Platform for Organ Donation and Transplantation Using Blockchain

Rohit Baba¹, Vishvajit Gaikwad², Sanket Dhotre³, Soumitra Chavan⁴, Rupali Waghmode⁵

¹,²,³,⁴,⁵Sinhgad Institute of Technology and Science, Pune 411041, Maharashtra, India.

Abstract
The critical shortage of organs for transplantation necessitates exploring innovative solutions to improve the matching and allocation process. Blockchain technology, with its significant principles of the decentralization, security, and transparency, presents a promising avenue for building a more efficient and trustworthy platform for organ donation and transplantation. This paper surveys the current state of organ donation systems, explores the potential benefits of blockchain integration, and analyzes existing research on blockchain-based platforms for this domain.

Keywords: Organ Donation, Transplantation, Blockchain Technology, Smart Contracts, Decentralization, Transparency.

1. INTRODUCTION
The organ donation and transplantation landscape is a critical domain within healthcare, offering a lifeline to countless individuals in need. However, the current systems grapple with inefficiencies such as irregular record storage, opaque allocation practices, and ethical concerns. The drawbacks in previous existing technology used include irregular record storage, inefficient organ allocation, and concerns about transparency. This research delves into the application of blockchain technology as a disruptive force poised to address these challenges. Blockchain, with its decentralized, transparent, and immutable characteristics, stands as a promising solution to enhance the security, efficiency, and ethical dimensions of organ donation and transplantation processes. This application introduces new features such as decentralized control over medical records, transparent access management, and an intelligent resource allocation algorithm.

By proposing a blockchain-based system leveraging smart contracts and the Ethereum blockchain, this research aims to empower patients, optimize organ distribution, and fortify the security and privacy of critical medical records. The subsequent sections delve into the methodologies, applications, and implications of this innovative approach, with the overarching goal of contributing to a more robust, patient-centric, and ethically grounded organ transplantation ecosystem. This application overcomes the drawbacks of other projects by implementing decentralized control over medical records, transparent access management, and an intelligent resource allocation algorithm.
The following block diagram outlines the key components involved in a blockchain-based organ donation and transplantation system.

The workflow for application works in the following manner –

1. **Organ Donation and Transplantation Participants:** This represents the various entities involved in the organ donation and transplantation process, including donors, recipients, hospitals, and regulatory bodies.

2. **Blockchain Network:** The overarching blockchain network that facilitates decentralized and secure transactions.

3. **Smart Contracts:** These are self-executing contracts with predefined rules and conditions.

2. **LITERATURE SURVEY**

The literature survey delves into existing research and scholarly works that contribute to the understanding of organ donation, transplantation, and the application of blockchain technology in healthcare. Literature provides a foundation for our research, guiding the development of a blockchain-based solution aimed at overcoming existing limitations in the organ donation and transplantation domain.

2.1. Literature Survey

2.1.1 Literature survey on Blockchain-Based Management for Organ Donation and Transplantation

From the paper [1], The provided excerpt outlines the challenges faced by contemporary organ donation and transplantation systems, emphasizing the need for an end-to-end solution that addresses legal, clinical, ethical, and technical constraints to ensure a fair and efficient process, ultimately enhancing patient experience and trust. The paper proposes a novel approach utilizing a private Ethereum blockchain, introducing decentralization, security, traceability, auditability, privacy, and trustworthiness to the organ donation and transplantation management. The implementation includes the development of smart contracts and the presentation of six algorithms, accompanied by their detailed implementation, testing, and validation. The paper evaluates the performance of the proposed solution through analyses of privacy, security, and confidentiality, comparing it with existing solutions. Notably, the transparency of the project is emphasized by making the smart contract code publicly available on GitHub. This research contributes to evolving discourse on blockchain applications in healthcare, particularly in the organ donation domain, by providing a comprehensive solution that combines technological innovation with rigorous testing and evaluation.
2.1.2 Literature survey on Interoperability in Electronic Health Records Management and Proposed Blockchain Based Framework: MyBlockEHR”

From the paper [2], author has proposed the critical importance of interoperability in Electronic Health Records (EHR) to facilitate seamless information sharing among diverse healthcare stakeholders while ensuring security, privacy, and trust. The study conducts a systematic literature review addressing four research questions, focusing on standards for EHR interpretation and modeling, privacy-preservation techniques, the maturity of blockchain technology for EHR solutions, and the state-of-the-art in cross-chain interoperability for EHR sharing. The findings suggest the potential of a blockchain-based EHR management framework in enhancing privacy, access control, and storage efficiency. However, challenges in blockchain adoption for EHR management are identified, leading to the proposal of a novel framework called MyBlockEHR. The research contributes valuable insights to the ongoing discourse on blockchain applications in healthcare, offering the nuanced understanding of the challenges and potentials associated with interoperable, privacy-preserving EHR solutions.

2.1.3 Literature survey on A Blockchain-Assisted Verifiable Outsourced Attribute-Based Signcryption Scheme for EHRs Sharing in the Cloud

From the paper [3], literature survey explores the challenges associated with the sharing of Electronic Health Records (EHRs) and proposes a novel solution, the Blockchain-assisted Verifiable Outsourced Attribute-Based Signcryption Scheme (BVOABSC), designed to enhance the security of EHRs in a multi-authority cloud storage environment. The conventional practice of outsourcing EHRs to cloud servers raises concerns about patient control, data integrity, and the potential for malicious tampering. The BVOABSC scheme employs attribute-based signcryption to ensure the confidentiality and unforgeability of EHRs, preserving the privacy of the signer. Additionally, it leverages a verifiable outsourcing computation mechanism to reduce user computational burden while maintaining correctness verification. Blockchain technology is integrated to protect against tampering, with each EHR operation recorded as a transaction, ensuring immutability. Smart contracts, created by patients, address issues such as tampering and incorrect results in cloud storage.

2.1.4 Literature survey on An Efficient Authentication Scheme for Blockchain-Based Electronic Health Records

From the paper [4], literature survey addresses challenges in traditional electronic health records (EHRs) where medical information is controlled separately by different hospitals, leading to difficulties in information sharing. Although cloud-based EHRs alleviate this issue, they introduce a new concern of centralization, with a focus on the cloud service center and key-generation center. The paper proposes a paradigm shift by integrating blockchain technology into EHRs, creating a decentralized solution termed blockchain-based EHRs. The paper proposes a paradigm shift by integrating blockchain technology into EHRs, creating a decentralized solution termed blockchain-based EHRs. This research contributes to the evolving landscape of secure and decentralized EHRs through the integration of blockchain technology and the introduction of an improved authentication scheme.

2.2 Summary of Literature Review

The above survey of various researchers of different papers, about organ donation and transplantation using blockchain, From Literature survey, it is concluded that the challenges inherent in the current systems, including irregular record storage, inefficient allocation, and ethical concerns. To address these issues, the review proposes a blockchain-based solution leveraging Ethereum. The motivation is rooted in
saving lives through more efficient and trustworthy organ transplantation management. Includes improving transparency, security, and efficiency through use of smart contracts and blockchain technology. The motivation to build trust among donors, recipients, and medical professionals, along with the goal of combating fraud in organ transactions, is emphasized. The scope of the project extends to benefit healthcare institutions and government agencies involved in organ donation and transplantation processes. Overall, the literature review underscores the transformative potential of blockchain in optimizing organ donation procedures and fostering a more ethical and transparent ecosystem.

3. METHODOLOGY

A. Input stage

In the input stage of the methodology, the focus is on gathering relevant data, understanding requirements, and conducting research necessary for the development of the blockchain-based organ donation management system.

Requirement Gathering: Engage with stakeholders including donors, patients, hospitals, database administrators, and other relevant parties to gather requirements for the system.

Define the functionalities, features, and goals of the system based on stakeholder inputs.

Data Collection: Collect data related to organ donation and transplantation processes, including donor and patient information, hospital capabilities, regulatory requirements, and historical data.

Perform a thorough literature review to understand existing systems, challenges, and potential solutions in organ donation management.

B. Output & Display

In the output stage, the finalized features of the blockchain-based organ donation management system will be displayed, encompassing user-friendly interfaces tailored for donors, patients, hospitals, and administrators, facilitating seamless interaction. This includes the establishment and configuration of data nodes for decentralized storage, implementation of smart contracts governing transactions, and setup of the blockchain network ensuring transparency and immutability. The execution of transactions, reporting mechanisms for historical data, integration of robust security measures, and optimization for scalability and performance are also addressed.

Figure 2: Use Case Diagram
Figure-2 depicts the use case diagram which shows the interaction between the actors and the system.

![Use Case Diagram]

Figure 3: Activity Diagram

Figure 3 illustrates the step-by-step process, from donor and patient registration to the final commitment of the transaction to the blockchain. By leveraging blockchain’s decentralized and immutable nature, we aim to create a robust system that ensures data integrity, privacy, and trust in health-related transactions. Our model addresses critical challenges such as interoperability, data sharing, and auditability, making it a promising solution for modern healthcare systems.

In the sequence diagram of Figure 4, depicts a streamlined process involving donor and patient registration, hospital approval, and data management. The donor initiates the process by registering their intent to donate, while the patient provides necessary details. Simultaneously, the hospital reviews the donor-patient pair and approves the donation if eligible. The DB Admin plays a crucial role by uploading relevant data to the blockchain, where transactions are executed on Datanodes, ensuring security and immutability. Our model addresses critical challenges, including data integrity, privacy, and auditability. By leveraging blockchain’s decentralized nature, we create a robust system for transparent and secure handling of donations in healthcare.
Algorithm:
In blockchain-based donation management system, the generation of secure hash values is fundamental to maintaining data integrity and preventing tampering. Hash generation algorithms ensure that each block in the blockchain contains a unique identifier, enabling verification and validation of transactions. This paper presents an algorithm specifically designed for hash generation in organ donation management systems, aimed at enhancing transparency, security, and trust in the organ transplantation process.

Algorithm: Hash Generation
Input: Genesis block, Previous hash, data d
Output: Generated hash H according to given data
Step 1: Input data as d
Step 2: Apply SHA-256 from SHA family
Step 3: CurrentHash = SHA256(d)
Step 4: Return CurrentHash
The algorithm begins by taking input data, which includes the genesis block, previous hash, and relevant transaction data. Subsequently, the SHA-256 cryptographic hash function is applied to the input data, generating a unique hash value. This hash value serves as the identifier for the current block in the blockchain, ensuring its integrity and immutability. Finally, the algorithm returns the generated hash value, which is then stored on the blockchain.

Algorithm: Mining Algorithm
Input: User Transaction Query, Current Node: ChainCNode[Chain], Other Remaining Nodes Blockchain Nodes: Chain[Nodeid][Chain]
Output: Recover if any chain is invalid else execute the current query
Step 1: User generates any transaction query (DDL, DML, or DCL).
Step 2: Get the current server blockchain: CchainCnode[Chain].
Step 3: For each node in the blockchain:
 If not equal to NodeChain[i] with Cchain, set Flag1.
 Else, continue and commit the query.
Step 4: If Flag equals 1, count similar nodes in the blockchain.
Step 5: Calculate the majority of servers and recover invalid blockchain from a specific node if necessary.
Step 6: End the loop.

System Components:
- **User Interface**: Provides a platform for users to interact with the chatbot, submit queries, and receive responses.
- **Natural Language Processing (NLP) Module**: Processes user input, extracts relevant information such as symptoms, and converts text queries into a format suitable for analysis.
- **Disease Prediction Engine**: Utilizes machine learning algorithms to analyze symptoms and predict potential diseases based on the extracted information.
- **Recommendation Generator**: Formulates personalized recommendations for disease prevention and management based on the predicted diseases and other relevant factors.
- **Knowledge Base**: Stores a pre-trained dataset of diseases, symptoms, preventive measures, and other medical information to support the chatbot's decision-making process.
- **Feedback Mechanism**: Allows users to provide feedback on the chatbot's responses, enabling continuous improvement and refinement of the system.
- **External Data Integration**: Optionally integrates with external data sources such as electronic health records (EHRs) or public health databases to enhance the accuracy and relevance of predictions and recommendations.

Expected Result:
The expected outcome uses blockchain technology to facilitate seamless transactions among donors, patients, and hospitals. Here’s how it works: Donors and patients register within the system, with donors initiating transactions. The critical components include hash generation and mining, which validate the blockchain. Data nodes actively commit transactions, while hospitals play a pivotal role in approving donations. The diligent admin oversees the entire process, ensuring transaction validation and the generation of historical reports. This well-organized approach streamlines healthcare-related transactions, benefiting all stakeholders.
Organ Donation Management Interface:

Figure 5 displays the login page of the application, featuring the application along with fields for entering the username and password to access the user's personal account. The page includes a login button and a forgot password option to change the user's login information for future use. In Figure 6, the main home page of the application is shown, providing users with various features to select from such as request donor.
Fig 7: Login as a patient

Fig 8: Matching with donor

Fig 7 displays that users access the system securely as patients, inputting credentials for account access. Once logged in, patients can view and manage their information, including their registration details, organ transplantation requirements, and any ongoing transactions related to donor matching and organ allocation.

In Fig 8, Patients review potential organ donors, facilitating informed decisions and match based on compatibility and medical criteria.

4. FUTURE SCOPE & INCREMENTATIONS

The project holds substantial potential for future enhancements and expansions to further optimize organ donation management using blockchain technology:

1. **Enhanced Data Security**: Implementing advanced encryption techniques and biometric
authentication for heightened security and privacy of sensitive medical data.

2. **IoT Integration**: Incorporating Internet of Things (IoT) devices for real-time monitoring of organ transportation, ensuring timely and secure delivery.

3. **Artificial Intelligence**: Integrating AI algorithms for predictive analysis of organ compatibility, improving matching accuracy and transplantation success rates.

4. **Mobile Application Development**: Developing dedicated mobile applications for donors, patients, hospitals, and administrators, enabling convenient access and management of organ donation processes.

5. **Blockchain Interoperability**: Exploring interoperability with other blockchain networks to facilitate seamless data exchange and collaboration between different healthcare systems.

6. **Regulatory Compliance**: Ensuring compliance with evolving healthcare regulations and standards, including GDPR and HIPAA, to maintain data integrity and patient confidentiality.

7. **Telemedicine Integration**: Integrating telemedicine functionalities to enable remote consultations and follow-ups for organ recipients, enhancing post-transplantation care.

8. **Community Engagement**: Implementing features for community engagement and awareness campaigns to promote organ donation and transplantation, fostering a supportive ecosystem.

9. **Continuous Improvement**: Regular updates and enhancements based on user feedback and technological advancements to ensure the system remains relevant and effective in addressing evolving needs and challenges in organ donation management.

By embracing these future scopes and incrementations, the project can continue to evolve as a comprehensive and cutting-edge solution for optimizing organ donation and transplantation processes, ultimately saving more lives and improving patient outcomes.

5. **CONCLUSION**

This survey paper concludes by providing a comprehensive overview of the current state of organ donation and transplantation record systems and underscores the significance and efficacy of implementing advanced blockchain technologies, particularly Ethereum, for decentralized and cooperative management. This research paper emphasizes the pivotal role of Ethereum blockchain in securely recording and managing organ donation data, enhancing transparency, and facilitating trust among stakeholders involved in the transplantation process. By thoroughly investigating existing methodologies and proposing a decentralized approach based on Ethereum's blockchain, the project aims to streamline organ donation processes and improve overall infrastructure for organ transplantation.

REFERENCE

