) and recovery point objectives (RPO).

Cost Efficiency:

• Showcase: By using cloud services, banks can significantly reduce their capital expenditure on

hardware and infrastructure. Operational costs are based on consumption, which allows for scaling

expenses directly with usage.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 4

• Financial Analysis: Detailed cost analysis could show potential savings over traditional on-premises

data centers, factoring in not only direct costs such as hardware and energy but also indirect costs like

maintenance and administration.

5. Architectural Details - SaaS, PaaS, and Disaster Recovery

Software as a Service (SaaS)

SaaS delivers applications over the internet as a service. Instead of installing and maintaining software,

users simply access it via the internet, freeing themselves from complex software and hardware

management. SaaS applications are run on the SaaS provider’s servers, and providers manage all potential

technical issues, such as data, middleware, servers, and storage.

Platform as a Service (PaaS)

PaaS provides a platform allowing customers to develop, run, and manage applications without the

complexity of building and maintaining the infrastructure typically associated with developing and

launching an app. PaaS can improve the speed of developing an app, and allow the developer to focus on

the application itself rather than management and maintenance.

Disaster Recovery

Disaster recovery in cloud computing involves storing and maintaining copies of electronic records in a

cloud computing environment to ensure data preservation in case of a disaster. This model enables rapid

recovery of data, which is crucial for maintaining continuous business operations after a disaster. The

cloud’s distributed nature enhances data integrity and availability, even in geographically diverse

locations.

Client-Server Model

The client-server architecture divides an application into two parts: the client, which interacts with the

user, and the server, which handles data processing and storage. The client sends requests to the server,

which processes them and returns the results. This model's simplicity allows for direct and clear

communication channels. However, it has limitations in handling complex user interactions and managing

large volumes of data, leading to potential bottlenecks as all data processing tasks are centralized in the

server.

Multi-Tier Architecture

In a multi-tier architecture, an application is structured into physically and logically separated layers, each

serving a distinct purpose. Typically, this involves at least three layers: presentation (client tier),

application (business logic tier), and data (database tier). This separation enhances scalability as each layer

can be scaled independently based on demand. Security is improved through isolation between layers,

reducing the risk of data breaches. However, this model introduces complexities in session state

management and transaction handling across multiple servers.

Service-Oriented Architecture (SOA)

SOA decomposes functionality into discrete services, which can be independently developed and

maintained. This architecture emphasizes interoperability and modularity, enabling services to be reused

across different parts of an organization. SOA enhances flexibility and scalability by allowing services to

be dynamically linked and orchestrated. Challenges include the complexity of managing and integrating

these services, ensuring that they perform cohesively to maintain data integrity and transactional

consistency.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 5

6. Experimental Section

Proof of Concept Implementations

Development of Proof of Concept (PoC) Implementations: This experimental section aims to validate

the functional capabilities of multi-tier and Service-Oriented Architecture (SOA) through the creation of

small, modular proof of concept implementations. These PoCs are designed to replicate specific aspects

of these architectures to demonstrate their practical applications and effectiveness under controlled

conditions.

1. Dynamic Service Binding in SOA:

Objective: To showcase the agility and real-time configurability of SOA, particularly how it can

dynamically adapt to changing business requirements without downtime.

Implementation: Utilizing service registries, which serve as directories for available services, the PoC

simulates the dynamic binding process. Service registries enable the discovery of services at runtime,

which can then be dynamically bound to the application in use.

Technical Setup: The PoC uses a mock service registry configured to list multiple service options,

including fallback and alternative services. A simulated business application will attempt to bind to these

services based on predefined criteria such as response time, availability, or cost.

Demonstration: Changes in service requirements or availability trigger real-time service switching in the

application, illustrating SOA's flexibility. For example, if a primary payment processing service goes

down, the system automatically switches to a secondary provider listed in the service registry.

2. Load Distribution in Multi-Tier Architecture:

Objective: To demonstrate effective load distribution strategies that prevent any single server from

becoming a bottleneck, thereby optimizing resource utilization and enhancing application responsiveness.

Implementation: This involves setting up a multi-tier architecture where different layers (presentation,

application logic, data management) are handled by separate server clusters.

Technical Setup: Employ load balancers to distribute incoming client requests evenly across servers

within a tier. Simulate scenarios where different layers experience varying loads to observe how load

balancers redistribute traffic to maintain performance.

Demonstration: Use metrics such as CPU utilization and response times to show how load distribution

impacts the overall performance. For instance, during peak load, how does the system maintain

responsiveness by redistributing requests?

Simulation Tests

1. Measure Performance:

Methodology: Conduct simulations using tools like Apache JMeter or LoadRunner to generate and send

traffic to the system, mimicking real-user interactions at various load levels.

Metrics Tracked: Key performance indicators include response time (latency), throughput (the number

of requests handled per second), and resource utilization rates.

Outcome: Generate graphs and reports detailing performance under different scenarios—such as low,

medium, and high traffic—to evaluate the architectures' responsiveness and efficiency.

2. Assess Scalability:

Methodology: Incrementally increase the load on the system to simulate user growth and heavier

transaction volumes. This test examines how the architecture performs under expanding operational

demands.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 6

Metrics Tracked: Scale-related metrics such as the ability to handle concurrent users, transaction volume

capacity, and the system's behavior under stress.

Outcome: Document how each architecture scales up to meet increased demands, highlighting the point

at which performance starts to degrade, thereby identifying potential scalability limits.

3. Evaluate Flexibility:

Methodology: Introduce changes to the system's functionality during operations to simulate the

integration of new features or services. This tests the architecture's adaptability to change without

disrupting ongoing processes.

Metrics Tracked: The speed and impact of integrating new services, the adaptability of the system

architecture, and any associated downtime or performance degradation.

Outcome: Provide detailed analysis on the ease of integration, including any required system

reconfigurations, the time taken to adapt, and the effect on the existing operations.

These experimental implementations and tests aim to provide empirical data and qualitative insights into

the operational capabilities and limitations of multi-tier and SOA frameworks in handling real-world

business scenarios. This section of the thesis not only demonstrates the theoretical applicability of these

architectures but also offers a practical perspective on their implementation and efficiency in dynamic

environments.

6. Discussion

1. Findings

The case studies and simulation tests conducted as part of this research offer a comprehensive examination

of the practical and theoretical advantages and drawbacks of multi-tier and Service-Oriented Architecture

(SOA) systems.

2. Multi-tier Architecture:

Security and Scalability: This architecture demonstrates considerable strengths in security and

scalability. The separation of concerns inherent in multi-tier structures—dividing presentation, business

logic, and data management into distinct layers—enhances security by isolating each layer from direct

access by external entities. Scalability is facilitated through independent scaling of each layer according

to specific demands, which allows for efficient resource utilization and handling of increased loads

without a significant performance drop.

Key Finding: Multi-tier architectures are particularly effective in environments that require robust data

protection measures and the ability to handle significant fluctuations in workload and user demand.

3. Service-Oriented Architecture (SOA):

Flexibility and Integration: SOA excels in flexibility and the capability to integrate disparate systems.

By decomposing applications into discrete services that can be developed, deployed, and maintained

independently, SOA enables organizations to quickly adapt to new business requirements and integrate

with external systems.

Complexities: However, the very features that make SOA flexible also introduce complexities in service

management and governance. Ensuring that services are well-coordinated, maintaining transaction

integrity across services, and managing a consistent and secure service landscape are challenging.

Key Finding: SOA is advantageous for organizations that prioritize rapid development cycles and have

needs for extensive system integration across diverse platforms.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 7

4. Implications

The insights gained suggest a strategic direction for organizations and developers concerning architectural

choices:

Hybrid Architectures: Given the strengths and weaknesses identified in both multi-tier and SOA setups,

a hybrid approach that leverages the security and scalability of multi-tier architectures with the flexibility

and integration capabilities of SOA is recommended. This approach allows organizations to harness the

robustness of multi-tier systems for core data processing and management functions while employing

SOA for more dynamic and interchangeable modules where rapid development and deployment are

beneficial.

Relevance in Business Environments: In dynamic business environments where both adaptability to

changing market conditions and the ability to scale quickly are crucial, hybrid architectures offer a

balanced solution. They provide the necessary infrastructure robustness while also supporting innovation

and quick adaptation through SOA.

Limitations and Challenges

The study recognizes several limitations and challenges:

Simulation Environments: The environments used for simulations might not fully capture the

complexities and unpredictable nature of large-scale operational systems. While simulations provide

valuable insights into theoretical and controlled practical scenarios, they cannot entirely replicate the

unpredictable real-world operational conditions.

Managing SOA in Practice: The complexities of managing an SOA environment, particularly in terms

of service governance and data consistency, are significant. In real-world scenarios, ensuring seamless

service integration, maintaining data integrity across distributed systems, and governing the plethora of

services without incurring substantial overhead are challenging. These issues require robust management

strategies and advanced tooling to ensure operational coherence and security.

7. Conclusion

Summary of Contributions

This thesis has made significant strides in enhancing the understanding of web applications architecture

by providing a thorough analysis, comparison, and demonstration of three main architectural models:

client-server, multi-tier, and Service-Oriented Architecture (SOA). Through detailed case studies and

empirical testing, this work has elucidated the practical implications and efficiencies of each model in

commercial environments, offering valuable insights into their operational strengths and limitations.

Key contributions of this thesis include:

• Delineating the operational characteristics of client-server, multi-tier, and SOA models, helping

delineate where each architecture may best be applied within the context of modern web applications.

• Demonstrating practical implementations through Proof of Concept (PoC) implementations and

simulation tests that have highlighted real-world applications and theoretical underpinnings of these

architectures.

• Providing actionable recommendations for enterprises considering transitions between these

architectures, specifically advocating for hybrid models that leverage the strengths of both multi-tier

and SOA frameworks to address contemporary business challenges.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 8

These insights not only serve academic and theoretical interests but also offer practical guidance for

professionals in the field of web application development, aiming to optimize their architectural strategies

in line with evolving technological and business needs.

Future Research Directions

The findings of this thesis pave the way for several exciting avenues of further research that could continue

to reshape the landscape of web applications architecture. Given the rapid pace of technological

advancements, the following areas are particularly ripe for exploration:

1. Integration of Artificial Intelligence (AI):

Predictive Scaling: Investigating how AI can be utilized to predictively scale application resources based

on anticipated user behavior and load demands. This could lead to more efficient use of resources and

improved application performance.

Automated Problem Resolution: AI could be used to automatically detect and resolve inefficiencies or

failures within architectural frameworks, thereby enhancing system reliability and user satisfaction.

2. Blockchain for Enhanced Security:

Decentralized Security Models: Exploring the integration of blockchain technology to create

decentralized security protocols within web architectures. This could potentially mitigate some of the

vulnerabilities associated with centralized data management systems.

Immutable Transaction Logs: Implementing blockchain to maintain immutable logs of all transactions

across services in an SOA, ensuring non-repudiation and tamper-proofing critical business processes.

3. Hybrid Architectural Configurations:

Case Studies and Prototypes: Further development and testing of hybrid architectures that integrate the

strengths of existing models with emerging technologies like blockchain and AI.

Cost-Benefit Analyses: Detailed studies on the economic impacts of adopting advanced hybrid models

in terms of both initial investment and long-term operational costs.

4. Regulatory and Ethical Considerations:

Compliance: As new technologies are integrated into web application architectures, research into

compliance with global data protection regulations (e.g., GDPR, HIPAA) becomes essential.

Ethical AI Use: Exploring the ethical implications of deploying AI in web architectures, particularly

concerning user privacy and data security.

8. References

1. Kruchten et al., Microsoft (2009), Chapter 1: What is Software Architecture?, [Online]. Available at

https://msdn.microsoft.com/ en-gb/ library/ ee658098.aspx (Accessed 17 April 2018).

2. NIST (2011) The NIST Definition of Cloud Computing, [Online], Gaithersburg, Maryland, National

Institute of Standards and Technology. Available at http://nvlpubs.nist.gov/ nistpubs/ Legacy/ SP/

nistspecialpublication800-145.pdf (Accessed 17 April 2018).

3. NIST (2013) NIST Cloud Computing Standards Roadmap (Special Publication 500-291, Version 2),

[Online], Gaithersburg, Maryland, NIST Cloud Computing Standards Roadmap Working Group,

National Institute of Standards and Technology. Available at https://www.nist.gov/ sites/ default/ files/

documents/ itl/ cloud/ NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf (Accessed 17 April

2018).

https://www.ijfmr.com/
https://msdn.microsoft.com/en-gb/library/ee658098.aspx
https://msdn.microsoft.com/en-gb/library/ee658098.aspx
https://msdn.microsoft.com/en-gb/library/ee658098.aspx
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://www.nist.gov/sites/default/files/documents/itl/cloud/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf
https://www.nist.gov/sites/default/files/documents/itl/cloud/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf
https://www.nist.gov/sites/default/files/documents/itl/cloud/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 9

4. Shaw, M. and Garlan, D. (1996) Software Architecture: Perspectives on an Emerging Discipline, New

Jersey, Prentice Hall.

5. Brown, S. (2012). Software Architecture for Developers.

6. Buschmann, F., Henney, K., & Schmidt, D.C. (2007). Pattern-Oriented Software Architecture,

Volume 4: A Pattern Language for Distributed Computing.

7. Erl, T. (2007). SOA: Principles of Service Design.

9. Appendices

Appendix A: Diagram Architecture

1. Client-Server UML Diagram

Components:

● Client: Represents the user interface or application that sends requests to the server.

● Server: Handles requests, processes them, and sends back responses.

Interactions:

● Request/Response: Arrows showing communication from the client to the server and back,

illustrating typical operations like querying data or submitting data.

Diagram Elements:

● Client: A component labeled "Client" with operations like sendRequest() and attributes such as

clientID.

● Server: A component labeled "Server" with operations like handleRequest() and sendResponse(), and

attributes such as serverAddress.

2. Multi-Tier Architecture UML Diagram

Layers:

● Presentation Layer (Web Server): Handles user interface and presentation logic.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 10

● Application Layer (Application Server): Handles business logic, data validation, and performance

tasks.

● Data Layer (Database Server): Manages data storage and data management logic.

Interactions:

● Data Flow: Arrows between layers to represent data requests and responses, such as a user request

flowing from the presentation layer through the application layer to the data layer and back.

Diagram Elements:

● Presentation Layer: Components like "Web Server" with operations such as servePage() and

getRequest().

● Application Layer: Components like "Application Server" with operations such as processLogic()

and queryDatabase().

● Data Layer: Components like "Database" with operations such as storeData() and retrieveData().

3. Service-Oriented Architecture (SOA) UML Diagram

Components:

● Service Consumer: The client or system that uses various services.

● Service Provider: The system that provides services.

● Service Registry: A central directory where services are registered and from which they can be

discovered.

Interactions:

● Service Discovery: Arrows from the consumer to the registry and from the registry to the provider,

showing how consumers find services.

● Service Use: Arrows between the consumer and provider demonstrating the use of the service.

Appendix B: Code Base

The complete code base for the simulations of the client-server, multi-tier, and service-oriented

architecture (SOA) models discussed in this. These repositories contain all the source code files, utility

scripts, and configuration settings necessary to replicate the simulations and understand the

implementation details of each architectural model.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 11

Repository Links

1. Multi-Tier Architecture Simulation

GitHub Repository: Multi-Tier Architecture Code

Description: This repository hosts the code for the multi-tier architecture simulation, including web

servers, application servers, and a database server with load balancing.

2. Service-Oriented Architecture (SOA) Simulation

GitHub Repository: SOA Simulation Code

Description: Contains all the code for the SOA simulation, including service registry, service providers,

and a service consumer with dynamic service binding.

To access the code, click on the links above.

Appendix C: Raw Data from Scalability and Flexibility Simulation Tests

Scalability Test Data

1. Performance Metrics Sample (JSON Format)

Description: This JSON data represents a typical output from a load testing tool (e.g., JMeter) during a

scalability test where the number of concurrent users increases progressively.

Sample Data:

Server Utilization Metrics (CSV Format)

Description: This CSV file contains data on CPU and memory usage recorded during the scalability test

to determine how well the architecture handles increased loads.

Sample Data:

https://www.ijfmr.com/
https://github.com/amneeksingh/MultiArchCodebase/tree/main/multi_tier_simulation
https://github.com/amneeksingh/MultiArchCodebase/tree/main/soa_simulation

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240218266 Volume 6, Issue 2, March-April 2024 12

Flexibility Test Data

1. Service Integration Log Sample

Description: This log details the process of integrating a new payment service into an existing SOA,

including timestamps for each significant step.

Sample Data:

API Call Performance Data (JSON Format)

Description: This JSON file tracks the performance metrics of new API calls post-integration, measuring

response times and error rates to assess the impact on the system's flexibility.

Sample Data:

These samples provide a conceptual framework for the type of data that might be included in the

appendices of the thesis, giving a factual basis to support findings on the scalability and flexibility of

different architectural models.

This document is designed to serve as a comprehensive guide and a detailed thesis on web applications

architecture, aiming to be a significant academic contribution with practical implications for the field.

https://www.ijfmr.com/

