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Abstract 

Sign language is used as a way of communication by deaf and mute individuals. However, due to the 

limited number of people who understand sign language, integrating them into society is challenging. 

Approximately 6.9% of Bangladesh's population and 5% of the world’s population suffer from speech 

impediments. Individuals with this condition cannot hear what others are saying or communicate verbally, 

thus sign language must be relied upon. In recent years, sign language recognition has gained attention 

due to its necessity. However, a scarcity of publicly available dynamic gesture datasets for Bangladeshi 

Sign Language (BdSL) exists. Dynamic gestures, which contain both spatial and temporal information, 

are more useful in real-life applications. The classification of dynamic gestures requires more data than 

static gestures. In this research, 11 numeral Bengali digit signs are aimed to be classified. Data has been 

collected from the “SignBD-Word” dataset, which contains extracted RGB human body pose keypoints 

skeleton data. When compared to other dynamic sign language datasets and data requirements for training 

deep neural networks for dynamic gestures, the data per class in this dataset is found to be insufficient. A 

hybrid model architecture is proposed in this research to recognize dynamic gestures using lightweight 

3DCNN and bidirectional LSTM layers for classifying gestures from the motion patterns of human body 

pose keypoints skeleton data after experimenting on various models. It has been observed that combining 

3DCNN with the pre-trained DenseNet-201 and the BiLSTM model increases real-time accuracy by 

4.54%. To the best of our knowledge, this is the first approach to combine 3DCNN with DenseNet-201 

for action recognition. Also, one of the earliest investigations on dynamic BdSL hand gesture digit 

recognition using dynamic data. Additionally, different pre-trained models as base feature extractors have 

been evaluated. 

 

Keywords: BdSL, Sign language, Deep learning, Transfer learning, Body joints skeleton, Action 

recognition 

 

1. Introduction 

Hand gestures are a nonverbal technique to communicate emotion, emphasize and structure a 

conversation, and point to persons and objects. Sign language is a gesture-based language used mostly by 

disabled individuals to communicate more successfully with one another and with normal people. Despite 

the ambiguity of hand gesturing meanings, which largely depend on the current working situation and 

geographical and cultural background, some army, navy, and air force motions can express precise 

information, allowing Human-Robot Interaction (HRI) via hand gestures. So, adopting a more reliable and 

precise system for identifying HGR’s necessity cannot be ignored. Bangla Sign Language (BdSL) is the 
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sign language used in Bangladesh. The units of the numeric system, called Bengali numerals, come from 

the Indian subcontinent and are extensively used in many languages. More than 350 million people (or 

over 5% of the world’s population) use them [13]. Offline sign language detection methods normally use 

image or video datasets. However, very few works have been done to recognize Bengali sign language 

from video datasets due to the scarcity of video datasets for BdSL. Images record one still instant; they 

are unable to represent the important temporal dynamics that are present in gestures. Videos provide the 

model with a constant stream of frames from which it may extract motion features such as direction 

changes, acceleration, and velocity. For dynamic motion gesture recognition (DMGR) tasks, a deep 

learning model trained on video data performs better than one trained on static images [2]. Sign languages 

for Bangla base numerals are ০, ১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯ which are described in below, 

 

Figure 1: Bengali Base Numeral Hand Gestures. 

 

Table 1: Class Labels with Corresponding 

Bengali And English Translations. 

Class labels Bengali English 

shunno ০ 0 

ek ১ 1 

dui ২ 2 

tin ৩ 3 

char ৪ 4 

pach ৫ 5 

choy ৬ 6 

saat ৭ 7 

aat ৮ 8 

noy ৯ 9 

dos ১০ 10 
 

 

In this research, 11 numeral BdSL signs were classified including base numeral along with number 10. 

Since video-based data has a second (temporal) dimension, classifying it is more difficult than images. 

However, some CNN video domain extensions have been investigated. Several methods are used to 

recognize human gestures to date. The two-stream CNN [31], two-stream 3D CNN [32], 3DCNN+ 

ConvLSTM [33], 3D CNN [13], and 3D CNN + LSTM [34] are among the technologies that are frequently 

used for action recognition. Deep learning has thus been successfully applied in many recent projects. 

Recognizing gestures from fewer sample videos is a challenging task because traditional 3DCNN requires 

more data than 2DCNN to classify. Human body joints store incredibly accurate information regarding 

human positions, making them a considerably more convenient and efficient way to describe activities 

and, consequently, how they are carried out [8]. Also, Human skeletons are easily obtained using sensors 

or pose recognition tools, and they are robust to changes in background and illumination [6]. This research 

intended to classify the motion of the human body keypoint joints skeleton containing frames extracted 

from the human body which requires less spatial features than human poses. For this research, a hybrid 

3DCNN+BiLSTM structure with a base pre-trained model Densenet-201 as a feature extractor is proposed 

for classifying body joint skeleton motion patterns. Also, a few augmentation techniques considering real-
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life pose variations and data variations on the dataset were applied and used different pre-trained models 

as feature extractors. Out of them, DenseNet-201[1] outperformed other pre-trained models. 

The following is a summary of this paper's key contributions: 

1. One of the earliest investigations on dynamic BdSL hand gesture digit recognition using motion 

pattern of performed dynamic gesture.  

2. A comparative study on the effectiveness of using different pre-trained models as base feature 

extractors. 

3. Proposed a hybrid 3DCNN+ BiLSTM model using DenseNet-201 as a base feature extractor after 

evaluating the efficiency of using pre-trained models combined with 3DCNN to assess model 

performance. 

4. This study pioneers the implementation of DenseNet-201 with 3DCNN and BiLSTM for enhanced 

action recognition, presenting a novel approach not extensively explored in existing literature. 

 

2. Related Works 

Guo, Z. et al. (2022) [3] suggested a method for capturing detailed body information using Whole-Body 

Keypoint and Skeleton (WKS) labels. They developed an architecture that achieves superior performance 

by utilizing the Swin transformer when combined with three-dimensional (3D) convolutional neural 

networks (CNNs) to extract spatiotemporal characteristics. Using the UCF-101 dataset, they evaluated 

their performance. Hachiuma, R. et al. (2023) suggested a method [4] in which a Structured Keypoint 

Pooling network was proposed. The suggested approach offers resilience against input errors by sparsely 

aggregating keypoint features in a cascaded fashion based on previous knowledge of the data structure, 

such as the instances and frames to which each keypoint belongs. They evaluated their method by 

comparing RGB input frames skeleton, skeleton+object. Both skeleton and skeleton+object for classifying 

different actions outperformed the RGB input frames for different action recognition.  

Altaf, Y. et al. (2023) proposed an approach for Indian Sign Language Recognition [9] while they used 

DenseNet-201 with Transfer Learning and gained very high accuracy for image-based classification. Al-

Hammadi et al. (2020) [5] stated an approach utilizing 3DCNN for learning region-based spatiotemporal 

features of hand gestures. Two different approaches, a single 3DCNN structure, and a fusion of parallel 

3DCNN structures were used for both signer-dependent and signer-independent modes. Sharma, S. et al. 

(2021) [22] proposed a system for recognizing American sign language (ASL) from motion gesture videos 

using video data as input. They used 3DCNN for processing video data. In their system, Frames were 

extracted from RGB videos and converted to grayscale, and different preprocessing steps like noise and 

spot reduction were done. The frames were recombined later for passing to cascaded 3DCNN. The system 

is implemented for recognizing 100s of different ASL words. The first method to use 3DCNN for 

keypoints skeleton-based classification was proposed by Liu, H. et al. (2017) [32]. They proposed a two-

stream 3DCNN method for human skeleton-based action recognition.  

Several static BdSL datasets are available publicly like BdSL-D1500[26], Ishara Lipi [27], KU-BdSL 

[28], Ishara-Bochon [30], etc. But to the best of our knowledge, only one dynamic BdSL hand gesture has 

been published publicly which is SignBD-Word [10]. Various image-based BdSL digit and alphabet 

classification works have been done till now. Among them, Islam, S. et al. (2018) [20] proposed a CNN 

model to recognize BdSl base numeral digits and trained the model on Ishara Lipi [27]. Another research 

was conducted on recognizing BdSL digits by Rayeed, S. M. et al. (2022) [29], where they presented a 
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dataset for the base BdSl numerals and used an SVM model for depth information containing image class 

classification purposes. 

 

3. Baseline Models Overview 

This research evaluated the performance of several models, including both pre-trained and custom-built 

architectures or layers. Pretrained models like I3D and DenseNet (DenseNet-201, DenseNet-169) were 

analyzed for their efficiency and accuracy. Additionally, models developed from scratch, such as 

3DCNN, LSTM, and BiLSTM were also reviewed. The study provides a comprehensive comparison and 

insight into how each model performs under different conditions. 

3.1 3DCNN 

A 3DCNN [13] proposed by Tran, D. et al. is similar to a 2DCNN except for a few things. 2D convolutions 

produce a single image by using the same weights over the entire depth of the stack of frames (many 

channels). To preserve the temporal information of the frame stack, 3D convolutions employ 3D filters 

and result in a 3D volume. The input layer of 3DCNN takes sequences of frames as input where the images 

have width and height like 2DCNN and another spatiotemporal feature like depth or time.  The hidden 

layers consist of 3D convolutional operations and pooling layers. Several typical hyperparameters for 

defining convolutional operations include stride, padding, filter size, and 3DCNN layers, which enhance 

the recognition of moving and 3D images. A three-dimensional filter that moves in three directions is 

present in each layer (x, y, z). A convolutional map is produced during the 3D convolution process, which 

is required for data analysis as well as time and volumetric context. 

3.2 DenseNet 

DenseNet-201, a variant of the Dense Convolutional Network (DenseNet) architecture, is known for its 

efficiency in feature extraction through the dense connectivity pattern among its layers [1]. Each layer in 

DenseNet-201 receives additional inputs from all preceding layers and passes on its feature maps to all 

subsequent layers, which facilitates a highly efficient flow of information throughout the network. This 

architecture proves particularly beneficial when working with small datasets, as it inherently includes 

regularizing characteristics that help reduce overfitting—a common challenge in training deep learning 

models on limited data. Moreover, the network's ability to leverage deep supervision ensures that even 

the earliest layers contribute directly to the final output, enhancing the model’s sensitivity to fine details 

in dynamic motion patterns. DenseNet-169 which is another variant of DenseNet, adopts a less complex 

architecture. This depth reduction in comparison to the 201 layers of DenseNet-201 results in a trade-off 

between processing efficiency and accuracy.  

3.3 LSTM 

For handling sequential data, long short-term memory (LSTM) networks proposed by Hochreiter, S. et al. 

have become a potent tool for dynamic motion pattern recognition [14]. In contrast to conventional 

feedforward neural networks, long-range relationships within motion sequences can be learned by LSTMs 

thanks to an internal memory structure. This is important for applications like video action identification, 

where correct classification depends on a grasp of the temporal relationships between frames. Compared 

to models that just use spatial variables, LSTMs perform better because they can capture the finer details 

of human motion, such as the rhythm of stride or the flow of gestures [17]. 

3.4 BiLSTM  

Bidirectional LSTMs (BiLSTMs) provide an even more sophisticated method, building on the success of 

LSTMs in dynamic motion pattern recognition [18]. Standard LSTMs process input exclusively in one 
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direction, even though they are quite good at identifying temporal connections within a sequence. To 

overcome this, BiLSTMs combine two LSTMs, one of which processes the sequence ahead and the other 

backward. This enables the model to simultaneously utilize data from previous and subsequent frames in 

the sequence [19]. This is especially helpful for applications like complicated action recognition, where 

proper categorization depends on the context of the frames that come before and after. Research has 

demonstrated that in dynamic motion pattern recognition tasks, BiLSTMs can outperform normal LSTMs, 

resulting in enhanced accuracy and robustness in action recognition applications [24].  

3.5 I3D 

The I3D (Inflated 3D ConvNet) model is a pivotal development in action recognition, originally 

introduced by Carreira, J. et al. [25] in 2017. It adapts 2D ConvNet architectures into 3D, enabling 

simultaneous capture of spatial and temporal features in video data which significantly improves action 

recognition accuracy. Subsequent enhancements, including integration with attention mechanisms and 

graph-based techniques, have further boosted its performance, demonstrating its effectiveness and 

adaptability in the field of video analysis. Recent studies have also explored hybrid approaches, combining 

I3D with other deep learning models to further enhance its ability to handle complex motion patterns. 

 

4. Dataset Description 

Although there are video datasets for widely used sign languages of different languages, currently, we are 

aware of just one dataset for word-level BdSL. The data is collected from the publicly available SignBD-

Word [10] dataset which consists of 6000 sign videos representing 200 unique words. The dataset contains 

2D body pose data in addition to full and upper body shots of the signers.16 participants performed the 

gestures. Of them, thirteen are men and the remaining individuals are women, ages 18 to 27. Signers were 

positioned 5–6 feet away. The subjects are filmed twice: once in an upper-body view and again in a full-

body shot. Every sign class that represents a word has thirty different video clips. 11-digit gesture classes 

from the dataset were collected. The collection contains 2D body keypoint joint skeleton information 

containing frames extracted from each video, including key points for the hands, face, and body. To 

efficiently obtain particular key points for every frame of the upper-body and full-body image, OpenPose 

[7] along with Pixie2HD was employed for extracting 2D body keypoint joints from each video frame. 

Among the 16 performer’s gesture performances, 2 signers' gesture performances contain only one view 

which is mostly left rotated upper body view. Each of the gesture classes was split into two sets which are 

train and test. The dataset contains 24 data for training in the train folder and 6 data per test folder for each 

class. And for class ‘dui’ there are 23 train data. Thus, training a deep neural network requires huge data 

comparatively to perform better in real life. In this case, several approaches were applied to classify the 

gestures with this limited amount of data and tried to increase the model's performance. Here are some 

sample frames from the dataset of class “char”, 

 

Figure 2: Sample Frames Example of The Dataset. 
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5. Pre-Processing 

5.1 Pre-Processing Frames 

Training a neural network generally requires a large amount of data. The aim is to classify gestures from 

a limited amount of data with various diversity. To minimize complex issues like trimming less important 

frames, applying data augmentation for increasing amounts of data and variation in this dataset, etc. for 

simplicity purposes were applied. For this purpose, the frames were resized from (512, 512, 3) to (224, 

224, 3) which is a standard size and applied largely to various video-based datasets classification. Also, 

the normalization of pixels is applied to reduce complexity. 

In the original SignBD dataset, from each video, 30 frames were extracted, while the 30 frames included 

starting off performing the gestures till the end. After evaluating the whole dataset, it is seen that the 

starting or ending few frames contain mostly neutral or repeated poses. So, 25 frames out of 30 were 

selected truncating the first 3 and last 2 frames so that the sequences contain important features.  

5.2 Cross-Validation 

Within digit data in the dataset, each of the gesture classes contains 24 folders of frames except one gesture 

class ‘dui’, which contains 23 folders. The validation dataset isn’t available separately. So, a cross-

validation technique was used along with data augmentation to increase the capability of model learning. 

For this purpose, the training dataset was split with a split rate of 0.75 for the train set and the rest for the 

validation set. Each time all folders per class randomly shuffle and create different batches for training 

and validation datasets. 

5.3 Sequence Generation 

Generating sequences of frames includes stacking sorted frames. For training a CNN model, the shape of 

each data has to remain the same. While stacking the frames, 25 frames were selected as described above. 

Then normalized each image for efficient data loading and generating sequences, tf.data libraries offered 

by TensorFlow for pipeline data generation were used, and the prefetching technique for faster data 

generation and feeding was also used. While generating batches of sequences, label mapping was assigned 

corresponding to each sequence. Using the data pipelining technique leverages the use of memory 

efficiency by loading batches of data in memory rather than loading the whole data and allowing the data 

pipeline to fetch batches of data in the background, thus speeding up training.  

5.4 Augmentation 

In this study on deep learning for dynamic sequence recognition, data augmentation is crucial for 

enhancing model robustness and generalization. A consistent augmentation strategy across video 

sequences, involving central cropping, zoom, and controlled rotation was applied. Specifically, each video 
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frame sequence is centrally cropped to retain 85% to 95% of the area, simulating partial object visibility. 

Frames are also zoomed between 1.1x and 1.3x to emulate varying camera-subject distances. Additionally, 

frames undergo rotations of 3 to 5 degrees to mimic real-world object orientations. This systematic 

application of transformations ensures temporal consistency across frames, critical for maintaining the 

continuity essential for learning from video data. 

 

6. Proposed Model Evaluation 

6.1 Experimental 3DCNN Model 

As there are no pre-trained models available for similar datasets like ours, initially a lightweight 3DCNN 

model was built where 3DCNN layers were inspired by a sign language feature extractor embedding 

3DCNN model proposed by Jirathampradub, H. et al. [15] and added dense layers the upon performance 

of recognition, modified the model accordingly. Initially, the model performed well in recognizing the 

training dataset but recognition accuracy for the test dataset was poor. The initial model structure was 

specifically designed for video data, incorporating multiple 3D convolutional layers to capture both spatial 

and temporal features effectively. The input shape here is (25, 224, 224, 3) which represents (the number 

of frames per sequence, image height, image width, and color channel).  

 

Figure 3: Architecture of the 3D CNN Model 

 
The network begins with a 3D convolutional layer with 32 filters of size 3×3×3, including regularization 

via an L2 regularization to mitigate overfitting and applying batch normalization and dropout for better 

generalization. The model then escalates the complexity by progressively doubling the number of filters 

in subsequent layers—64, 128, and finally 256—each followed by max pooling for dimensionality 

reduction and additional batch normalization and dropout layers of value 0.25 after conv3D layers 32,64, 

and 128. A dropout value of 0.40 after conv3D layer 256 was added to enhance training stability and 

model robustness and prevent overfitting. The top of the network flattens the output from the 3D 
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convolutional layers and passes it through a dense layer with 256 units, culminating in a SoftMax output 

layer that categorizes the input into multiple classes based on the training data. 

 This architecture is particularly suited for tasks requiring analysis of sequential video frames, such as 

action recognition or gesture detection, where capturing the dynamics within the video is crucial. Though 

considering the number of training data, the model was able to classify all the training data very accurately, 

and upon training more epochs it increased more training accuracy without dropping test accuracy values. 

At a certain point, it could predict all the training datasets. But test accuracy was 16%. So, different 

augmentation techniques described above were implemented and increased variation which helped in 

gaining test accuracy of 19.7%. However, the training accuracy was high so the model was capable of 

distinguishing different gestures accurately without decreasing the test accuracy. Then various available 

pre-trained models as base feature extractors were applied to improve performance and then compared the 

performances.  

6.2 Transfer Learning  

Transfer learning has emerged as a powerful strategy in machine learning, especially when dealing with 

datasets of limited size. It involves transferring knowledge from one model that has been trained on a large 

dataset to another model to be trained on a smaller dataset. This approach is particularly beneficial in 

domains where data collection is expensive or difficult. We used different available models like DenseNet-

201, DenseNet-169, I3D, etc. DenseNet is known for its efficient training process, as each layer receives 

additional inputs from all preceding layers and passes on its feature maps to all subsequent layers. This 

characteristic makes DenseNet particularly effective for transfer learning because it ensures maximum 

information flow between layers, which can be very beneficial when training data is limited. I3D (Inflated 

3D ConvNet) was Originally designed for video action recognition, I3D transfers the knowledge from 2D 

models (like Inception) trained on large image datasets to 3D tasks. It expands 2D convolutional networks 

into 3D, allowing it to leverage temporal information. This makes I3D a good choice for transfer learning 

in video and motion analysis, where both spatial and temporal dimensions are crucial. 

6.3 Experimental DenseNet-201 with BiLSTM Model 

Combining DenseNet-201 with BiLSTM has been explored in many classification tasks like [16, 21, 23] 

where combining DenseNet-201 with BiLSTM helped gain higher recognition accuracies. The advantages 

of this technique were explored and experimented on a custom model where DenseNet-201 was used as 

the base feature extractor and later some BiLSTM and Dense layers were added. The detailed architecture 

is given below, 

Figure 4: Architecture of DenseNet-201 with BiLSTM Model. 
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In the development of a model for classifying dynamic hand gestures based on 2D RGB skeleton motion 

frames, an innovative architecture leveraging the DenseNet-201 convolutional network is proposed. The 

model is structured to process sequences of 25 frames, each with a resolution of 224x224 pixels. The 

DenseNet-201, pre-trained on the ImageNet dataset, serves as the foundational feature extractor. To 

accommodate the sequential input, a TimeDistributed layer wraps the DenseNet-201, allowing the model 

to apply the convolutional base to each frame independently. To further harness temporal information 

across the frames, the outputs from the TimeDistributed DenseNet-201 layers are passed through a 

TimeDistributed global average pooling layer to reduce dimensionality while preserving important spatial 

features. This is followed by a BiLSTM layer with 512 units, which captures dynamic changes in gesture 

sequences by processing data in both forward and reverse directions. This layer is crucial for understanding 

the temporal dependencies between frames. A Global Average Pooling operation across the time 

dimension condenses the temporal information into a single vector per sequence after that. Subsequently, 

the model includes multiple Dense layers with ReLU activation to enhance feature learning, interspersed 

with Dropout layers set at 0.3 to prevent overfitting, which feeds into a SoftMax classifier that outputs the 

probabilities for the 11 gesture classes. This architecture not only efficiently processes spatial features 

through DenseNet-201 but also effectively models temporal relationships, making it well-suited for 

dynamic gesture recognition in real-time applications. 

This model demonstrates a robust approach by combining the strengths of deep convolutional networks 

for spatial feature extraction and recurrent networks for sequence learning, which is essential for 

accurately classifying sequences of dynamic gestures. 

 

6.4 Proposed Hybrid 3DCNN+ LSTM Model 

After conducting several experiments, a hybrid 3DCNN+BiLSTM model with Densenet-201 as the base 

feature extractor was built. The architecture of the proposed model is given below, 

 

Figure 5: Proposed hybrid 3DCNN+BiLSTM architecture 
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In the proposed architecture for classifying 2D RGB skeleton motion frames for dynamic hand gestures, 

the model effectively leverages a combination of convolutional and recurrent neural network components 

to address the classification of 11 distinct classes. At the core of this architecture is the DenseNet-201 

model, utilized as a feature extractor over individual frames of the gesture sequences. This base model is 

pre-trained on the ImageNet dataset, ensuring robust initial feature detection, and is set to be non-trainable 

to preserve its learned characteristics. 

The input layer accepts sequences of 25 RGB frames, each with dimensions 224x224. These frames pass 

through a TimeDistributed wrapper that applies the DenseNet-201 model to each frame independently, 

extracting high-level spatial features. Subsequently, a 3D convolution layer with a kernel size of 3x3x3 

processes these features to integrate temporal dynamics, a critical aspect of understanding motion in 

gestures. Following the convolutional stage, the model incorporates a GlobalMaxPooling3D layer to 

reduce dimensionality and a Batch Normalization (BN) layer to stabilize and accelerate training. A 

Dropout layer follows, set at 25%, to mitigate overfitting. The output is then reshaped and fed into a 

BiLSTM layer, which further refines the model's ability to capture temporal dependencies across frames.  

The sequence output from the BiLSTM undergoes global max pooling to summarize the essential features 

before entering a series of fully connected layers. These dense layers, interspersed with dropout layers at 

a rate of 30%, serve to finalize the feature learning and perform the classification. The final layer employs 

a SoftMax activation function to output probabilities across the 11 gesture classes. This integrated 

DenseNet-201 and BiLSTM architecture is designed not only to extract detailed spatial features from 

individual frames but also to effectively model the temporal sequences inherent in dynamic hand gestures, 

making it highly suitable for real-time gesture recognition tasks. 

 

7. Overview of Optimizers, and Loss Functions 

7.1 Loss Function 

A loss function compares the target and anticipated output values to determine how well the neural 

network mimics the training data. During training, it is attempted to minimize this output difference 

between the target and expected value by monitoring the loss function.  

7.1.1 Sparse Categorical Cross Entropy (SCCE) 

In deep learning frameworks such as Keras and TensorFlow, a fundamental loss function used for multi-

class classification problems is sparse categorical cross entropy (SCCE). The SCCE calculates the 

difference between the true labels and the model's anticipated class probabilities, which are usually 

acquired via SoftMax activation for multi-class classification. The SCCE loss is calculated using the 

following formula: 

Loss = -Σ q(x) * log(p(x))                                                                                                                         (1)                                   

Here, Σ (sigma) represents summation across all classes. q(x) denotes the true label for a data point. p(x) 

signifies the predicted probability for each class from the SoftMax output. And log represents the natural 

logarithm (base e). SCCE is computationally efficient for multi-class classification tasks and provides 

straightforward results with a simple implementation. 

 

7.2 Optimizer 

An optimizer is a procedure or function that adjusts learning rates and weights in neural networks. It 

therefore aids in lowering overall loss and raising precision. In this study, the Adam optimizer was 

employed. 
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7.2.1 Adam 

Adam optimizer was first introduced by Kingma, D. P. et al. [11]. It is an optimization technique that may 

be used to iteratively update network weights depending on training data.  From adaptive moment 

estimation comes the name, Adam. To adjust network weights during training, this optimization approach 

is a further extension of stochastic gradient descent. Adam optimizer modifies the learning rate for each 

network weight separately, unlike SGD training, which maintains a single learning rate. The inventors of 

the Adam optimization algorithm are aware of the advantages of the AdaGrad and RMSProp algorithms, 

two other stochastic gradient descent extensions. As a result, both the AdaGrad and RMSProp algorithms' 

features are inherited by the Adam optimizers. Adam uses both the first and second moments of the 

gradients to adjust learning rates rather than just the first moment (mean) as it does in RMS Prop. By the 

second moment of the gradients, we refer to the uncentered variance. Compared to other optimization 

algorithms, this one is easier to implement, runs more quickly, uses less memory, and needs less adjusting. 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1) [
𝛿𝐿

𝛿𝑤𝑡
] 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) [

𝛿𝐿

𝛿𝑤𝑡
]
2

                                                              (2) 

The Adam optimizer's operation is represented by the formula above. The decay rate of the average of the 

gradients is shown here by β1 and β2.  Here, mt is the aggregate of gradients at time t. This research 

employs an Adam optimizer with an exponential decay learning rate schedule, initially set at 0.0001 and 

decreasing by a factor of 0.9 every 10,000 steps to optimize convergence. The Adam optimizer, a robust 

approach, employs an exponential decay learning rate to train deep learning models on dynamic sequences 

of frames for pattern recognition. This method enhances convergence speed and efficiency, reducing the 

learning rate exponentially over epochs [11]. This method is particularly effective in complex tasks like 

dynamic sequence recognition, promoting a more controlled and precise update path, and leading to better 

generalization and performance on unseen data [12]. 

 

8. Training 

Initially, a few pre-trained models were used as base feature extractors. These pre-trained models were 

trained separately to visualize their performance on this dataset. Using pre-trained models as base feature 

extractors increased real-time accuracy. As multiple layers of Conv3D were employed, running a higher 

number of epochs resulted in more accuracy, but it was computationally expensive. Therefore, a few 

previous layers were truncated, and training with simpler 3DCNN+LSTM layers performed better than 

training solely on the base pre-trained model, achieving similar accuracy. The simpler model was trained 

for 50 epochs, showing almost the same accuracy as using the additional Conv3D layers. 

The same Conv3D 256 layers and LSTM layers were used, maintaining the same structure, and different 

pre-trained models were replaced as base feature extractors. Among these, DenseNet-201 outperformed 

other pre-trained models. Different pre-trained models were used to visualize performances. Initially, 

training was conducted with the unmodified training and validation datasets, using early stopping and 

model checkpoints to save progress. Later, training with the augmented training dataset increased model 

robustness. While training with DenseNet-201, it is common to use LSTM or BiLSTM layers for action 

recognition classification tasks. However, combining 3DCNN with LSTM layers is a well-known 

technique for classifying dynamic action recognition. DenseNet-201 was trained with added 

3DCNN+LSTM layers, two Dense layers with ReLu activation, and one final classification Dense layer 

with SoftMax activation. This method increased overall test and training accuracy. Replacing LSTM with 

Bidirectional LSTM resulted in better performance. 
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Adam optimizer with an exponential decay rate was used throughout the training process, aiding in 

recognizing complex data. Each model with pre-trained models as the base feature extractor was executed 

for 50 epochs on the main training and validation dataset. A smaller number of epochs were then executed, 

considering model complexity, until state-of-the-art performance was reached. After training on the 

unmodified training dataset, the model was trained again on the augmented training dataset similarly. 

Different augmentations helped achieve more real-time and training accuracies. Sparse Categorical Cross 

Entropy (SCCE) was used as the loss function, ReLu as the activation function in all dense layers, and 

SoftMax as the activation function in the classification layer. Additionally, callback functions like early 

stopping, ReduceLROnPlateau, and ModelCheckPoints were used with a small patience rate to prevent 

overfitting and save model progress and the best results. 

 

9. Result Comparison 

9.1 Performance Comparison of Different Models 

Each DenseNet models except DenseNet-201 with BiLSTM are used with the same structured 

3DCNN+BiLSTM layers after. To extract spatial characteristics from the input sequence, this 

convolutional-LSTM architecture uses a 3D convolutional layer with 256 filters. Then, to capture the most 

notable features across the spatial dimensions, global max pooling 3D(GMP3D) is used. Batch 

normalization aids in internal covariate shift, whereas dropout (25%) was used to prevent overfitting. After 

that, the features are formatted so that they can be processed by LSTM. To find the most informative 

representation of the sequence, a 512-unit recurrent LSTM layer first analyses the temporal dependencies 

within the data. Global max pooling is then applied along the temporal dimension. For additional feature 

transformation, the output is routed through two fully connected layers (512 and 256 units) with ReLU 

activations. Once more, dropout rates of 30% and 30% are utilized. 

While evaluating the performance of I3D as a feature extractor, it didn’t perform well with either 3DCNN 

or BiLSTM or a combined 3DCNN+BiLSTM structure. So, the I3D model pre-trained on the Kinetics-

400 dataset was evaluated separately by adding two Dense layers of unit 512 with a dropout value of 0.4, 

and later another Dense layer of unit 256 with a dropout value of 0.3 was utilized with a final classification 

layer with SoftMax activation function. Based on using different pre-trained models wrapped in 

TimeDistributed function as base feature extractor, here is the detailed comparison below to visualize their 

performances. 

 

Table 2: Comparison of the Accuracy Levels of Various Models. 

Models 
Training 

accuracy 

Test 

accuracy 

3DCNN 100 19.70 

I3D 94.62 21.21 

DenseNet-169+3DCNN+BiLSM 98.93 27.27 

DenseNet-201+BiLSTM 99.62 31.82 

DenseNet-201+3DCNN+LSTM 98.98 33.30 

DenseNet-201+3DCNN+BiLSTM 100 36.36 

 

From the above figure, it can be seen that DenseNet-201 works best among the pre-trained models. 

Combining 3DCNN+ BiLSTM layers with DenseNet-201 provides a better generalization for unseen data 
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and training data accuracy. Also proposed model achieved 4.54% more accuracy than the experimental 

model DenseNet-201 with BiLSTM. In the SignBD-Word dataset, from where we collected our data, they 

evaluated different pre-trained models and the I3D model outperformed the other pre-trained models for 

bodypose data [10]. Here, comparing the performances, it is seen that the DenseNet models outperformed 

the I3D model.  

 

Figure 6: Convergence of Model Loss During 

Training 

 

Figure 7: Comparative Analysis of 

Experimental Model Performances on 

Classification Metrics. 

 

Upon examining the training and validation loss curves in Figure 6, several salient features surface that 

serve as indicators of the learning behavior of the model. The monotonous drop shown in both graphs 

indicates that the model is successfully picking up on the underlying patterns in the dataset during training. 

Interestingly, with just minor variances, the validation loss nearly matches the training loss, which usually 

denotes strong generalization without appreciable overfitting.  

In the Figure 7 graph, the efficacy of three distinct experimental models was evaluated, highlighting their 

macro average Precision, Recall, and F1-score. The architectures compared the classification matrices 

among 3DCNN, hybrid DenseNet-201+BiLSTM model, and proposed hybrid DenseNet-

201+3DCNN+BiLSTM models. Our results depict a clear superiority of the ensemble model, achieving 

the highest scores across all metrics: Precision (0.37), Recall (0.36), and F1-Score (0.33).  

9.2 Discussion 

Although DenseNet-201+BiLSTM is included in experimental model 2, which has a different structure 

than the proposed model, two same-structured models were also evaluated using a global average pooling 

layer after DenseNet-201. One model excluded the Conv3D block, while the other included it with the 

same type of pooling layers. Both computational expense and recognition performance were evaluated. 

Including the Conv3D block increased the computational expense and required more epochs to achieve 

state-of-the-art performance. In terms of accuracy, adding the Conv3D layer performed better, whereas 

experimental model 2 was computationally less expensive. For evaluation purposes, both models were run 

until the highest training accuracy was reached. The first model without the Conv3D layer was run for 50 

epochs, and the other model with the Conv3D block was executed for 100 epochs to achieve the highest 

training accuracy. After execution, it was observed that adding a Convolutional block resulted in a 3.03% 

increase in accuracy. However, dynamic action recognition still requires further exploration to reduce the 

additional computational expense. 

Significant limitations were identified due to the dataset's size and quality. Each of the 11 classes had a 

minimal number of training samples, with ten classes containing only 24 samples each and one class 
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having 23 samples, complicating the effective training of complex models comprising DenseNet-201, 

3DCNN, and BiLSTM layers. Additionally, the extraction process resulted in incomplete keypoints for 

many data, further challenging the model's learning capability. These data constraints were reflected in 

the substantial disparity between training accuracy and test accuracy. Reflecting on the limitations and the 

model's learning capability, it was concluded that adding more data and ensuring a more accurate 

extraction of keypoints or performing accurately would help in generalizing unseen data more accurately. 

9.3 Tools 

In the experiments conducted, TensorFlow version 2.15.0 as a deep learning framework was utilized. All 

models were trained and tested using Google Colab, which provided access to a T4 GPU. The initial setup 

included a standard environment with 12 GB of RAM. For more intensive computational tasks, Google 

Colab's high RAM option was accessed, which provided 51 GB of RAM, ensuring sufficient resources for 

handling larger datasets and more complex model architectures if needed. 

 

10. Conclusion 

Although the recent progress in classifying dynamic gestures from dynamic data and creating large 

datasets for dynamic Human Action Recognition has been notable, BdSL still faces a lack of data and 

approaches for these purposes. The use of 3DCNN has not yet been extensively explored due to 

computational expenses. For BdSL, this study is the first to investigate dynamic BdSL classification from 

keypoint skeleton-based data using a 3DCNN-based approach. It has been shown that using 3DCNN 

combined with popular pre-trained feature extractor models can achieve better accuracy. Additionally, 

BiLSTM and GlobalMaxPooling3D contribute to better spatiotemporal data generalization. In the future, 

collecting more data will allow for better real-time accuracy by exploring more approaches. By developing 

a more robust architecture and increasing the dataset size, a more effective approach for BdSL will be 

developed, which will be beneficial for disabled individuals to express themselves using sign language. 
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